Riemann Spaces of Class Two and their Algebraic Characterization.

Part I.

Makoto Matsumoto.

(Received June 15, 1949)

We shall investigate in this paper a necessary and sufficient condition that an *n*-dimensional Riemann space $R_n(n \ge 6)$ be of class two. Let the line element of R_n be a positive definite quadratic form

$$ds^2 = g_{ij}dx i dx^j; (i,j,...=1,2,...,n);$$

where g's are analytic functions of $x^1, ..., x^n$.

Consider, in an (n+2)-dimensional euclidean space E_{n+2} , an *n*-dimensional variety S_n defined by

$$y^{\alpha} = \varphi^{\alpha}(x^{1},...x^{n})$$
 $(\alpha = 1,..., n+2)$;

where y's are current coordinates of the point of S_n referred to a rectangular cartesian coordinate system in E_{n+2} and φ 's are analytic functions of x^1, \ldots, x^n . The line element along a curve on S_n is given by

$$ds^2 = \sum_a (dy^a)^2 = \sum_a B_i^a B_j^a dx^i dx^j = g_{ij} dx^i dx^j;$$

where

$$B_i^a = \frac{\partial y^a}{\partial x^i}.$$

Let $B_F^a(P=I,II)$ be the components of two mutually orthogonal unit vectors normal to S_n . The variation of $B_{\lambda}^a(\alpha=1,...,n+2; \lambda=1,...n, I, II)$ along the curve can be written as

$$dB^{a}_{\lambda} = H^{\sigma}_{\lambda i} B^{a}_{\sigma} dx^{i} \quad (i=1,...,n; \sigma, \lambda=1,...,n,I,II; \alpha=1,...,n+2).$$

As a condition of integrability of these equations we get immediately that H^{i}_{jk} (i,j,k=1,...,n) are Christoffel's symbols and H^{P}_{ij} (P=I,II;i,j=1,...,n) are symmetric in i and j; and $H^{P}_{Qi}(P,Q=I,II;i=1,...,n)$ are skew-symmetric in P and Q; those $H^{o}_{\lambda i}$ satisfy the Gauss equation

(1)
$$R_{ijkl} = H_{ik}^{P} H_{jl}^{P} - H_{il}^{P} H_{jk}^{P},$$

the Codazzi equation

$$(2) H_{ai,j}^{P} - H_{ai,l}^{P} = H_{ai}^{Q} H_{Pj}^{Q} - H_{ai}^{Q} H_{Pj}^{Q},$$

the Ricci equation

(3)
$$H_{qi,j}^{P} - H_{qj,i}^{P} = g^{ab} (H_{ai}^{Q} H_{bj}^{P} - H_{aj}^{Q} H_{bi}^{P}),$$

and finally the equation

$$H_{Pj}^{i} = -g^{ai}H_{aj}^{P}$$
.

In this paper we discuss the type number of a Riemann space $R_n(n \ge 4)$ of class two. Making use of it, we give, in the forthcoming paper, a necessary and sufficient condition that R_n $(n \ge 6)$ be of class two.

We restrict oureselves the discussions in a domain of R_n , where g_{ij} are analytic.

§ I. Type number

We put

$$(1.1) L_{ijkl} = H_{ij}^{I} H_{kl}^{II} - H_{il}^{I} H_{jk}^{II} - H_{ij}^{II} H_{kl}^{I} + H_{il}^{II} H_{ik}^{I}.$$

If we define K_{ij} as

$$(1.2) K_{ij} = \frac{1}{2} g^{ab} L_{ajbi},$$

we have from (1.1)

(1.3)
$$K_{ij} = g^{ab} (H_{ai}^{II} H_{bj}^{I} - H_{aj}^{II} H_{bi}^{I});$$

where K_{ij} is a skew-symmetric tensor. If we put

$$H_{II}^{I} = -H_{II}^{II} = H_{i}$$

the Ricci equation (3) becomes

$$H_{i,j}-H_{j,i}=g^{ab}\left(H_{ai}^{II}\ H_{bj}^{I}-H_{aj}^{II}\ H_{bi}^{I}\right),$$

accordingly we have from (1.3)

$$(1.4) K_{ij} = H_{i,j} - H_{j,i}.$$

If we differentiate this equation covariantly with respect to x^k and sum three equations obtained by cyclic permutation of i, j and k, we have

(1.5)
$$K_{ij,k} + K_{jk,i} + K_{ki,j} = 0.$$

We write instead of (1.3)

(1.3')
$$K_{q,ij}^{P} = g^{cd} (H_{ci}^{Q} H_{dj}^{P} - H_{cj}^{Q} H_{di}),$$

and then we have immediately

$$K_{q,ij}^{P} = -K_{qij}^{Q} = -K_{qji}^{P}$$

When we multiply (1.3') by H_{ak}^Q , sum for Q, and sum up those three equations obtained by cyclic permutaion of i, j and k, we have in consequence of (I)

(1.6)
$$H_{a(i}^{Q}K_{\perp Q+jk)}^{P} = H_{c(i}^{P}R_{\perp a+\cdot jk)}^{c}.$$

If multiplying (1.6) by H_{bl}^{p} and summing for P, we subtract three equations obtained by interchanging l with i, j, and k, we have in consequence of (I) and (1.1)

$$(1.7) N_{abijkl} = L_{ai+b+(j)} K_{kl} + K_{i(j)} L_{+a+k+b+l};$$

where

$$(1.8) -N_{abijkl} = R_{cbi(j)} R_{(a_1,kl)}^{o} + R_{a \cdot i(j)} R_{(cb+kl)}.$$

Contracting (1.7) by g^{ab} we have in consequence of (1.2)

$$(1.9) M_{ijkl} = K_{ij} K_{kl} + K_{ik} K_{lj} + K_{il} K_{jk};$$

where

(1.10)
$$M_{ijkl} = -\frac{1}{2} g^{ab} N_{abijkl} = \frac{1}{2} R_{b \cdot i(j)} R_{+a+\cdot kl)}^{a}.$$

The intrinsic tensor M_{ijpl} is skew-symmetric in its every two indices. We have from (1.9) the

Theorem I.I... A necessary condition that a Riemann space $R_n(n \ge 4)$ be of class two is that there is a skew-symmetric tensor K_{ij} which satisfies the algebraic equations (1.9), where M's are defined by (1.10).

As K_{ij} is skew-symmetric, the rank of matrix $||K_{ij}||$, whose elements are K_{ij} , is even and we shall therefore define the type number of a Riemann space R_n of class two as follows:

Definition:... A variety S_n $(n \ge 4)$ in a euclidean space E_{n+2} will be said to be of type one if the rank of matrix ||K|| is zero or two. It will be said to be of type τ if the rank of the above matrix is 2τ .

We shall now prove that type number of S_n is determined by its intrinsic properties. According to the theory of the skew-symmetric determinant⁽²⁾ we have

(I. II)
$$(K_{i(j} K_{kl)})^{2} = \begin{vmatrix} 0 & K_{ij} & K_{ik} & K_{il} \\ -K_{ij} & 0 & K_{jk} & K_{jl} \\ -K_{ik} - K_{jk} & 0 & K_{kl} \\ -K_{il} - K_{jl} & -K_{kl} & 0 \end{vmatrix} ,$$

and if the rank is equal to 2τ , there is necessarily one 2τ -rowed principal minor which is not zero.

(A) Suppose that rank of ||K|| is zero or two. The determinant of the right-hand member of (I. II) must be zero. Hence, it follows from (1.9) that all of M's are zero. Conversely, if all of M's are zero, we have

(1. 12)
$$K_{i(i,j)} = 0$$
 $(i, j, k, l=1,...,n)$

Suppose that the rank of ||K|| is n (even), then, contracting (1.12) by K^{kl} which is skew-symmetric in k and $l^{(3)}$, we have $(n-2)K_{ij}=0$. Accordingly all of K_{ij} are zero for $n \ge 4$ in contradiction to the hypothesis on the rank of ||K||. Next suppose that the rank of ||K|| is 2τ $(n>2\tau \ge 4)$. Now transform the coordinate system in such a way that ||K|| has the form

We consider the values of indices $i, j, k, l=1,..., 2\tau$ in (1.12) and have similarly $K_{ij}=0$ $(i,j=1,...2\tau)$ for $2\tau \ge 4$. Accordingly the rank of ||K|| is zero or two.

(B) Consider the following two systems of equations

(1. 14)
$$K_{ij} \ v^{i} = 0,$$

(1. 15) $M_{ijkl} \ v^{i} = 0$ $(i, j, k, l = 1,...,n).$

Suppose that the rank of ||K|| is n (even) and the rank of ||M||, i.e.

$$M_{1abc} \dots M_{nabc} \ M_{1ijk} \dots M_{nijk} \ \dots \ M_{1pqr} \dots M_{npqr}$$

of coefficients of the system (1. 15) is < n. Then the system (1. 15) has a non-trivial solution v^i and it results from (1.9) that

(I. 16)
$$K_{i(j)} K_{k(i)} v^{i} = 0.$$

But since the determinant |K| = 0 by hypothesis, it follows from (I. 16) by contracting with K^{il} that all of v^i are zero; hence the rank of ||M|| is also n. Conversely if the rank of ||M|| is n and that of ||K|| < n, (I. 14) would have a non-trivial solution v^i satisfying (I. 15) according to (I. 16). This contradicts to the hypothesis on the rank of ||M||. Hence the rank of ||K|| is n if, and only if, the matrix ||M|| has rank n.

(C) Consider finally the case in which the rank of ||K|| is 2τ ($n > 2\tau$ ≥ 4). Now transform the coordinate system in such a way that ||K|| has the form (I. 13). All of solutions of (I. 14) satisfy (I. 15) by means of (I. 16). Conversely, let any non-trivial solution of (I. 15) be v^i and putting indices i, j, k and l to be $1, ..., 2\tau$ in (I. 16) and contracting by K^{kl} we have $v^1 = ... = v^{2\tau} = 0$; also we know that one of the quantities $v^{2\tau+1}, ..., v^n$ is not zero. Since these v's satisfy the system (I. 14), and solution of (I. 15) is therefore a solution of (I. 14). Accordingly the rank of ||K|| is equal to that of ||M||. Hence we have the

Theorem 1.2:... The type number of a variety $S_n(n \ge 4)$ of a euclidean space E_{n+2} is determined by its intrinsic properties;

- I) the type number is equal to one if, and only if, the tensor M_{ijkl} is the zero tensor.
- II) The type number is equal to τ if, and only if, the rank of the matrix ||M|| is 2τ $(n > 2\tau \ge 4)$.

For Riemann spaces of dimension less than four, tensor M_{ijkl} is constantly zero as is seen from (I. 10).

If S_n is immersible in an (n+1)-dimensional euclidean space E_{n+1} , the Gauss equation is

$$R_{ijkl} = H_{ik} H_{jl} - H_{il} H_{jk}$$

and then we can see immediately that the tensor M_{ijkl} is zero. Therefore S_n being of type ≥ 2 is not immersible in E_{n+1} , i.e. not of class one or zero.

C. B. Allendoerfer discussed Riemann spaces of class $p(\geq 2)^{(4)}$. He put

$$C_{ab+ij} = \begin{vmatrix} H_{ai}^{\mathrm{I}} & H_{ai}^{\mathrm{II}} \\ H_{bj}^{\mathrm{I}} & H_{bj}^{\mathrm{II}} \end{vmatrix}$$

According to (I. 3) we have

$$g^{ab}C_{ab+ij} = -K_{ij}.$$

Therefore contracting C_1 in his paper, i.e. $C_1 = C_{ab+ij} \delta_{rs}^{ij}$, by g^{ab} we have from (I. 17)

$$(I. 18) -2K_{rs} = g^{ab}C_1.$$

Moreover contracting C_2 , i.e. $C_2 = C_{ab+ij}C_{cd+kl}\delta_{rstu}^{ijkl}$, by $g^{ab}g^{ed}$ we have from (I. 17)

$$(I. 19) \qquad (-1)^2 \cdot 2^2 \cdot 2! \cdot \sqrt{|K_2|} = g^{ab} g^{cd} C_2,$$

and so on; where $|K_2|$ is symbolically a 4-rowed principal minor of |K| i.e.

$$\sqrt{|K_2|} = K_{r(s} K_{tu)}.$$

Thus we have in general

$$(I. 20) \qquad (-1)^{\tau} \cdot 2^{\tau} \cdot \tau! \cdot \sqrt{|K_{\tau}|} = g^{a_1b_1} \cdot \dots \cdot g^{a_{\tau}b_{\tau}} C_{\tau};$$

where $|K_{\tau}|$ is symbolically a 2τ -rowed principal minor of |K|.

He defined such a type number that a Riemann space R_n of class two is of type τ if there is one C_{τ} not zero and all of $C_{\tau+1}$ are zero.

If a R_n of class two is of type τ in the sense of this paper, we must have that $|K_{\tau}|$ is not zero. Hence, all of C_{τ} are not zero from (I. 20). As the result, R_n of class two and of type τ in the sense of this paper is of type $\geq \tau$ in the sense of the Allendoerfer's paper.

Hence, if we interchange the Allendoerfer's definition of type number with that in this paper, the theorem I and II, and Lemma V of his paper become the following three theorems.

Theorem I. 3:... If a variety S_n $(n \ge 6)$ in a euclidean space E_{n+2} is of type ≥ 3 , S_n is intrinsically rigid.

Theorem I. 4:...If in a Riemann space $R_n(n \ge 6)$ of type ≥ 3 there are two sets of functions H_{ij}^p and H_{Qi}^p (P, Q=I, II; i,j=1,...,n) satisfying the Gauss and Codazzi equations, the Ricci equation is automatically satisfied.

Theorem I. 5:...If in a Riemann space R_n $(n \ge 8)$ of type ≥ 4 there is a set of functions $H_{ij}^P(p=I, II; i, j=1,...,n)$ satisfying the Gauss equation, there is a set of functions $H_{ij}^P(P,Q=I, II; i=1,...,n)$ satisfying the Codazzi and Ricci equations.

§2. Characters of a solution of the equations (I. 9)

Let the algebraic equations (I. 9) have a solution K's. We shall

discuss the characters of the solution.

From the theorem I. 2, if there are two systems of solutions K's and \overline{K} 's we have that the rank of ||K|| is equal to that of $||\overline{K}||$.

Now we shall prove the following theorem in relation to intrinsic rigidity:

Theorem 2. I:... If a Riemann space $R_n(n \ge 6)$ of class two is of type ≥ 3 , a solution K's of (I. 9) is uniquely determined to within algebraic sign.

The algebraic sign of K's can not be determined by intrinsic properties, because it changes by interchanging indices I and II of the normals as is seen from (I. 3).

Let K's and $\overline{K}'s$ be two systems of solution and we put

(2.1)
$$\bar{K}_{ij} = K_{ij} + A_{ij}$$
 (i. $j = 1,...,n$).

We have from (I. 9)

$$(2.2) \bar{K}_{i(j} \, \bar{K}_{kl)} = K_{i(j} \, K_{kl)}.$$

Substituting (2. I) in (2.2) we have

$$(2.3) K_{i(j} A_{kl)} + A_{i(j} K_{kl)} + A_{i(j} A_{kl)} = 0.$$

(A) Suppose det. |K| = 0 and |A| = 0. Contracting (2.3) by A^{kl} we have

$$(2.4) (n-4)K_{ij} + (n-2 + A^{ab}K_{ab})A_{ij} = 0.$$

Moreover contracting (2.4) by A^{ij} we have A^{ab} $K_{ab} = -n/2$, and substituting this expression in (2.4), we have $A_{ij} = -2K_{ij}$ for $n \ge 6$. Hence from (2. I) $\bar{K}_{ij} = -K_{ij}$ for i, j = 1, ..., n.

Next suppose det. |A|=0. Let v's be a non-trivial solution of the the system of equations $A_{ij}v^{i}=0$ (i, j=1,...,n). Contracting (2.3) by K^{ij} we have

$$(2.5) \qquad (n-4+K^{ab}A_{ab})A_{kl}+K^{ab}A_{ab}K_{kl}-K^{ij}(A_{ki}A_{lj}+A_{il}A_{kj})=0.$$

Since contracting (2.5) by v^k we have $(K^{ab}A_{ab})$ $K_{kl}v^k=0$, we have $K^{ab}A_{ab}=0$, because |K| is not zero. Hence we have from (2.5)

$$(n-4)A_{kl}-K^{ij}(A_{kl}A_{lj}+A_{ll}A_{kj})=0.$$

Substituting (2.1) in this equation we have

(2.6)
$$n\bar{K}_{kl} = (n-2)K_{kl} - K^{ij}(\bar{K}_{ik} \ \bar{K}_{lj} + \bar{K}_{il} \ \bar{K}_{jk}).$$

From $|\bar{K}| \neq 0$, we have similarly

(2.7)
$$nK_{kl} = (n-2)\bar{K}_{kl} - \bar{K}^{ij} \left(K_{ik}K_{lj} + K_{il}K_{jk}\right).$$

Now from (2.6) and (2.7) we have

$$n\bar{K}_{kl} = (n-2)K_{kl} - K^{ij}\bar{K}_{ik} \left\{ \frac{n}{n-2}K_{lj} + \frac{1}{n-2} \bar{K}^{ab}(K_{al} K_{jb} + K_{aj}K_{bl}) \right\} - K^{ij}\bar{K}_{il} \left\{ \frac{n}{n-2}K_{jk} + \frac{1}{n-2}\bar{K}^{ab}(K_{aj}K_{kb} + K_{ak}K_{bj}) \right\},$$

and we deduce $\overline{K}_{kl} = K_{kl}$ (k, l=1,...,n) for $n \ge 6$.

(B) Suppose that rank of $||K||=2\tau$ $(n>2\tau \ge 6)$. Transform ||K|| into the form (I. 13). Then $||\bar{K}||$ has also the similar form at the same time. In fact, putting $i, j, k, l=1,...,2\tau$ in (2.2) and contracting by K^{ij} we have

$$(2\tau-2)K_{kl}=C_k^h \overline{K}_{hl}$$
 (h, k, $l=1,...,2\tau$);

where

$$C_k^h = (K^{ab} \overline{K}_{ab}) \ \delta_k^h - 2K^{ah} \overline{K}_{ak}.$$

Hence we have

$$(2\tau-2) \mid K_{\tau} \mid = \mid C \mid. \quad \mid \bar{K}_{\tau} \mid.$$

Accordingly in $\| \bar{K} \|$ we have

$$\begin{vmatrix} 0 & \bar{K}_{12} & \dots & \bar{K}_{1(2\tau)} \\ -\bar{K}_{12} & 0 & \vdots \\ \vdots & \ddots & \vdots \\ -\bar{K}_{1(2\tau)} & \ddots & 0 \end{vmatrix} \neq 0.$$

Next putting $i > 2\tau$ and j, k, $l = 1,..., 2\tau$ in (2.2) we have

$$\bar{K}_{i(j} \ \bar{K}_{kl)} = 0$$

and contracting this equation by \bar{K}^{kl} we have $\bar{K}_{ij}=0$ for $i>2\tau$ and j=1, ..., 2τ .

Finally putting $i, j > 2\tau$ and $k, l=1,...,2\tau$ in (2.2) we have $\overline{K}_{ij} \overline{K}_{kl} = 0$. We have therefore $\overline{K}_{ij} = 0$ for $i, j > 2\tau$. Accordingly, by the similar way as for (A), we have the theorem 2.I.

Now in relation to the equation (I.5) we shall prove the

Theorem 2.3:... When a Riemann space $R_n(n \ge 8)$ of class two and of type ≥ 4 , a solution K's of (I. 9) satisfies the equations (I. 5).

We differentiate covariantly (I. 9) with respect to x^h and subtract four equations obtained by interchanging h with i, j, k and l. Making use of (I. 10) and the Bianchi's identity we have

(2.8)
$$K_{ij} K_{kih} + K_{ik} K_{jhl} + K_{il} K_{jkh} + K_{ih} K_{jlk} + K_{jk} K_{ilh} + K_{jl} K_{ihk} + K_{jh} K_{ikl} + K_{kl} K_{ijh} + K_{hk} K_{il} + K_{lh} K_{ijk} = 0;$$

where K_{ijk} are left-hand member of (I. 5).

Suppose det. $|K| \neq 0$. Contracting (2.8) by K^{lh} we have

$$(2.9) (n-6)K_{ijk} + K^{lh}(K_{ij} K_{lhk} + K_{ki} K_{lhj} + K_{jk} K_{lhi}) = 0,$$

and contracting (2.9) by K^{ij} we have K^{ab} $K_{abi}=0$ for $n \ge 6$. We can therefore deduce from (2.9) that all of K_{ijk} are zero for $n \ge 8$.

Suppose that the rank of $||K|| = 2\tau$ $(n > 2\tau \ge 8)$. ||K|| into (I. 13) and take i, j, k, l, $h=1,...,2\tau$ in (2.8). By the similar way as for (A) we have $K_{ijk}=0$ for $i, j, k=1,...,2\tau$.

Next putting $k > 2\tau$ and $i, j, l, h=1,..., 2\tau$ in (2.8) we have

(2. 10)
$$K_{ij} K_{klh} + K_{il} K_{jkh} + K_{ih} K_{kjl} + K_{jl} K_{ihk} + K_{jh} K_{ikl} + K_{lh} K_{kij} = 0,$$

and contracting (2. 10) by K^{ih} we have

$$(2. 11) (2\tau - 4) K_{ijk} + K_{ij} K^{ih} K_{lhk} = 0,$$

and contracting (2. 11) by K^{ij} we have K^{ih} $K_{ihk}=0$ for $2\tau > 2$, and therefore from (2. 11) $K_{ijk} = 0$ for $i, j = 1,...,2\tau$ and $k > 2\tau$ if $2\tau > 4$.

Next putting $j, k > 2\tau$ and $i, l, k = 1, ..., 2\tau$ in (2.8) we have

$$(2. 12) K_{il} K_{jkh} + K_{lh} K_{jki} + K_{hi} K_{jkl} = 0,$$

and contracting (2.12) by K^{th} we have $K_{ijk}=0$ for $i=1,...,2\tau$ and j,k> 2τ .

Finally putting $i, j, k > 2\tau$ and $l, h=1, ..., 2\tau$ in (2.8) we have $K_{lh}K_{ljk}$ =0 and therefore K_{ijk} =0 for $i,j,k>2\tau$. Since K_{abc} is skew-symmetric in its every two indices, all of K_{abc} are zero and we have the theorem 2.2.

It is to be noted here that (1.5) is a necessary and sufficient condition of integrability of the differential equations (1.4) for the determination of the unknowns H_i (we omit here the proof).

Revised Oct. 20, 1949.

References

- 1) M. Matsumoto: Riemann spaces of class two and their algebraic charactezation (part II), J. Math. Soc. Japan.
 - 2) G. Kowalewski: Einführung in die Determinantentheorie, PP. 140 and 145.
 - 3) 1. c. P. 134.
 - 4) Amer. J. Math., 61 (1939). This paper is called here simply the Allendoerfer's paper.

Mathematical Institute,

Doshisha University.