Journal of the Mathematical Society of . Japan Vol. 3, No. 1, May, 1951,

Theorems of Bertini on Linear Systems

Yasuo AKIZUKI

As the fundamental theorems of the classical algebraic geometry we
have these of Bertini:

1. The general section U,_, of an algebraic variety U, by a lincar
system without fixed components is irveducible, provided that the linear
system ts nol composed of an algebraic pencil.

II. T7he general section U,_, of U, by a linear system can not kave any
singular points outside the singlar points of U, and outside the base
points of the linear system.

The first proposition was proved purely_algebraically first by Zariski,”
when the basic field £ of U, is of characteristic p=0. Matsusaka® remarked
that this holds even when p>0 under an additional condition.

Zariski® has also given an adequate formulation to the second pro-
position for the case p>0, as it cannot be maintained in the above formula-
tion in this case.

In this paper we shall study how the above formulation will not be
maintained when >0, and will give a sufficient condition that it should
be maintained. Theieby we shall give also a new proof the first propos-

ition. Further we shall add a new elementary proof of the second prop-
osition in the classical case.?

1. Let U, be an r-dimensional irreducible algebraic variety immersed
in an /V-dimensional projective space S¥ and defined over a field £ of
characteristic 2 =>0. We denote by (§,, §,,..., §5) the homogeneous coordi-

nates of the generic point of U/4 And we assume that the linear
system on U

Afo(8) +4 [l o+ A ful€) ey

has no fixed components.

1) See Zariski [1].

2) See Matsusaka [5].

3) See Zariski [2].

4) We shall use the same terminalogies in Weil’s book @.
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We now consider the algebralc correspondence W in doubly pro_|ect1ve
space Syx S,., attachlng to the linear system (1) as follows

WfO-#fO=0 AKi<m O

Let 7, Q be the pair of corresponding points on &/ and W, and P
not to belong to the base variety of the linear system. As W is rational
over U, if /’is simple on U, then Q is simple on I, and vice versa.”

The geometrical projection P of I¥ in the second factor S™ of S¥x S™
is an algebraic variety deﬁned over £, for (3)=(f:(§)) is regular with
respect to 4, as (§) is so. ‘

Let now C, be the crenerlc element of the linear system (1) on U,
then it is readily be seen from our assumption the linear system to be
without fixed components that |

Ci=projy (Syx H ) - W],
where H is the genenc hyperplane in S,

Y, +4, Y1+ .+4,Y,=0.

2. Let the inhomogeneous coordmates of the generlc point P of U
be (#..., 2y) such that ’ '

x‘=$4/$0 1§_i§]\f,
then we can assume, since P does not belong to the base vatriety,

£i(2) = fo(1, #peee, 2) =0,

If we now define |
y=fix)/f(x). (A=ZixZm), 3)

then (xy,--., y» Y1-++» V) is the inhomogeneous coordinates of the generic

point of W in the affine space L¥*™,
Let us assume that the dimension of FV/%, i.e. of the field £(y)

=&J1p-e»Pm) OvVer % is not less than 2. Since #(y) is regular over £,

5) See Weil’s book 3]. Theor. 15, p. 108.
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we can conclude, by the fundamental lemma of Zariski,” that if it is not
E(p) CiE(x) 17, K(37.A p:) is algebraically closed in K(x,y) =K(x), where
K=+FK(4y..., 4,) and the 4, are independent indeterminates. Therefore

(SY% EH) - W=ml" 4)
and I"is defined over K(%) (algebraic closure of K(A)=#(Ap dp--or A2))»

namely [’ is absolutely irreducible.

3. Let P=(F($),..., Fu(§)) be the defining ideal of U in S¥ and
P(¢§) a point not belonging to the base variety with f(§)==0. Then the
affine model W may be defined locally at P by

(oo e X e 50 V3 o XD — (X002 (5)
1<i<p1</<m

Lemma. Lot P'(x') be a simple point on U not belonging to the base
variety of the linear system with f,(x')=E0, and Q'(x',y") be the point on
W whickh coresponds to the point P'. Then the hyperplane S¥x H' passing
throvgh P’

24(Yi—5%)
is not transversal at Q' to W, if and only if the equations
E;'.-IA{DJ(.}") =0, J’t"—‘ﬁ(x)/fo(x) (6)

are consistent at P’ for all derivations D, of k(x).
Proof. 1t is clear that the hyperplane S¥x A’ is not transversal at Q' to
W, if and only if the rank of the matrix

(oF . BF o 0
axl axN

OF y_» ] oFy_, 0 0
0%y oxy

6) See for the cae p=0 Zariski’'s poper [1], Lem.5. Also see for the case >0
Matsusaka [5], Theor. 2, 4. Also cf. Igusa [7].
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26 0 .. p o _Vop 0
Bxl Bxl 0xy Oxy
o _Fn ... om0 7
axl x, oxy OXy

L TP 0 Y U Zm/

at @' is not N+m+1—r for any choice of 7,,..., Fy_, among polynomials

belonging to the ideal . Since f,(#')==0, this is equivalent to the condi-
tion, as we can see by easy calculation, that the rank of the matrix

A= /OF i, oF,
0x, Oxy
BF y_, Fy_, (7)
ST st o
3 ([ f (LS
s, 2 (L ) ...... : )
“3z,\ f, axN / J

at P’ is not N—r+1. While P’ is smiple on U, we can choose Fy,..., Fy_,
such that the rank of the first N—#» rows of A is N—». Therefore any
derivation D; of £(x) over £ as a solution-vector of equations

8F, Dx,=0, i=1,..., N—»r

I={ 3.1:,

satisfies also

S0 (L ))Dx,—

i=1 3x,
at P’, namely at P’ for any D; which is finite at 2’
Ezsz(fx /fo) =O, q.¢€. 4.

4. Let P(x) be a generic point of U, Q(x,7) the point on W

which corresponds to 2, and 4,,...,4, independent indeterminates with

respect to 2(x). If we set 4, such that
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‘—Ao= EI:J’u
then the hyperplane
A+A4 Y+ ... +4,Y,=0

passes through Q. In order the hyperplane not to be transversal to W at
0, as we see from the preceeding lemma, it must be

2140 (J’t) =0

for any derivation D of #(x). Whereas D(y,)€k(x), and 4, are linearly
independent over #£(z), hence it must be

D(y)=...=D(yn)=0

for any derivation D. Therefore the field must satisfy

£(Pprees Im) C 1£(2) 17,

where p is the characteristic of 2. Thus we get the
Proposition. [f there is at least one y, whick is not the p* power of
an element of k(x), then the hyperplane in LV*™

A4+AY,+ ... +4,Y,=0

whose cocfficients A are independent indeterminates, is transversal to W.

By this proposittion and the general theory of intersections we see
the multiplicity of the intersection (Z¥x A )-W to be one,-and thus toge-
ther with the result at the end of the section 2

(S« H) w=1I, ®)

if dim V2. And then Q(x,p) is regular over £(A) =#(A...4,), so it
is P(x) over £(d). Therefore

C=projoi (S xH) W} (9)

is absolutely irreducible over £(4). Hence we get the Bertini’s theorem
(the first proposition in the introduction).

Theorem. If a linear system without fixed components is not composed.
of an algebraic pencil, the general section of the lincar system is absolutely
irreducible, provided that it is not k() D {£(x)}{”.
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5. W¢ assume throu'gout‘hereafter in this paper not to be _‘ #(y) C
(22 1. A e

Let P be a point on the general section C of the linear system,
_simple on U not belonging to the base variety of the linear system, O’
the point on W which corresponds to P/, [’ the subvariety on W which
corresponds to C. We know already that @ is simple on W and [’ is
absolutely irreducible. Fuither we can see that if and only if P’ i§ dimple
on C, then Q' is simple on I'7

If the hyperplane S¥x A is transversal to ¥ at Q’, then Q' is simple
on the intersetion /'=(SYx /A )-W. Theiefore by the lemma in section
3, we see that, if P’(or ) is singular on C(or I"), then it must be

| 24D (y,) =0
at P’ for any derivation D. :
As to the converse let us suppose that 7’(or Q') is simple on C(or I”).
Since the intersection I'=(ZxH)-W, as we have seen in the above

lemma, has multiplicity’ 1 and ¢’ is simple on [, the hyperplane Z¥x
is transversal to W at Q' Therefore if it were for every derivation D of

£(x)
3 4D ( 5 =0
at P/, as we can conclude from the same lemma, P’ would not be simple
on C. Hence we get the
Proposition.” Zet P'(x') be a simple point on U not belonging to, the

base wariety of the lnear system with f(2')==0. In order -that P’ is

singular on the general section of the linear system, it is neccessary and
sufficient that

‘ 7adD(30) =0, i=”1£‘(_"r)-
- :Z (79 I
at P’ for any derivation D of k(x).

6. Does there exist such a point with the conditions in the precee-
ding propoition? The classical Bertini’s theorem asserts that it does never

7) See Theor. 15 (p. 108) in Weil’s book [3]. 8) Prop. 21 (p. 141) in Weil’s book [3].
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occur, if p is zero. But if p>0, as Zariski has pointed out, it does
occur. Namely let us take a plane as U and the linear pencil

C: 2°+y*=A

Then the point P(lﬂ 0) is singnlar on C, though P is snmple on U and
is not the base point of the pencil. :

Let us now consider in each affine model of U the locus of points
P(#) for which the » equations for each fixed ¢ (0< 0 <m)

DAD(r7)=0 (I=<;<7)

are solvable with respect to 4,,...,4,, where D,,..., D, are independent

derivations of £(x) and ¥?=f,(&)/f.(¥), fo(¥)=0.
If m>r, the variety U itself is such a locus, but if m <#» the locus

may be empty. In general the locus is clearly a bunch of varieties over

%, where £ means the algebralc closure of 4. These varieties shall be
called the resultant varieties of the linear system.

Let P (%) ee the generic point of a resultant variety @, (we assume
here 0=0) and »—s the rank of the matrix

(D,(3)))-
If there exist such points P’(#') on @, that the rank of the matrix
(D;(¥9)

at P’ will be less than »—s, the locus of these P’ is a bunch of subvarie-
ties of @,. These subvarieties @, shall be called critical varieties. Fur-
ther if there exist such points P”(#”) on @, that the rank of the matrix

@0;(5"))

is less than that of the matrix (0,(3’)), where P’(#) is generic for @,

over 4, then the locus of P shall be called critical va.netles of higher
order, and so on.
We now consider the system of equations

A+ 221,}/; =0 :
34D, () =0 A=/=7 (10)
fo(x)y i—fi(2") =0 A<Kism)
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defines an algebraic correspondence 4, between the m-dimensional pro-
jective space A(A,...,4,) and the resultant (or ciitical) variety @, where
(#') means the generic point of @,

Then it is readily to be seen that the Be:tini’s theorem on movable
singularities will be maintained if projad, can not cover the the who'e
space A for any @,.

7. Theorem. Lot (x) be the generic point of an affine model of U
on whick the critical (or resultant) variety ©, lies, and P'(x') be the gencvic
point of @, with fo(2")F0 and yi=fi(¥') [fs(x").

If k(') is separably genevated over k(') for any @, then the Bertini's
theovem holds in the classical formulation. ,

Progf We assume here 6=0. Let p be thc dimension of @=@,

over &, namely dim Z(#’)=p, and s be the dimension of Z(x') over £(¥).
Since #(#') is separably Ageneated over %(y'), the dimension of the deri-
vation-module of #£(+') over £(¥') is equal to s. If we denote by 2’
derivations of £(x’) over £, there are p linearly independent derivations .
D,,..., D,. The derivations D of (') over £(3') may be written in the
form

D=pD+... +p,D;.
Since Dy;=0 for any #, it must be
Dyt o A p D yi=0, 170 m.
Hence the rank of the matrix

D)) 1Z5ism 1<;<p

is p—s, as it is by hypothesis dim {D}=s. Therefore we can take
Di,...,D_, linearly independent on 4(s'), snch that p—s dé‘rivations
Y of £(') induced by Dj(1<:<p—s) on £(3) form a complete
system of the derivation-module of (') over 4. For, it is dim [£(') : &]
=p—s and £(J') is of course regular over 4. |
Let us now consider the correspondence 4, in the preceeding section :

{ A+ 24, 9;=0 (10

SUD, =0  (0<7<7)
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If (4) corresponds to P’(x"), it must be satisfied

7 y : : (1]‘)
23405 9:=0 ._(l S/ p—9) :

for'any detivation D) of Z(+').” But we can consider this system {D....,
D,_,t as above mentioned as a complete system of linearly inde-
pendent derivations {Dy’,..., D}l_,} of 2(y’) over %£. Therefore (1) must
satisfy : :

) { A+ 312, 7,=0

12
SUDY =0 (1 <;<p—s) (19)

As all coefficicients of these equations are rational in Z(#’) and as these
eqhdiibné are evidently all linearly independent, the dimension of K(4,,...,4,,)
~ovet K=#(y,4) is not greater than m— ,0+s——l. And the dimension of
E(Y) over £ is p—s. ‘

- We consider now the equations as the algebraic correspondence
4’ between the projective space A and the image @’ of @ by the correspon-
dence W. As (') is generic for @' and

(p—s) + (m—p+s—1)=m—1,

we can readily deduce by the principle of ‘‘ Konstantentenzihlung,” that
the subvarietiy of @' is empty which corresponds to a generic point of 4
by the correspondence 4'.

Thus projad can not cover the whole space A Hence by the remark
at the end of the preceeding section we get the theorem.

8. The special case, in which the linear system is the creneral linear
function of (x):

A+Axi+ ...+ Az,

is very important. That the Bertini’s theorem holds in this case without
any other conditions even when >0, has been proved very elegantly by
Y. Nakai.” But it follows also from our general theorem.

In fact in this case the resultant variety is U itself. Further the

9) cf. S. Koizumi {8], Prop. 6, 7, p. 277. 10) See Y. Nakai [6].
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matrix (D,;(ys)) becomes

10w, 0 *. oo,
D)= [ 1........ 0 *ooveiin, *
0 0o 1 %o, x

and the rank of this matrix is » at every point oa U. Hence there does not
exist any critical subvariety. Moreover £(x) is separably generated over
£(y) =4#(x). Therefore by the preceeding theorem the Bertini’s theorem
holds in this case.

9. We will give here a new elementary proof of the Bertini’s the-
orem in the classical case.
We reduce it also as usual™ to the case of linear pencil Afo+ A fo
Then the locus of singular points of the sections is clearly contained
in the locus defined by equations ’

le(fo) "foD(ﬂ) =0

for every derivation D of 2(x) over £, and this locus is clearly a bunch
of subvarieties & ,.

Let P(#) be a generic point of a . If ¥ does not lie on the singular
varieties of {/ nor the base variety of the pencil, P is a simple point not
belonging to the base variety of the pencil and we can assume without
loss of generality f,(£)=0, and then

4 _ Si(®)
44 S0 (%)

must be algebraic over the field 4.
In fact if we derivate the relation

1o (x) +/.(x) =0

#:

then we have

(D) /(&) + 1D fy() + D f () =0

11) See v. d. Waerden’s book [4].
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While, as P lies on &, by putting =2

1D (%) +DF,(#) =0

therefore, as f,(#) =0, it is on ¥ Dp=0 for any derivation D of £(x)
over %, consequently Dp=0 for any derivation D of %(Z) over 4.
Hence p¢ must be algebraic over £, as the characteristic of £ is zero.

While there exists &, of only finite number, therefore the above p
also of finite number. Except for these finite g, the above section has no
singularities outside the singular points of / and outside the base variety
of the pencil, q. e. d. - '

The idea of this apparently algebraic proof is essentially analytic, so
we can successfully apply this to the proof of

Oka’s lemma. Let R be a finite open vegion of n-dimensional complex
space, 33 an analytic vasicty in R, f(zy,...,2,) (0 i < m) a st of analytic
JSunctions of complex variables 2,,...,2n. Then the sct of points (Ag Apseres )
Jor whick the scction of ) by the hypersurface Ajfo+ ...+ 24, 1,=0 may have
singulavitics outside the singular points of Y. and outside the base points of
the linesr system is only of the first catcgory.

Mathematical Institute,
Kyoto University.
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