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A Proof of Schauder’s Theorem

Shizuo KAKUTANI

1. Introduction. The purpose of this note is to give a simple proof
to the following theorem of J. Schauder”: A bounded linear operator 7
defined on a Banach space X is completely coiitinuous if and only if the
adjoint operator 7* of 7" defined on the conjugate space X* of X is
completely continuous. We shall give a formulation of Schauder’s theorem
(Theorem 2) in which X and X* (and hence 7 and 7'*) appear as a dual
pair. (It is to be observed that X* has no need to be the conjugate
space of X in [Theorem 2). Since 7 and 7'* play equivelent roles in our
formulation, the “if” part of the theorem is an equivalent proposition to
the “only if” part.

Our proof of Schauder’s theorem is based on the following well-known
theorem of G. Arzela: A uniformly bounded, equi-continuous family
F={f(x)} of real-valued continvous functions f(x) defined on a totally
bounded metric space X is totally bounded with respect to the metric

(1) d( fis F2) =sup aex | fi(x) —/2(2)|.

We shall give a formulation of a special case of Arzela’s theorem (Theorem 1)
in which X and £ play equivalent roles so that the total boundedness
of X is also necessary for the total boundedness of /. Thke notion of
totally bounded functions introduced in section 2 will be helpful in making
arguments simpler. ' | -

2. Totally bounded functions. ILet X={x}, Y={y} be two sets.
Let f(x, ) be a bounded real-valued function defined for all x€X and for
all yeV.

Lemma 1. Tl following threc conditions arc mutually cquivalent : (i)
Sor any €>0 there cxists a decomposition X=UA; of X irito a finite number
of subsets A;, i=1, -+, m, such that

(2) !f(xlvy)—f(xz’y)|<s

Jfor all x,, €A, (same 1), i=1, -+, m, and for all ye¥. (i) for any ¢>0
there exists a decomposition Y=UL B, of Y into a finite number of subsets
By, =1, -+, n, suck that

(3) | (2, ) —f(x, 72) | <e
Jor all xeX and for all p,, y.€B; (same 7), 7=1, .-, . (iil) jfor any ¢>0
there exist decompositions X = U A', ¥V =UZ2B; of X and Y into a finite
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numbzr of subsets A;, i=1, -+, m, a_mz’ By, j=1, o+, n, such that

(4) | /(20 20) — (2 22) | <e
for all x,, .64, (same i), i=1, -+, m, and for all p,, y.€B;, (same j),
j=‘f—l, .
The proof of this lemma is easy and s0. omitted. Ip case one (and
hence all) of the conditions of Lemmx 1 is satisfied, we say that the
function f(x, p) is totally bounded on X and Y.
3. Arzela’s theorem. ILet X={x}, Y={y} and f(#, y) be the same
as in section 2. For any xy, %,€X, let us put

(5) P (x,, xmf)—sup ver | (%1, 7) f(“z»ﬂ’)l

Then 4 (x4, 2,; f) is a quasi-metric defined on X (i.e. U (x,, x,; f)
satisfies all axioms of a mestric except possibly the separation axiom :
dP(xy 255 f)>0 if 2,52 2,). X is called totally bounded with respect to
AV (xy 295 f) if for any €>0 there exists a decomposition X= U4, of
X into a finite number of subsets-A4;, i=1, .-, 7, such that 4 (xy, 1, ; f) <e
for all x,, z,e4, (same 7), /=1, ---, m. Similarly; if we put for any »,7,€Y

(_6) dD( Y0 Y95 ) =5up sex | f(2, 7)) —f(2, 72) |,
then d®(y, 255 f) is a quasi-metric on V. The total boundedness of ¥
with respect to the quasi-metric ®(,, 7,;f) is defined similarly.

Theorem 1. X is totally bounded with rvespect to dV(xy, %93 f) if and
only if 'Y is totally bounded with respect to &y yo: f).

Proof. Theorem 1 follows immediately from Lemma 1 if we observe
that the total boundedness of X with respect to & (x,, #,; f) is equivalent
to the condition (i) of Lemma 1 and that the total boundedness of ¥ with
respect to Z®((p,, ¥,; f) is equivalent to the condition (ii) of Lemma 1.

Remark. Theorem 1 is symmetric in X and ¥. Hence the “if ” part
and the “ only if ”” part of Theorem 1 are essentially the same propositions.
Further, it is easy to see that this proposition is a consequence of Arzeld’s
theorem. In fact, if we put f,(x)=f(x,2), then F={f,(#)|yeY} is a
uniformly bounded, equi-continuous family of continuous functions f,(x)
defined oa a set X with a quasi-metric d%(x,, #,; f); and we have

(7) d(fyu fya =SUP 2 x lfyt(x) fyz(x)l
—Suptele(x J’]) f(x y2)|
=d® (v 3535 f)-
4. Normed pair. Let X={x}, Y={y} be two normed linear spaces
with ||z, |7 ll; as norms, Assume that there is a real-valued bilinear
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functional (x, ») defined for all xeX and for all yeV such that
C)) | & lh=sup s | (2, ¥) |
9) 7 ll=sup st [ (, )] R
for all xeX and for all y¢¥. X and Y are called a normed pair with
respect to the inner product (x,y). »

Let X, ¥ be a normed pair with respect to the inner product (z,y).
Let 7, 77* be two bounded linear operators defined on X, ¥ respectively.
I and T'* are called an adjoint pair if

(10) (ITz,9) =(x, T%)
for all xe X and for all yeV. It is easy to see that
(11) I 7 =sup ey | 75l

=SUP 51 SUP st | (7%, 7)) |
==SUP fy1a51 SUP ezt | (25 779) |
=5sup lymg | 7*H|e=I17"*/}-

An example of a normed pair is given by a Banach space X and its
conjugate space X* if we define the inner product (x, x*) as the value of
a bounded linear functional x* at a point x. Similarly, the conjugate space
X* of X and the second conjugate space X** of X (i.e. the conjugate
space of X*) form a normed pair. (It is also easy to see that, if we
consider X as a linear subspace of X** and if V is a linear subspace of
X** which contains X, then X* ard ¥V form a normed pair). Further,
a bounded linear operator 7" (defined on X) and the adjoint operator 7°*
(defined on X*) form an adjoint pair. Similarly, the adjoint operator 7°*
of 7 and the second adjoint operator 7 ** of 7' (defined on X**) form
an adjoint pair.

From Theorem 1 follows immediately :

Lemma 2. Let X, Y b2 a normed pair with respect to the inner product
(x,9), and let A, B bc two bounded subsets of X, Y respectively. Then the
following three conditions are mutually equivalent :

(i) A is tolally boundcd with respect to the quasi-metric

(12) d® (xy, 735 B)=sup yen | (21, 7) — (x2 7) |
(i) B is totally bounded with respect to the quasi-metric
(13) AP( Yy Vo3 A) =58P sea | (%, 31) — (#, 72) |

(iii) ke inner product (x,y) is totally bounded on A and B,
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If we consider the special. case when B is the unit sphere Sy of ¥,
then we obtain :

Lemma 3. Let X, Y be a normed pair with respect to the inner product
(%, ), and let A be a bounded subset of X. Then the following three con-
ditions are mutually: eguz’valmt: () A is totally bounded with respect.to the
metric dV(xy, 2,) =|lv,—xdl,.  (i1) the wnit spheve Sy of 'Y is totally bownded
wzt/z respet to the quasz metrzc Ad®(yy, vo3 A) (or equivalently, from . any
sequence { y,|\n=1,2, -} of vlements of Sy it is possible to find a subsequence
{n, | A=1,2, ..} for 'w/zz'c/z the inner product (x, y,,k) converges uniformly
on A). (iii) the inner product (x,y)-is totally bounded on A and Sy.

5. Schauder’s theorem. A bounded linear operator 7" defined on a
normed linear space X is called completely continuous on X if. the image
7(Sx) of the unit sphere Sx of X by 7 is totally bounded with respect
to the metric P (x,, 2,) =|lxr;—2,|;-

Theorem 2. Let X, Y be a normed pair, and let T, T* bc an adjoint
pair of bounded linear operators defined on X, Y, respectively. Then T is
completely continuous on X if and only if T* is completely continuous on Y.

Proof. Let Sy, Sy be - the unit spheres of X, Y respectively; and
consider the function

14) N (€7 Jf)——(Tx»J/) (x- 1"*)/) : »

defined for all €Sy and for a]l yeS,. Thearem 2 follows .immediately
fiom if we observe that the followmg five conditions are mutually
equivalent: (i) 7'(Syx) is totally bounded with respect to the metiic
dV(xy x9) =llv,;— x|, (ii) the inner product (x,y) is totally bph-nded on
T(SX) and Sy; (iii) the function f(x,p) is totally bounded oa Sy and

Sy; (iv) the inner product (x, ) is totally bounded on Sy and 7*(Sy);

(v) T*(Sy) is totally bounded with respect to the metric d®(y,, #5)
=l y1—Y4lls t
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