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A Generalization of Laguerre Geometry 1.
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§ 1. Zwutroduction. 1In this paper we shall try to generalize the classical
Laguerre differential geometry” in making use of the tensor calculus. Let
V. be an z-dimensional Riemannian space with the fundamental metric
tensor g.;(#%)?. 1In each tangent Euclidean space referred to a cartesian
coordinate. system (X¥), a hypersphere is determined by the coordinates
I’* of the center and its radius J°, and is represented by an equation of

the form
(1.1) gu(XI—= 1) (X*— V") = (V).

The I7® are components of a covariant vector and 77 is that of a
scalar of 7,. A hypersphere will be hereafter denoted by the symbol 7*®
Thus each tangent space of };, contains oo™*' hyperspheres. When it is
regarded as the space whose elements are hyperspheres, we shall call it
the ftangent space of Zyperspleres. Now, the tangential distance D between
two hyperspheres 7* and W?* is given by

(1.2) D=gu (V= W) (V*=W* — (V'—W")*
or by
(1.3) DP=g, (VP—W») (VY—W"),

where we have put
Lo=—1, o= Egrn=0.
Now, a hyperplane in tangent space is represented by an equation of
the form ‘
1.4) ~ % Xi=2. .
The necessary and sufficient condition that a hypersphere I”* touches
the hyperplane is given by

1) T. Takasu. Differentialgeometrieen in den Kugelriumen, Bd. 2, Laguerresche Differen-
tialkugelgeometrie. ) .

2) The indices i, j, kjoee--- take the values 1, 2,.----- , .

3) The indices A, g, y,o-e-- , take the values 0, 1,--, .
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L Vi—p 0
e V >
v gh 4 ¢
or by _
(1.5) fAVA=Py

where we have put
h=—"gi 41t

and consequently we have
(1.6) s B =0 (g¥gu.=0d).

Therefore, any hypersphere satisfying where the coefficients ¢,
satisfy touches always to a hyperplane whose normal is g% ¢ and
whose distance from the origin (2%) is p/v g%, #. In this sense, the
equation defines a hyperplane. We shall denote hereafter such a
hyperplane by the symbol (2, p) or #.

Of course # is a covariant vector and #, and p are scalars.

§2. ZLinear connection whick leaves invaviant the tangentital distance
between two hypersplicres.

Each tangent space being regarded as space of hyperspheres, we shall
define a correspondence between the tangent space of hyperspheres at (x,)
and that at (¥4 d2*). We shall assume that the hypersphere I"*+d P2 in
the tangent space of hyperspheres at 2*+ dx* corresponds to the hypersphere
V*4+dV?* in the tangent space of hyperspheres at (#*) and 0/7* is given
by the equation of the form

.1) SV A=dVA LT V¥ da*.
If I7* is a field of hypersphere, we can put
BV)\-_—'V;AE dxk)
where
. 7 A
(2.2) ;*,,=%£-;+ L e,

The linear connection being thus defined, we assume that it leaves
invariant the tangential distance between two hyperspheres, when these
hyperspheres are displaced according to the above defined linear connection.

Thus we must have
O

— T «
Suv,e = =8 av L pr—Lap kazo

2.3
(2:3) ox*
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from which follow the equations;

%4 —guy i T30,

(2.4)

1j(A,:_'<‘>’:7'a[1'o‘11r:=O)
s
ve=0.
To the differential d2° we can associate a hypersphere whose center
is at d2* and whose radius is zero; denoting it by dx*, we have

(2.5) Budr P —Bydw = (IA—TA) da? du*
1 2

for any two infinitesimal displacements along Zx* and dx? where d2° is
1 4

assumed to be zero. The tensor
A__ A A
SA=Ip—IA

defines the torsion of the space. We shall assume that our space has no
torsion, so that we have

(2‘6) I;L;cz 171;;9 13'2:['/&- ‘

~ Consequently, from the first of the equations [2.4), we find
) 1 ./0¢.; Yo o9

2.7 —l___{ .Z }E_*,o"“ ga3_+ sSak ___ Y55k ).

D) EUAR]T 2% \axr 7 axt 8ac

On the other hand, we have
2.8) 00V =30V *=DB%,, Vidy? dx*
2 1 12 1 2

for any two displacements Zx* and dx’, where B}, are components of the
1 2
curvature tensor given by
ol ol -
(2-9) Bajk 2“81_‘;;1 "E‘;ﬁ —1 pf;‘ Paz"*' u»o;c GAJ'

Writing down fully the components of the curvature tensor, we have
B”zl'jk::R";jk‘}‘ 122 gj—l—'g;' 1—';2’/0
(2 10) B-oijk"—; ?j,/c"rgk,j!
B fojlc =& 1mB?mjk)
B?ojlc=0)

where Ry are components of ordinary curvature tensor formed with I :
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Ry =0151 _ Bl&t _yayimy i o yim)

and the [I7;, denotes the covariant derivative with respect to the Christoffel
symbols {}%}.

§3. One parameter family of hyperspheves along a curve. Let

(3.1) VA=V
be a family of oo’ hyperspheres defined along a curve
. 2¥=2(@).

The covariant derivative of the hypersphere I’ being defined by
_ OV r=dV*+ 1"} V" da*,
the hypersphere 17*4+4V?* in the tangent space at the point x*+dz* is
mapped on the hypersphere in the tangent space at the point x* whose
- center is at dx*+ V¥4V * and whose radius is "°+67°. This hypersphere
may be represented by
VA4 01U+ da?,
where we assume that
dx*=0.
If we have
@V +d2) OV* +da*) =0,

the hypersphere I"* and V*+ 68V *+dx* are tangent to each other. If we
have

SOV 2+ dx*) (OV* + 02*)#0
along the curve, we can introduce a parameter s such that

£ 35: + d;f: )( aZ“ + “ZL)

=1.

Then putting

W, oV | dx
3.5 VA = ’
(3:5) ds + ds

we have

oo
(3.6) g =e¢=1lor —1.
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1)
A

, ' Q)
Now, the covariant derivative v of V* along the curve is a hyper-

ds
sphere satisfying
. ‘”,\3(1V)"‘
Thus, if
o S s
3.7 ~" 50 d o . #~0,
1) s ame S ds ds

then we can define a hypersphere such that

1)(2)

(3.8) _ | b‘V‘/ds_,éV"
where :
(1)
(3.9) =/ a0V /ds) (0V*/5) |
and
(1) (2) 2) 2) 2)
(3.10) S P pPe=0, SV VE=e=1 or —1.
If
(2) (¢4
. A (1)) (1) 1))
(3.11) gm(aV +eek W) 35“ +e¢ e £ V*)5#0,
A)

3
then we can define a hypersphere V'* such as
(1)(‘))(%)(1) (2) (3

(3.12) 5V'\/a?s+e ek V=V
where
o '(") MmEam M A
(3.13) =/ g2 (® i Mds+ ce £ V) (0 V“/a's+e ek V)|
and

3) (@ (2) (1) (3) (3) (3)

(3.14) g, V* Vim=gy, VA V=0, g, V* *=¢=1 or —1.

Proceeding in this way, we can arrive at a hypersphere V 2 such that

(n) (n-1) (n) 1) my (n) (n)

(3.15) Om=guu P Ve mgy, I ¥, gl Vr=e=1or —L.
If
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A (n-1)(n) (n—l)(n—l) (3 (n=1)(n)(n—-1)(n-1)
316) g 5 +e e k )(‘W +EEE )0,

(n+1)

then we can define a hypersphere ¥* such that

n)
3 A (u-—l)(n)(n—l)(ﬂ—-l) (n)(n+1)
Ve R =

(3.17)

as

where

(n—1)(n)(n—1)(n—=1) (n—1)}n)(n—1(n—1)

(")
(3.18) = Sl /ds+ ¢ ¢ & DR (OP*/ds4 € ¢ & TP

and
(n+1) (n) (n+1)(1H
(3.19) Ew V' Vh=reeeee =gnV* V*=0,
L (=N (n—1) (n-1)
L V*IV*= ¢ =1 or —1.
Putting
(n+1)
SUX mm—imem
(3.20) W= +e e R,
ds
we have from and (3.39)
(n—-1) 1
(3.21) Sap W* VP=.eon =g W* 17+=0.
o) m+1)
Then W?* must be zero, since the 7+ 1 hyperspheres I/}--.... ,* form
a base of the tangent space of hyperspheres, and we have
(n+1)
X mE-Dm)n)
(3.22) WV e =o0.

ds

The epuations [(3.8), [(3.12), [(3.17) and ((3.22) constitute the so-call-

ed Frenet formulae in our space with Laguerre connection.

§4. Some special one parameter families of liypersplieres.

In this section, we prove some theorems on special one parameter fa-
mily of hyperspheres.

Theorem 1. /f a hypersphere of the form V*+plU> is fixed by our
conuection along the curve, then we /fave
o —0

(4.1) -
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The converse is also true.

Proof. By the assumption, the center and the radius of the hyper-
0)
sphere V*+pl"* being fixed, we have

)
(4.2) _j_ (* 4 P 4 pI) =0,
S

from which we have

o) o) 37
(4.3) Py @y 2V o,
ds ds
Contracting this equation with g, I/"‘; we find
(4.4) 1492 0.
ds
Hence we have from
(4.5) | BI7 /ds=0.

m
Conversely, if the equation is satisfied by some }*(s), then we
have

™ It
0="2 4147 =(1+- 2 )i,
ds ds
where
p=c—s.
Thus we know that the hypersphere

6D}
V4 (c—s) A

is fixed by our connection along the curve. Thus the theorem is proved.

(2)
Theorem 2. [f a lhypersphere of the form V*+pV™ is fixed by our

connection along the curve, then we have

’ 320[}'1 [} 5([]): ) (Vl')ﬂ e
4 . 6 - e & gg——— V)\ —
(46) s’ F e ds ds

The converse is also true.
Proof. By the assumption, we have

)

@6 dis(;cu Vi ap A)=0,

1
ds
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from which

m

dp oV" oo
+ =0.

ds ds 2 ds*

(1)
Contracting this by g,,V* we get

(4.8) Ty

S or* ov*
(4.9) e =pg\n A =1 or —1.
If we differentiate |(4.9) covariantly along the curve, we have
[¢)) 1) (1)
dp ovr ov* or* 6"V‘”
4.10 ar +2 oV .
( ) ds s ds 28 s ds  ds

On the other hand, we have from

dp, oV abv il e
4.11 ? +po. OV .
(4.11) A A P >
From and we get V
. 1 )
& VI 1 <3N V2N
412 —0, - t.=e( )
( ) ds p=cons Ehe ds ds

Therefore becomes [(4.6). Conversely, if holds and

(1)

i spw
Aw ds ds

#0,

we find from [(4.6)

[¢))

(&3
. ) or* ore
4.13 _— =0.
( ) ds (gm ds das )
Putting
o o ok
4.14 =¢( )
( ) =¢(&mn s s
we have from
dp
4.156 =L =0.
(4.15) s

Therefore becomes ((4.8). In this case the tangential distance
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(1)

between I”* and the fixed hypersphere *+p BZ: becomes
(4.16) D=( or 5%)‘%
. ks ds ds /-
§ 5. Family of "' lyperspheres.
Let '
(5.1) | A=A, o, 00 )

be a family of oo™ ! hyperspheres defined along a hypersurface z*=x"(%).
The difference between two consecutive hyperspheres belonging to our
family is given by

(5.2) OV* +dx*=*B} du?,
where ‘
: A A A V] A
We put
(5'4) " San Bﬁ BY%=G 45
and assume that
(5.5) |Gasl 0.
Then we can define the conjugate tensor
(b.6) ' G** =G"4,
by means of the equations
(6.7 G Gep=203.

There exist two hyperplanes # and 7, which touch ¥* and P41
for any displacement du4, that is, which satisfy

tA Bﬁ=0, . ZA B‘}i:O:
(5.8) (A){ & #=0, (B) { z, t*=0,
’ g =" SN F =T,

where the factors for #, and 7, are assumed to satisfy the following condi-
tion :
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(5'9) fA f’=2.
Then, we can define two hyperspheres B3 and B2 by
FA FA
5.10 B=pyl m=p_
(5.10) + i

Then, from (5.8) and we have
(6.11) SaBrBY =g, BrB%=0, £,.B8,8%=0, B, B Bi=1,
Thus, the z+1 hyperspheres B2, B and B} are linearly independent.

Next, we shall differentiate these hyperspheres covariantly along the hy-
persurface. Then we must have the equations of the form

OB /0u"=BY K+ B Kint By K3,
(6.12) 0B2/3u”=PBY K%+ B) K+ Bh Kox,
0B /0u” =By Kip+ By Kip+ Bl Koy
where
0B%/3uF=09B% /3u”+ '), BY 3+*/3u” etc.
But, from [(5.IT), we have
(5_14) KJ(A,R:K:B:O; chlx"_:K;o}?y
K4 Gao K5=0,  Kip—Gac K5=0.

These quantities are not independent, but satisfy the following integra-

bility conditions. First we have from
B.14)  Bh, Vw0 BT _pagre gy 4 BN(Ki— K
(- ) cwil ‘8—”7 5;};"‘ C( AR IIA)+ a( AB'—KRA)
+ B (Kin—K34)-
Next, we have from

v Z Va Z
G15) B2 05 (O g ) - (0K s ki)
[7Ad

0u’ 9u’ u®

where the indices X,Y,Z run over the range o, oo, i, ------ ,.n—.l.
§ 6. Several properties of a o™ family of lyperspheres.
From we have
(6.1) P= L (BB, P=2(B—EL).
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Therefore, the equation becomes respectively

A A

3B/ dum =B K.+ %HMJr%HM,
(6.2) _

08/ 9u” = — BoH &+ P K3y,
0P /ou” = — By H %—1* Ko,
where

— 1 ©
HAB=2(KXB+KA°2’)’ HAB:_(KAOB_'KA”’)’

(6.3) 2

HE=GHyy  HG=G H
Conjugate divections. For two displacements &u* and du* we have
1 2

from
(6.4) G O BY dut= — [ 1 du* du®.
2 1 1 2

If the hyperplane #*+d#* touches the pencil (V?, V*+ B3 dut), we
1 2

must have

(65) £ +38) (V¥ 4 B d) = g, (P08 7™,
(6.6) g)‘?' 6ZA'B: a’ltA': —EAB duA ?’ZZB.
f 2 ) 1 1

The converse is also true. In this case, the two directions @74 and
1

du? are said to be conjugate to each other.
Normal curvature. Directions of curvature. _
For a oo' family of hyperspheres belonging to our " ! family we

have
: @ orr  dxr At
6.7 V)‘= + =B)‘ ,
(6.7 ds ds “ das
where we assume that
[N ¢)) A B (1
(6'8) gAuVA V=G4 u &l =e¢=1 or —1.
ds ds
As we have
m . A
(6.9) gV th=g,, By t* du =0,

ds
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differentiating covariantly we find

1)
A W
(6.10) e 2 g % o,
ds das

Then we have from [(6.9) and (6.2)

M)

BVA -— du“ duB
6.11 — =T ,
( ) g}p S AR ds ds
that is
) _
A RG] P
(6.12) e I D g e pm Han A A

a

ds e Gup du* du®

@ (1)
Especially, if g, V* t*=¢, then the equation

becomes

1) I 7 A B
(6.13) ( 1 _ Hoapdu' du

We shall call R-! the normal curvature. When R~ takes an extremal
value, we call such a direction given by du* the direction of curvature.

Theorem 3. If a hypersphere of the form V>*+pt* is fixed by our
connection in any dirvection touching to the lypersurface x*=x*(u), then we
must have

(6.15) ]?Agzp_l GAB;

w 0 -
(6.16) K,B=—5u—3— log p77,
6.17) p=(n—1) (7.9~

The converse is also true. In this case I"*+ p¢* is a hypersphere which
touches the hyperplane #, and the hypersphere FF*. We call such a oo™
family the fotally umbilical family.

Proof. By the assumption we have

(6.18) O(2* 4 U+ pt*) =0,
that is
(6.19) BY du+ (dp) >+ p(— BY 7%, du 41> K, du) =O.

Rewriting we have
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(6.20) (B (05—p HS) +z‘(%+ oKz dut=o0.
/A J

Contracting this with g,, B% and 7,, we have respectively
(6.21) ~ (Gun—pH 4n) du”=0,
ap )a’u

As du* can be taken arbitrarily this gives us (6.15), ((6.16) and
(6.17). The converse is evident. Q.E.D.

If the family is totally umbilical, then the directions of curvature will
be indeterminate.

(6.22)

§ 7. Normalizations of ¢, and 7.

To determine the factors for # and Z,, let us change # and 7, as
follows :

¢ ¥

(7.1) H=pt, Lr=p"'%,. (ZJ\ ﬂ 2)
Putting

* _ % % x

(7.2) otr=—BY HG, duf+t* K2y du®
we have from (7.1), (7.2) and ((5.12)
N .

(7.3) 1 %=p H3.

Contracting this with respect to the indices C and B, we get

Similarly, we have
*
(7.5) HE=p™ HS
from which follows
(7.6) HS=p™" HS,.
If
| H.$
or H.$=0,

then we put
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(7.7) h=HS bty  E=(H5,
or
(7.8) h=(Z.9" t, L=HY .

Then (t:, zZ,) or (t;, 7)) are invariant under the change of [(7.1).
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