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Multiple Wiener Integral

Kiyosi Ito

- The notion of multiple Wiener integral was introduced first by N.
Wiener® who termed it polynomial chaos. Our definition in the present"
paper is obtained by a slight modification of Wienetr’s one, and seems to
be more convenient in the point that our. integrals of different degrees
are orthogonal to each other while Wiener's polynomial chaos has not
such a property.

In §1 we shall define a normal random measure as a generalization
of a brownian motion process. In §2 we shall define multiple Wiener -
integral and show its fundamental property. In §3 we shall establish a
close relation between our integrals and Hermite polynomials. By making
use of this relation we shall give, in §4, an orthogonal expansion of any
L, functional of the normal random measure, which proves to be coincident
with the expansion given by S. Kakutani® for the purpose.of the spectral
resolution of the shift operator in the Z, over the brownian motion précess.
In §5 we shall treat the case of a brownian motion process, and- in this

case we shall show that we can define the multiple Wiener integral by
the iteration of stochastic integrals.”

'§ 1. Normal random measure

A system of real random veriables §,(w), « € 4, w being a probability
parameter, is called mormal when.the joint destiibution of 50,1,»...,5,“; 79
u, € A, is always a multivariate Gaussian distribution (including degenerate
cases) with the mean vector (O,:--,0).

By making use of Kolmogoroff’s theorem?® of introducing a probability
distribution in R4, we can easily prove the following '

1) N. Wiener: The homogeneous chaos, Amer. Journ. Math. Vol. L¥, No. 4, 1938.

2) S. Kakatani: Determination of the spectrum of the flow of Brownian motion, Proc.
Nat. Acad. Sci., U.S.A. 36 (1950), 319-323.

3) K. Itd: Stochastic integral, Proc. Imp. Acad. Tokyo, Vol. XX, No. 8 1944,

4) A. Kolmogoroff : Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933. The
consistency-condition is well satisfied by virtue of the property of multivariate Gaussian distribu-
tion. :
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Theorem 1. 1 [f vy ; a, B € A, satisfies the following two conditions :

SYMMELYIC © Vgy="Upq ; (1.1)
positive-definite © 3 %%V, 0, 20 (for any ay,---,an € A and for any

complex numbers x,, Xy, %), then there exists a normal vandom system

&4, @ € A, which satisfies (1.2)
Vs =G (£:£,) =j £, ()&, (w)do. (1.3)

Definition. Let (7, B, ) be a measure space. We denote by B*
the system {£;E£¢ B, m(E) < oo}. A normal system B(Z, w), E ¢ B¥,
is called a normal random measure on (T, B, m), if

G (B(E) B(E)N)=m(ENE') for any E, E' ¢ B*. (1.4)

Remark. Since we have m(ENEY=m(E'NE) and X} xZm(E,NE)
= (|2:2:Ci (D) |>. m(de) =0, C;(¢) being the characteristic function of the
set £;, we can see, by Theorem 1.1, the existence of a normal random
measure on any measure space (7, B, m).

The following theerem, which can be easily shown, justifies the name
of normal random * measure.” ,

Theorem: 1. 2 Lot B(E) be a normal random measure on (T, B, ).
IfE\ Ey--- are disjoint, then B(E,), B(E,), -+ are independent. Furthermore
if E=E+E,+ - € B*, then B(E)=B(E,) (in mean convergence).

Remark. Since B(Z£;), B(E,),--, are independent, then the mean
convergence of 3IB(E,) implies the almost certain convergence by virtue
of Levy’s theorem.”

Hereafter we set the following restriction on the measure .
Continuity. For any E € B* and € >0 there exists a decomposition
of £:

E=3_, E; (1'5)
such that
m(E) <e i=1,2,---, n (1.6)

5) P. Lévy: Théorie de laddition des variariables aléatoires, Paris, 1937.
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§ 2. Definition of multiple Wiener integral

By Z?(7°?) we denote the totality of square-summable complex-valued
functions defined on the product measure space (7, B, 7)?. An elementary
function® A#,--,4,) is called special if f(Z,--, %) vanishes except for
the case that #,--+, 4, are all different. We shall denote by S, the totality
of special elementary functions.

Theorem 2. 1. S, is a lincar manifold dense in L*(T7).

Proof. 1t suffices to show that the characteristic function ¢(#,-+,4,)
of any set £ of the form:

E=E,x E,x X E, (E; € B*, i=1,2,---, p) (2.1)

can be approximated (in the Z,norm) by a special elementary function.
For any e >0 we can determine, by the continuity condition, a set-
system F'={F,,-+, F,} € B* which satisfies

F. 1. F, F,--, F, are disjoint,

F. 2. m(F) <e, = 3/(;)'(ZM(55))”—1, (; ____./’(;';1)’

F. 3. each E; is expressible as the sum of a subsystem of F.

Then ¢(#,-+, ¢,) is expressible in the form:
s )= 3 6yt 0 () v () 2.2)

where &, ....,=0 or 1 and ¢(¢) is the characteirstic function of £, 7=1,
2,..., . We devide 3 into two parts: 3} and 3/: 3/ corresponds to
the indices {Z;...,%,} which are all different, while 33" corresponds to the
others.

We put

(s t) =3 & i (4) oo, (5,). (2.3)
Then f€ S, and
lle—=fNP=§fleseers ) —f (1o ) |* 1m(dty) ...om(dt,)
=30 by oy 0 (F) oo ()

6) An elementary function of (#,..., zp) is defined as a linear combination of the
characteristic functions of the sets of the form £ x...x E,, £;€ B*, i=1 2,..,n.
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<(2) = m@ED mE))

=(%) e m(E) =(L) e, (I m(E)) <.

Now we shall define the multiple wiener integral of fe Z*(7”), which
we denote by '

L, (f) or j Jf(ll,..., 2,)dB(t)...dB(2,)

Let f be a special elementary function. Then f can be expressible as
follows:

F(tienns 8,) =0y oug) fOF (lpeesty) €T, X0 x T, (2.4)
=0 elsewhere,

where 73, T..., T, are disjoint and m(73) < o, .z'= 1, 2,...,7n, and a";""“p=0
if any two of Z...,7, are equal. We define /,(f) for such f by

fp(f)=7_.a¢‘....4p ﬁ(Til)"'ﬂ(Tip)- (2.5)
Then we obtain
L(af +6g) =al,(f) +61,(g) (£.1)

L(H=L(f) (7.2)

where
Fltiseeur ty) =é (Z; f(t,,',..., te)s (7) = (m}..., w,) running over all per-
mutations of (1,—2—,...,p) (|2 =1-2-....9).
(L) (g =2 (£ &) S U3)
where (5(/): 1,(8)) =G (f) &) =|1,(f)-L(&)dw, and
Fd) = o [ Al 1) FETTRI M) ().
(L (f)s L,(£)=0, if p g oLy
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(I.1) is clear. In order to show (Z.2) and (Z.3) we may assume that

S and g are expressible as follows:

f(lli"” p)=4i’--.-{p ’ g(fi,---, p) =’5il....¢p

for ’(t,,..., ) € ]}lx X 73,
- and ‘ . '

St ) =0, g(ty...,2,) = 0 elsewhere.

Then we have

[p(f)': p3 ( P ajl--v-jp) ﬁ(T‘l)"‘aB(Z’tp)’n

<<ty D~

=2 2 (2 5 ap) BB

< 2 (j) (1‘) I
- = ({_;_ (,E,,""x""lp)' ﬁ(yil)...ﬁ(z‘;p)
| =7(f), (|2 =1-2-...-9)
which proveé (1.2). '
Un(F) LN =( B (B rsy) AT BT,

2 (X 4.

cone 1
A <<ty G~

Oyporg) (33 byns,) m(TiI)...m(T,p)

2) B(T).B(T))

L

1< <‘t (j) (%)

3, (B (B s WT)m(Ty)

1
ﬁ TR M ONIO)

Il

2,5,

] p <j>~<¢) I "’)<l O («) P) 7’2(7;1)""”2(7;"?)

N

=12 [ o | Rturert) F i3 mld).m(ty
/ &

| ):

I

7) (J)~() means that () = (/.- Jg¢) is a permutation of (7) == (¢j,r.+5 7p ).
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Thus is proved.
By the similar computations we can prove [(/.4).

By putting f=g in [(Z.3), we obtain
IL(AOIE=lp IFIE< (2 IF 1%

the last inequality being obtained by virtue of Schwarz’ inequality.
Therefore 7, can be considered as a bounded linear operator from S,
into Z,(w), and so it can be extended to an operator from the closure of
S,(=L*(7®) by Theorem 2.1) into Z,(w) which satisfies also (/.1), [(7.2),
(73),[(/4) and (1.3).
For the later use we denote by Z° the totality of complex numbers

and we define as 7,(c)=c. Thus [(Z.I), [(Z.2), (Z3), (ZA) and (/.3’) are
true for p, ¢=0,1,2,....

§ 3. Relation between multiple Wiener integrals

and Hermite polynomials.

Theorem 3.1. ZLet ¢,(8), @x(8)s---r 9.(8) bec an orthogonal system of
real-valued functions in L*(T") and H,(x)bc the Hermite polynomial of degree
2. Then we lave

j j G (8) ity ) -9ty 12) oo Pully 1) -
X ?ﬂ(’pl+----+p,._1+1) ...¢,.(l,,‘+....+,,” )dB(2) ...d,@(t,,l+....+,," )

. 1, (5] 0 a8(®))

=1 VOXS

For the proof of this theorem we prepare the following
Theorem 2.2. 1, /f ¢(#,....2,) € L*(T?) and ¢(¢t) € L*(T), then

j [Igo(tl,..., )9 (6) |t ]gm(dtl) o @by m(dbes) .o (L)

= gIP-llelf < oo.
Teevefore

IL X (4o tymatiersnty) = f @ (tureeor )P (t) m(dt)
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is a square-summable function of t,--+, by_is burir ey by and it folds

Hsv(;g‘sf)l!_é_llsvll-!lsbll- | (3.3)
1. We fave
L) =1,(9) L) = 3 L (9% 9) (34)
Proof. (3.2) is clear by virtué of Schwarz' inequality and is
also true by the definition of the norm |. || in Z,. For the proof of [(3.4)

we consider firstly the case when ¢ and ¢ are special elementary functions.
Then we may express ¢ and ¢ in the form

@(tyye0r 2p) =0 i, for (#,...,2,) eT,1 X eeo X Ep ,
=0 elsewhere,
¢(z) =6{ for tg € Ti
=0 elsewhere,

where 77, 7s..., Ty are disjoint and »(73) < o, i=1, 2,..., NV and A oot
=0 if any two of i,...,7, are equal.
Put S=7}+...4+ 7y, A=max |a,, and B=max |4]. Then

m(S), A, B< o
On account of the continuity-condition of 7z we may assume that
m(Ty) <e, i=1, 2,..., N,

for any asigned € >0, by subdividing each 7; if necessary. S, A and
B remain invariant by this subdivision. ’
Now we define a special elementary function y. by

e (Bireees Tps z‘)=a¢1....,pb¢, if  (Zpeeer tp 2) € Tf, X .. xT; X 7,
and 7 # Zy,.ee, 2,
=0, if otherwise.
Then we have

I(9) L) = Bty BT BT S 0BT
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= 51y ey B BT BT )BT

3 Sty b, BT BT, )BT B(T,, ) BT
Lya () + Tk 3 s BT B(To (T )BTy, ) B(T)
F Sy 5 ey BB BT ) BT = (T )BTy ) BT
=L (X)) + ik f,-l(¢(§)¢)+21€k
1 Zp41(xe) = Lo (e PIF=12 lte— - I |
S By B (Tt (Toy YT (T,
< B (S(T)) - (Sm(T))*

< ep BB (Sm(T) Y =ep A Bm(S)”
NRP=c 5 @ e By (L) o (T Ym( Ty ) (T3

(C=L r (xe_l)‘ze“”“’dx), <'ec ABm(S)".
27 J-=

‘ . _
Thus we obtain, as e — 0, 7,(¢) -I,(¢)=1,.(¢P) + I‘Zijp—l(?"ésl')’

Let 5orandb ¢ any functions respectively in L*(7°?) and Z*(7'). By
virtue of Theorem 2.1 we can find special elementary functions ¢, € Z*(7°")
and ¢, € Z*(7) such that len—ell—0,  [l¢gn—¢ll—0.

By the above argument we have
Lys(Pn ) =Ly (2) ;) = 2 Lyms(n X 0. (3.5)
By making use of (3.2), and (7.3") (§2) we obtain
111 (Pan) = L1 (P9) =11 s (Puta— 9P b (Il ll; being the L,-norm)
S 2o (eafn— o) < V(2 + 1 llgatn—¢4

< VP 2L fa= )|+ V2 1 [(La—0) ¢l
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=V +1eall-Ign—ll+ V12 + 1 llga—ell- 4]
12,(¢n) « i) — 1, (@) - L(P)ls = N7, (@) L (=D ls
17y (Pua—@) [(P) s
= M (@) - 171 (Pa— L, (Pa— @) |- (DI
Z V2l lign—¢ll+ V2 llen—ell- 121
175-1(n X ) =L er (@ X Pl = 175-1(n X =g X Pl

S V=1l X du—pxd|
* @)

I

vip=1 Il(%—sﬂ)(z $ull+ v p—1 ll??;)(s’ln—s’!)ll

A

Vip—=1llgn—oll-Ilull+ v 2—1 @] || ¢n—9¢ll-

Thus we see that is true in the general case by letting #» tend to
o in (3.D). ,

Proof of Theoremn 3.1. We make use of the mathematical induction
with regard to p,+...+p,. The theorem is trivially true in case p,+

4+2,=0 or 1. It suffices to show that (3.1) is also true for p,4...+2,

=p+1 under the assumption that (3.1) is valid for p;+.. +pn==p 1, 2.
We may suppose that p, = 1 with no loss of generality.

If we put, in Theorem 3.2,

go(zl,..., 1) =1(8) e P12y 1) 9o ( ) - Po(fy 4py=1) -
X Palp secerspn_) e Sn(lp v set)
AOELZOF

we obtain, by the assumption of induction

j j,o(z,,..., )01 (DdB(t) -..dB(2,)dB(2)
=[ e [Pl 1B () | 9, (DB

—5itsf o [ (P2 0B Bt B (1) B2,
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. (S [e0a0) B2 (S5 [e0B0)
-z V2 ’ Ve

fe@ae+ -1

. Ho( s |0 0d8®) Ho A= [ 00aB@)
A ' o

e AC L)
I i

in considering
@:1(2,) - @1 (f1-1) €1 (Be11) -1 (tz;l—l) ?’2(’;:1)

’ j?(ﬁ----» ip)gol(tk)m(dtk) = "’?”(tpl+---3+p7;—1) A== p—-1)
0 *z2) |

(which follows from the oithonormality of {¢,,..., ¢,})
and ‘ ' ‘

#( 5 )= 2 ()2 =V, J5)
(which is the recursion formula of Hermite polynomials).

§4. Orthogonal development of Z,functionals of 3
by mulﬁple Wiener integrals.

A mapping from RP* into the complex number space K is called
B-measurable if the inverse image of any Borel set in K is a B-measurable
set in R®’, which is a set belonging to the least complete additive class

that contains all the Borel cylinder sets in R®". A complex-valued random
variable §(w) is a B-measurable function of 8 if it is expressible in the

from:

&(w)=f(B(E, ), E ¢ B¥), (4.1)

for any o, f being a B-meassurable mapping from R” into K.
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Furthermore if

Gk —sj 1€ () "o < o, (4.2)

then we say that §(w) is an Z,functional of S.

Theorem 4.1 (R. H. Cameron and W. T. Martin)® Zez {¢,(¢)} &
a complete orthonormal system. Then any Lyfunctional €(w) of P can be
developed as fol/ows

IR e LA O J L0

Cameron and Martin has shown this theorem in the case when @ is
a normal random measure derived from a brownian motion process, but
their proof is available for our general case.

Theorem 4.2 Any Ly-functional § of B can be expressible in the form :

E=SL(f)=21(f), | (4.3)
where [ is given &y the following orthogonal development |
fotpnt)=v2 30 3 @l e (8) 0 (5)
pl+....+pn-_—.p Gpee, &, .

X Pa, (’p1+1) : "?az(tplwz) v Pa (tp1+---- *”n“) vorPa (tp,+----+p”>) ’

{¢.} and .{a:,‘: »} being t/ze same as those appearing in Theovem 4.1.
Since 7, (ﬁ,) (or 7, (f,,)) #=0,1,2,..., are orthogonal to each other,
’ may be considered as an orthogonal development,
We shall - give another method of defining the symmetric functlons
{S} which satisfy &= 7, (S,,) Put '

'3 (/Zp)=_(e’ [p(/lp))’ /€ ZQ(TP)’

where Z,(7°?) is the totality of symmetric functions- in L2(T”) which
forms a closed linear subspace- of L"’(T”)

8) R. H. Cameron and W. T. Martin: The orthogonal development of non-linear func-
tionals in series of Fourier-Hermite functions. '



168 K. Ito

Then F, is a bounded linear functional on Z2(7°?), since
Fp(azp'{'bgP) =an(Zp) +&E)(gp)

1B, ()| < J;— 1EN - N2, (B | =111 - 1 -

By Riesz-Fischer’s theorem in Hilbert space, we can find EPEZ’(T")
such that 4

FP(ZP)=(EIJ' Zp)’
By we have %,(%,) =l-;;<fp<i;>. L)) =(fon 7).

Thus we have
(Sor 7Y = (for 1) for 1, € Z2(T%),

which proves E,,=j”;,.
From the above argument follows at once

Theorem 4.3. §=37,(f,)=X1,(g,) implies f,=g,.
§ 5. The case of a brownian motion process.

Let 8(¢), a< ¢< 4, be a brownian motion process.
If we put g

p(E)={ ex(ap(®),

where ¢z(¢) is the characteristic function of the set £ and the integral is
the so-called Wiener integral. Then B(£) is a normal random measure
on 7'=(a, ), the measure » on 7 being the so-called Lebesgue measure,

which clearly fulfills the continuity-condition.
Let f(#,...,2,) € L*(7%). Then we can consider

[=I Jf(t,,..., B2, ... dB(1,).

Theorem 5.1. 7/ above multiple Wiencr integral I is cxpressible in
the form of iterated stochastic intgrals®

9) loc. cit. 2).
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=12 [ ([2( [ o md@B ) ) B (@) - )ty V)

Proof. 1f f is a special elementary function, this theorem is easily
verified by the definitions. In the general case we can show it by
approximating f with a special elementary function and making use of
the properties of multiple Wiener integrals and stochastic integral.

Any Wiener functional of the brownian motion process is an Z,-
functional of the normal random measure derived from it, and vice versa.
Therefore we see that Theorem 4.2 gives an orthogonal development of
Wiener functionals. |

T express my hearty thanks to Mr. H. lAnzai for his friendly aid and
valuable suggestions.

Mathematical Institute, Nagoya University.
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