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A Proof of Schauder’s Theorem

Shizuo KAKUTANI

1. Introduction. The purpose of this note is to give a simple proof
to the following theorem of J. $Schauder^{1)}$ : A bounded linear operator $T$

defined on a Banach space $X$ is completely continuous if and only if th $e$

adjoint operator $\tau*$ of $T$ defined on the conjugate space $X^{*}$ of $X$ is
completely continuous. We shall give a formulation of Schauder’s theorem
(Theorem 2) in which $X$ and $X^{*}$ (and hence $T$ and $T^{*}$ ) appear as a dual
pair. (It is to be observed that $X^{*}$ has no need to be the conjugate
space of $X$ in Theorem 2). Since $T$ and $T^{*}$ play equivelent roles in our
formulation, the “ if” part of the theorem is an equivalent proposition to
the “ only if “ part.

Our proof of Schauder’s theorem is based on the following well-known
theorem of G. Arzel\‘a: A uniformly bounded, equi-continuous family
$F=\{f(x)\}$ of real-valued $contin\llcorner 0_{-}\iota s$ functions $f(x)$ defined on a totally
bounded metric space $X$ is totally bounded with respect to the metric
(1) $d(f_{1}, f_{2})=\sup_{x\epsilon X}|f_{1}(x)-f_{2}(x)|$ .
We shall give a formUlation of a special case of Arzela’s theorem (Theorem 1)
in which $X$ and $F$ play equivalent roles so that the total boundedness
of $X$ is also necessary for the total boundedness of $F$. The notion of
totally bounded functions $i_{11}tloduced$ in section 2 will be helpful in making
arguments simpler.

2. Totally bounded functions. Let $X=\{x\},$ $Y=\{y\}$ be two sets.
Let $f(x,y)$ be a bounded real-valued function defined for all $x\epsilon X$ and for
all $y\epsilon Y$.

Lernzna 1. $T/l_{-}$ following $t/lree$ conditions are mutually equivalent: (i)

for any $\epsilon>0t/\iota ere$ exists a dccomposition $X=U_{i=^{h_{1}}}A_{i}$ of $Xi;\ell to$ a fnite $lu\prime nb_{\vee}^{\wedge}r$

of subsets $A_{i},$ $i=1,$ $m,$ $snc\prime_{l}t/lat$

(2) $|f(x_{1},y)-f(x_{2}, y)|<\epsilon$

for all $x_{1},$
$x_{2}\epsilon A_{t}$ (same $i$), $i=1,$ $m$ , and for all $ y\epsilon$ Y. (ii) for any $\epsilon>0$

thcre exists a decomposition $Y=U_{j=1}^{n}B_{j}$ of $Y$ into a finite number of subsels
$B_{j},$ $j=1,$ $n,$ $snc/z$ tlat
(3) $|f(x)-f(x)|<\epsilon$

for all $x\epsilon X$ andfor $y_{1},$ $y_{2}$ , $J,$ .y $>0$

there exist $decompositio’\iota sX=U_{t=1}^{m}A^{i},$ $Y=U_{j=1}^{n}B_{j}$ of $X$ and $Y$ into a finite
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number of subsets $A_{i},$ $i=1,$ $m$. and $B_{j},$ $j=1,$ $n,$ $s//ch$ tfiat
(4) $|f(x_{1}, y_{1})-f(x_{2},y_{2})|<\epsilon$

for all $x_{1},$
$x_{2}\epsilon A$ (same $i$), $i=1,$ $\cdots,$ $m$ , and for all $y_{1},y_{2}\epsilon B_{i}$ (same $j$),

$j=1,$ $\cdots,$ $n$ .
The proof of this lemma is easy and so $0tnitted$ . Iri case one (and

hence all) of the conditions of Lemmi 1 is satisfied, we say that the
function $f(x, y)$ is totally bounded on $X$ and $Y$.

3. Arzela’s theorem. Let $X=\{x\},$ $Y=\{y\}$ and $f(x,y)$ be the same
as in section 2. For any $x_{1},$ $x_{2}\epsilon X$, let us put
(5) $d^{(1)}(x_{1}, x_{2} ; f)=\sup y\epsilon Y|f(x_{1},y)-f(x_{2},y)|$ .
Then $d^{(1)}$ ($x_{1},$ $x_{2}$ ; f) is a quasi-metric defined on $X$ (i.e. $d^{(1)}(x_{1}, x_{2} ; f)$

satisfies all axioms of a metric except possibly the separation axiom:
$d^{(1)}(x_{1}, x_{2};.f’)>0$ if $x_{1}\neq x_{2}$). $X$ is called totally bounded with respect to
$d^{(1)}(x_{1}, x_{2} ; f)$ if for any $\epsilon>0$ there exists a decomposition $X=U_{i=^{n}1}A_{i}$ of
$X$ into a finite $nnnlber$ of subsets $A_{j},$ $i=1,$ $\cdots,$ $m$ , such that $ d^{(1)}(x_{1}, x_{2} ; f)<\epsilon$

for all $x_{1},$ $x_{2}\epsilon A_{l}$ (same $i$ ), $i=1,$ $m$ . SImilarly, if we put for any $y_{1},y_{2}\epsilon Y$

(6) $d^{(2)}(y_{1},y_{2} ; f)=\sup_{x\epsilon X}|f(x,y_{1})-f(x,y_{2})|$ ,

then $d^{(2)}$ ($y_{1},$ $y_{2}$ ; f) is a quasi-metric on Y. The total boundedness of $Y$

with respect to the quasi-metric $d^{(2)}(y1’ y_{2} ; f)$ is defined similarly.
$T/leorem$ I. $X$ is totally lounded $’\angle vithresp_{p}ct$ to $d^{(1)}(x_{1}, x_{2} ; f)$ if and

only if $Y$ is totally bounded $’\iota vit’\iota$ respect to $d^{(2)}(y_{1}, y_{2} : f)$ .
Proof. Theorem 1 follows immediately from Lemma 1 if we observe

that the total $b_{oU\{1}dedness$ of $X$ with respect to $d^{(1)}(x_{1}, x_{2} ; f)$ is equivalent
to the condition (i) of Lemma 1 and that the total $b_{oU11}dedness$ of $Y$ with
$re$spect to $d^{(2)}((y_{1}, y_{2} ; f)$ is equivalent to the condition $(1\wedge 1)$ of Lemma 1.

Remark. Theorem 1 is symmetric in $X$ and $1^{\nearrow}$. Hence the “ if “ part
and the “ only if ‘’ part of Theorem 1 are essentially the same propositions.
Ft-rther, it is easy to see that this proposition is a consequence of Arzel\‘a’s

theorem. In fact, if we put $f_{y}(x)=f(x, y)$ , then $F=\{f_{y}(x)|y\epsilon Y\}$ is a
uniformly bounded, equi-continuous family of continuous functions $f_{y}(x)$

defined on a set $X$ with a quasi-metric $d^{(1)}(x_{1}, x_{2} ; f)$ ; and we have

(7) $d(f_{y_{1}},f_{y_{2}})=\sup_{xtX}|f_{y}$. $(x)-f_{y_{2}}(x)|$
$=\sup_{x\epsilon X}|f(x, y_{1})-f(x, y_{2})|$

$=d^{(2J}(y_{1},y_{2} ; f)$ .
4. Normed pair.

$,y_{J}, y_{2}$

all $\epsilon B_{j}$ (same $f$) $=1$ $7l$ (iii) for an $\epsilon$

Let $x=\{x\},$ $Y=\{y\}$ be two normed linear spaces$y_{1}, y_{2} ; A)=\sup_{x\epsilon A}|(x,y_{1})-(x,y_{2})|$

with $\Vert x\Vert_{1},$ $||y||_{2}$ as norms, Assume that there is a real-valued bilinear
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functional $(x, y)$ defined for all $x\epsilon X$ and for all $y\epsilon Y$ such that
(8) $|_{1}^{1}x||_{1}=\sup_{/l^{y//}z\leq 1}|(x,y)|$

(9) $||y||_{2}=\sup_{1/x/,\iota\leq 1}|(x, y)|$

for all $x\epsilon X$ and for all $ y\epsilon$ Y. $X$ and $1^{\nearrow}$ are called a normed pair with
respect to the inner product $(x, y)$ .

Let $X,$ $Y$ be a normed pair with respect to the inner product $(x,y)$ .
Let $T,$ $T^{*}$ be two bounded linear operators defined on X. $Y$ respcctively.
$T$ and $T^{*}$ are called an atljoint pair if
(10) $(7x,y)=(x, T^{*}y)$

for all $x\epsilon X$ and for all $ y\epsilon$ Y. It is easy to see that

(11) $||\prime 1^{\cdot}||_{1}=\dot{\sup}_{II^{x^{\prime})_{1-\prime}t}}\Vert Tx||_{1}$

$=\sup|\}r_{1\leq 1}^{l}\sup_{||y\}(z\leq 1}|(Tx, y).|$

$=\sup_{(/y|/2\leq 1\sup_{l|x||_{1}\leq r}|(x},$ $T^{*}y$) $|$

$=\sup^{\prime}/y^{\prime}\}a^{l\leq}||T^{*}y\Vert_{2}=||T^{*}||_{2}$ .
An example of a normed pair is given by a Banach space $X$ and its

conjugate space $X^{*}$ if we define the inner product $(x, x^{*})$ as the value of
a bounded linear functional $x^{*}$ at a point $x$ . Similarly, the conjugate space
$X^{*}$ of $X$ and the second conjugate space $X^{**}$ of $X$ (i.e. the conjugate
space of $X^{*}$ ) form a normed pair. (It is also easy to see that, if we
consider $X$ as a linear subspace of $X^{**}$ and if $Y$ is a linear subspace of
$X^{**}$ which contains $X$, then $X^{*}$ ard $Y$ form a normed pair). Further,

a bounded linear operator $T$ (defined on $X$ ) and the adjoint op $e$rator $T^{*}$

(defined on $X^{*}$) form an adjoint $p\hat{\circ}$ ir. Similarly, the adjoint operator $T^{*}$

of $T$ and the second adjoint operator $\tau**$ of $T$ (defined on $X^{**}$ ) $f_{01}m$

an adjoint pair.
From Theorem 1 follows immediately:
Lemma 2. Let $X_{*}Yb^{\underline{\theta}}a\prime\prime orm^{\underline{\rho}}d$ pair rvith respect to tlte inner product

$(x, y)$ , and $l\iota tA,$ $B$ be $t^{l}\iota vo$ bounded subsets of $X,$ $Y$ espectively. $T/lent/le$

follozving three conditions are mutually equivalent:
(i) A is totally boundcd $wit/\iota resp_{\iota}ct$ to $t/le$ quasi-metric
(12) $d^{(1)}(x_{1}, x_{2} ; B)=\sup_{y\epsilon R}|(x_{1},y)-(x_{2},y)|$

(ii) $B$ is totatly bounded with respect to tlte quasi-metric

(13) $d^{(2)}($

(iii) $t/\iota e$ inner $\ell roduct(x, 1^{\prime})$ is totally bounded on $A$ and $B_{t}$
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If we consider the special case when $B$ is the unit sphere $S_{Y}$ of $Y$,
then we obtain:

Lemma 3. Let X $Y$ be a normed pair rvith respect to the inner product
$(x, y)$ , and let $A$ be a bounded subset of X. Then the following $t/lrie$ con-
ditions are $mutual_{J^{\prime}}$ equivalent: (i) $A$ is totally $boundr^{r}d$ with respect to the
$m_{\vee}^{\rho}tricd^{(1)}(x_{1}, x_{2})=||x_{1}-x_{2}\Vert_{1}$ . (ii) the unit sphere $S_{Y}$ of $Y$ is tolally bounded
with $resp^{\eta}\vee cl$ to $thl$ guasi-metric $d^{(2)}(y_{1}, y_{2} ; A)$ (or $e$quivalently, from any
sequence $\{y_{n}|n=1, 2, \}$ of-elements of $S_{Y}$ it is possible to find a subsequence
$\{y_{n}|k=1, 2, \}$ for which the inner product $(x,y_{n_{k}})$ converges $u$nzformly
on $A$ )

$k$

(iii) $t/leinn\ell r$ product $(x, y)$ is totally bounded on $A$ and $S_{Y}$ .
5. Schauder’s theorem. A bounded linear operator $T$ defined on a

normed linear space $X$ is called completely eontinuous on $X$ if. the image
$T(S_{X})$ of the unit sphere $S_{X}$ of $X$ by $T$ is totally bounded with respect
to the metric $d^{(1)}(x_{1}, x_{2})=||x_{1}-x_{2}\Vert_{1}$ .

Theorem 2. Let $XY$ be a normed pair, and let $T,$ $\tau*$ be an adjoint
pair of bounded linear operators defned on $X,$ $Y$, respectively. Tlten $T$ is
completely continuous on $X$ if and only if $T^{*}$ is completely conlinuous on $Y$.

Proof. Let $S_{X},$ $S_{Y}$ be the unit spheres of $X,$ $Y$ respectively; and
consider the function
(14)

$|$

$f(x, y)=(Tx, y)=(x, T^{*}y)$

defined for all $x\epsilon S_{X}$ and for all $y\epsilon S_{Y}$ . Theorem 2 follows immediately
ftom Lemma 3 if we observe that the following five conditions are mutually
equivalent: (i) $T(S_{X})$ is totally bounded with respect to the metlic
$d^{(1)}(x_{1}, x_{2})=||x_{1}-x_{2}||_{1}$ ; (ii) the inner product $(x, y)$ is totally bounded on
$T(S_{X})$ and $S_{Y}$ ; (iii) the function $f(x, y)$ is totally bounded on $S_{X}$ and
$S_{Y}$ ; (iv) the inner product $(x,y)$ is totally bounded on $S_{X}$ and $T^{*}(S_{Y})$ ;
(v) $T^{*}(S_{J},)$ is totally bounded with respect to the metric $d^{(2)}(y_{1}, y_{2})$

$=||y_{1}-y_{2}||_{2}$ .
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