Riemann Spaces of Class Two and their Algebraic Characterization.

Part I.

Makoto Matscmoto.

(Received June 15, 1949)

We shall investigate in this paper a necessary and sufficient condition that an n-dimensional Riemann space $R_{n}(n \geqq 6)$ be of class two. Let the line element of R_{n} be a positive definite quadratic form

$$
d s^{2}=g_{i j} d x^{i} d x^{j} ; \quad(i, j, \ldots=1,2, \ldots, n) ;
$$

where g 's are analytic functions of x^{1}, \ldots, x^{n}.
Consider, in an ($n+2$)-dimensional euclidean space E_{n+2}, an n-dimensional variety S_{n} defined by

$$
y^{a}=\varphi^{a}\left(x^{1}, \ldots x^{n}\right) \quad(\alpha=1, \ldots, n+2) ;
$$

where y 's are current coordinates of the point of S_{n} refered to a rectangular cartesian coordinate system in E_{n+2} and φ 's are analytic functions of x^{1}, \ldots, x^{n}. The line element along a curve on S_{n} is given by

$$
d s^{2}=\sum_{a}\left(d y^{a}\right)^{2}=\sum_{a} B_{i}^{a} B_{j}^{a} d x^{i} d x^{j}=g_{i j} d x^{i} d x^{j} ;
$$

where

$$
B_{i}^{a}=\frac{\partial y^{a}}{\partial x^{i}} .
$$

Let $B_{P}^{a}(P=I, I I)$ be the components of two mutually orthogonal unit vectors normal to S_{n}. The variation of $B_{\lambda}^{a}(\mu=1, \ldots, n+2 ; \lambda=1, \ldots n, I, I I)$ along the curve can be written as

$$
d B_{\lambda}^{a}=H_{\lambda i}^{o} B_{\sigma}^{a} \quad d x^{i} \quad(i=1, \ldots, n ; \sigma, \lambda=1, \ldots, n, I, I I ; \mu=1, \ldots, n+2) .
$$

As a condition of integrability of these equations we get immediately that $H_{j k}^{i}(i, j, k=1, \ldots, n)$ are Christoffel's symbols and $H_{i j}^{P}(P=I, I I ; i, j=1, \ldots, n)$ are symmetric in i and j; and $H_{Q i}^{P}(P, Q=I, I I ; i=1, \ldots, n)$ are skew-symmetric in P and Q; those $H_{\lambda i}^{\sigma}$ satisfy the Gauss equation

$$
\begin{equation*}
R_{i j k l}=H_{i k}^{P} H_{j l}^{P}-H_{i l}^{P} H_{j k}^{P}, \tag{1}
\end{equation*}
$$

the Codazsi equation

$$
\begin{equation*}
H_{a i, j}^{P}-H_{a j, i}^{P}=H_{a i}^{Q} H_{i^{2} j}^{Q}-H_{a j}^{Q} H_{P_{j},}^{Q}, \tag{2}
\end{equation*}
$$

the Ricci equation

$$
\begin{equation*}
H_{Q i, j}^{P}-H_{Q j, i}^{P}=g^{a b}\left(H_{a i}^{Q} H_{b j}^{P}-H_{a j}^{Q} H_{b i}^{P}\right), \tag{3}
\end{equation*}
$$

and finally the equation

$$
H_{r j}^{i}=-g^{a i} H_{a j}^{P}
$$

In this paper we discuss the type number of a Riemann space $R_{n}(n \geq 4)$ of class two. Making use of it, we give, in the forthcoming paper, ${ }^{1{ }^{1}}$ a necessary and sufficient condition that $R_{n}(n \geqq 6)$ be of class two.

We restrict oureselves the discussions in a domain of R_{n}, where $g_{i j}$ are analytic.

§ I. Type number
 We put

$$
\begin{equation*}
L_{i j k l}=H_{i j}^{I} H_{i k l}^{I I}-H_{i l}^{I} \quad H_{j k}^{I I}-H_{i j}^{I I} H_{k i l}^{I}+H_{i l}^{I I} H_{j k}^{I} \tag{1.1}
\end{equation*}
$$

If we define $K_{i j}$ as

$$
\begin{equation*}
K_{i j}=\frac{1}{2} g^{a b} L_{a j b i} \tag{1.2}
\end{equation*}
$$

we have from (1.1)

$$
\begin{equation*}
K_{i j}=g^{a b}\left(H_{a i}^{1 I} H_{b j}^{l}-H_{a j}^{1 I} H_{b i}^{I}\right) ; \tag{1.3}
\end{equation*}
$$

where $K_{i j}$ is a skew-symmetric tensor. If awe put

$$
H_{l i i}^{J}=-H_{I i}^{I I}=H_{i},
$$

the Ricci equation (3) becomes

$$
H_{i . j}-H_{j, i}=g^{-a b}\left(H_{a i}^{I I} H_{b j}^{I}-H_{a j}^{I I} H_{b i}^{I}\right),
$$

accordingly we have from (1.3)

$$
\begin{equation*}
K_{i j}=H_{i, j}-H_{j, i} . \tag{1.4}
\end{equation*}
$$

If we differentiate this equation covariantly with respect to x^{k} and sum three equations obtained by cyclic permutation of i, j and k, we have

$$
\begin{equation*}
K_{i j, k}+K_{j k, i}+K_{k i, j}=0 . \tag{1.5}
\end{equation*}
$$

We write instead of (1.3)

$$
\begin{equation*}
K_{Q \cdot i j}^{P}=g^{c d}\left(H_{c i}^{Q} H_{d j}^{P}-H_{c j}^{Q} \quad H_{d i}\right), \tag{1.3'}
\end{equation*}
$$

Riemann Spaces of Class Two and their Algebraic Characterization. 69
and then we have immediately

$$
K_{Q \cdot i j}^{P}=-K_{P i j}^{P}=-K_{Q j i}^{P} .
$$

When we multiply (1.3') by $H_{a i}^{Q}$, sum for Q, and sum up those three equations obtained by cyclic permutaion of i, j and k, we have in consequence of (I)

$$
\begin{equation*}
H_{a(i}^{Q} K_{|Q| j k)}^{P}=H_{c(i}^{P} R_{|a| \cdot j k)}^{c} . \tag{1.6}
\end{equation*}
$$

If multiplying (1.6) by $H_{b l}^{P}$ and summing for P, we subtract three equations obtained by interchanging l with i, j, and k, we have in consequence of (I) and (1.1)

$$
\begin{equation*}
N_{a b i j k l}=L_{a i|b|(j} K_{k l)}+K_{i(j} L_{|a| k|b| l)} ; \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
-N_{a b i j k l}^{\dot{*}}=R_{c b i(j} R_{|a| \cdot k l)}^{c}+R_{a \cdot i(j}^{c} R_{|c B| k l i} . \tag{1.8}
\end{equation*}
$$

Contracting (1.7) by $g^{a b}$ we have in consequence of (1.2)

$$
\begin{equation*}
M_{i j k l}=K_{i j} K_{k l}+K_{i k} K_{l j}+K_{i l} K_{j k} ; \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{i j k l}=-\frac{1}{2} g^{a b} N_{a b i j k l}=\frac{1}{2} R_{b \cdot i(j}^{a} R_{|a| \cdot k l)}^{b} . \tag{1.10}
\end{equation*}
$$

The intrinsic tensor $M_{i j p l}$ is skew-symmetric in its every two indices. We have from (1.9) the

Theorem I.I... A necessary condition that a Riemann space $R_{n}(n \geq 4)$ be of class two is that there is a skew-symmetric tensor $K_{i j}$ which satisfies the algebraic equations (1.9), where M 's are defined by (1.10).

As $K_{i j}$ is skew-symmetric, the rank of matrix $\left\|K_{i j}\right\|$, whose elements are $K_{i j}$, is even and we shall therefore define the type number of a Riemann space R_{n} of class two as follows :

Definition :... A variety $S_{n}(n \geq 4)$ in a euclidean space E_{n+2} will be said to be of type one if the rank of matrix $\|K\|$ is zero or two. It will be said to be of type τ if the rank of the above matrix is 2τ.

We shall now prove that type number of S_{n} is determined by its intrinsic properties. According to the theory of the skew-symmetric deter$\operatorname{minant}{ }^{(2)}$ we have
(I. II)

$$
\left(K_{i(j} K_{k l)}\right)^{2}=\left|\begin{array}{cccc}
0 & K_{i j} & K_{i k} & K_{t l} \\
-K_{i j} & 0 & K_{j k} & K_{j l} \\
-K_{i k}-K_{j k} & 0 & K_{k l} \\
-K_{i l}-K_{j l} & -K_{k l} & 0
\end{array}\right|
$$

and if the rank is equal to 2τ, there is necessarily one 2τ-rowed principal minor which is not zero.
(A) Suppose that rank of $\|K\|$ is zero or two. The determinant of the right-hand member of (I. II) must be zero. Hence, it follows from (1.9) that all of M 's are zero. Conversely, if all of M 's are zero, we have

(1. 12)

$$
K_{i(j} K_{k l)}=0 \quad(i, j, k, l=1, \ldots, n)
$$

Suppose that the rank of $\|K\|$ is n (even), then, contracting (1.12) by $K^{k l}$ which is skew-symmetric in ℓ and $l^{(3)}$, we have ($n-2$) $K_{i j}=0$. Accordingly all of $K_{i j}$ are zero for $n \geqq 4$ in contradiction to the hypothesis on the rank of $\|K\|$. Next suppose that the rank of $\left\|K_{\|}\right\|$is 2τ ($n>2 \tau \geqq 4$). Now transform the coordinate system in such a way that $\|K\|$ has the form
(1. 13)

We consider the values of indices $i, j, k, l=1, \ldots, 2 \tau$ in (1.12) and have similarly $K_{i j}=0(i, j=1, \ldots 2 \tau)$ for $2 \tau \geqq 4$. Accordingly the rank of $\|K\|$ is zero or two.
(B) Consider the following two systems of equations
© (1. 14)

$$
\begin{equation*}
K_{i j} v^{t}=0, \tag{1.15}
\end{equation*}
$$

$M_{i j k l} v^{i}=0 \quad(i, j, k, l=1, \ldots, n)$.
Suppose that the rank of $\|K\|$ is n (even) and the rank of $\|M\|$, i.e.

$$
\left\|\begin{array}{c}
M_{1 a b c} \ldots \ldots \ldots M_{n a b c} \\
M_{1 i j k} \ldots \ldots \ldots . M_{n i j k} \\
\ldots \ldots \ldots \ldots . . \\
M_{1 p q r} \ldots \ldots . M_{n p p r}
\end{array}\right\|
$$

Riemann Spaces of Class Two and their Algebraic Characterization. 71
of coefficients of the system (1. 15) is $<n$. Then the system (1. 15) has a non-trivial solution v^{i} and it results from (1.9) that

$$
\begin{equation*}
K_{i(j}^{*} \quad K_{k l)} v^{i}=0 . \tag{I.16}
\end{equation*}
$$

But since the determinant $|K| \xlongequal{=} 0$ by hypothesis, it follows from (I. 16) by contracting with $K^{\dot{k} l}$ that all of v^{i} are zero; hence the rank of $\|M\|$ is also n. Conversely if the rank of $\|M\|$ is n and that of $\|K\|<n$, (I. 14) would have a non-trivial solution v^{i} satisfying (I. 15) according to (I. 16). This contradicts to the hypothesis on the rank of $\|M\|$. Hence the rank of $\|K\|$ is n if, and only if, the matrix $\|M\|$ has rank n.
(C) Consider finally the case in which the rank of $\|K\|$ is $2 \tau \quad(n>2 \tau$ ≥ 4). Now transform the coordinate system in such a way that $\|K\|$ has the form (I. 13). All of solutions of (I. 14) satisfy (I. 15) by means of (I. 16). Conversely, let any non-trivial solution of (I. 15) be v^{i} and putting indices i, j, k and l to be $1, \ldots, 2 \tau$ in (I. 16) and contracting by $K^{k l}$ we have $v^{1}=\ldots=v^{2 \tau}=0$; also we know that one of the quantities $v^{2 \tau+1}, \ldots$ \ldots, v^{n} is not zero. Since these v 's satisfy the system (I. 14), and solution of (I. 15) is therefore a solution of (I. 14). Accordingly the rank of $\|K\|$ is equal to that of $\|M\|$. Hence we have the

Theorem 1.2:...The type number of a varicty $S_{n}(n \geq 4)$ of a euclidean space E_{n+2} is determined by its intrinsic properties;
I) the type number is equal to one if, and only if, the tensor $M_{i j k l}$ is the zero tensor.
II) The type number is equal to τ if, and only if, the rank of the matrix $\|M\|$ is $2 \tau(n>2 \tau \geqq 4)$.

For Riemann spaces of dimension less than four, tensor $M_{i j k l}$ is constantly zero as is seen from (I. 10).

If S_{n} is immersible in an $(n+1)$-dimensional euclidean space E_{n+1}, the Gauss equation is

$$
R_{i j k l}=H_{i k} H_{j l}-H_{i l} H_{j k},
$$

and then we can see immediately that the tensor $M_{i j k l}$ is zero. Therefore S_{n} being of type $\geqq 2$ is not immersible in E_{n+1}, i.e. not of class one or zero.
C. B. Allendoerfer discussed Riemann spaces of class $p(\geq 2)^{(4)}$. He put

$$
C_{a b \mid i j}=\left|\begin{array}{ll}
H_{a i}^{\mathrm{I}} & H_{a i}^{\mathrm{II}} \\
H_{b j}^{\mathrm{I}} & H_{b j}^{\mathrm{II}}
\end{array}\right|
$$

According to (I. 3) we have

$$
\begin{equation*}
g^{a b} C_{a b \mid t j}=-K_{i j} . \tag{I.17}
\end{equation*}
$$

Therefore contracting C_{1} in his paper, i.e. $C_{1}=C_{a b \mid i j} \delta_{r s}^{1 j}$, by $g^{a b}$ we have from (I. 17)

$$
\begin{equation*}
-2 K_{r s}=g^{a b} C_{1} . \tag{I.18}
\end{equation*}
$$

 from (I. 17)

$$
\begin{equation*}
(-1)^{2} \cdot 2^{2} \cdot 2!\cdot \sqrt{\left|K_{2}\right|}=g^{a b} g^{c d} C_{2} \tag{I.19}
\end{equation*}
$$

and so on ; where $\left|K_{2}\right|$ is symbolically a 4 -rowed principal minor of $\|K\|$ i.e.

$$
\sqrt{\left|K_{2}\right|}=K_{r(s} K_{t u)}
$$

Thus we have in general
(I. 20)

$$
(-1)^{\tau} \cdot 2^{\tau} \cdot \tau!\cdot \sqrt{\left|K_{\tau}\right|}=g^{a_{\imath} b_{1}} \ldots \ldots g_{g_{\tau}{ }^{a^{b}} \tau} C_{\tau} ;
$$

where $\left|K_{\tau}\right|$ is symbolically a 2τ-rowed principal minor of $\|K\|$.
He defined such a type number that a Riemann space R_{n} of class two is of type τ if there is one C_{τ} not zero and all of $C_{\tau+1}$ are zero.

If a R_{n} of class two is of type τ in the sense of this paper, we must have that $\left|K_{\tau}\right|$ is not zero. Hence, all of C_{τ} are not zero from (I. 20). As the result, R_{n} of class two and of type τ in the sense of this paper is of type $\geqq \tau$ in the sense of the Allendoerfer's paper.

Hence, if we interchange the Allendoerfer's definition of type number with that in this paper, the theorem I and II, and Lemma V of his paper become the following three theorems.

Theorem I, 3 :...If a variety $S_{n}(n \geqq 6)$ in a euclidean spacc E_{n+2} is of type $\geqq 3, S_{n}$ is intrinsically rigid.

Theorem 1. 4:..If in a Riemann space $R_{n}(n \geqq 6)$ of type $\geqq 3$ there are two sets of functions $H_{i j}^{P}$ and $H_{Q i}^{P}(P, Q=I, I \Gamma ; i, j=1, \ldots, n)$ satisfying the Gauss and Codazzi equations, the Ricci equation is automatically satisfied.

Theorem I. 5:...If in a Riemann space $R_{n}(n \geq 8)$ of typc $\geqq 4$ there is a set of functions $H_{i j}^{P}(p=I, I I ; i, j=1, \ldots, n)$ satisfying the Gauss equation, there is a set of functions $H_{Q i}^{P}(P, Q=I, I I ; i=1, \ldots, n)$ satisfying the Codazzi and Ricci equations.

§2. Characters of a solution of the equations (I. 9)

Let the algebraic equations (I. 9) have a solution $K^{\prime} s$. We shall

Riemann Spaces of Class Two and their Algebraic Characterization. 73
discuss the characters of the solution.
From the theorem I. 2, if there are two systems of solutions K^{\prime} 's and \bar{K} 's we have that the rank of $\|K\|$ is equal to that of $\|\bar{K}\|$.

Now we shall prove the following theorem in relation to intrinsic rigidity:

Theorem 2. I:... If a Riemann space $R_{n}(n \geqq 6)$ of class two is of type $\geqq 3$, a solution K's of (I.9) is uniquely determined to within algebraic sign.

The algebraic sign of K 's can not be determined by intrinsic properties, because it changes by interchanging indices I and $I I$ of the normals as is seen from (I. 3).

Let \bar{K}^{\prime} 's and \bar{K} 's be two systems of solution and we put

$$
\begin{equation*}
\vec{K}_{i j}=K_{i j}+A_{i j} \quad(i . j=1, \ldots, n) . \tag{2.1}
\end{equation*}
$$

We have from (I. 9)

$$
\begin{equation*}
\bar{K}_{i(j} \widetilde{K}_{k l)}=K_{i(j} K_{k l)} . \tag{2.2}
\end{equation*}
$$

Substituting (2. I) in (2.2) we have

$$
\begin{equation*}
K_{i(j} A_{k l)}+A_{i(j} K_{k l)}+A_{i(j} A_{k l)}=0 \tag{2.3}
\end{equation*}
$$

(A) Suppose det. $|K| \neq 0$ and $|A| \neq 0$. Contracting (2.3) by $A^{k l}$ we have

$$
\begin{equation*}
(n-4) K_{i j}+\left(n-2+A^{a b} K_{a b}\right) A_{i j}=0 . \tag{2.4}
\end{equation*}
$$

Moreover contracting (2.4) by $A^{i j}$ we have $A^{a b} K_{a b}=-n / 2$, and substituting this expression in (2.4), we have $A_{i j}=-2 K_{i j}$ for $n \geqq 6$. Hence from (2. I) $\bar{K}_{i j}=-K_{i j}$ for $i, j=1, \ldots, n$.

Next suppose det. $|A|=0$. Let v 's be a non-trivial solution of the the system of equations $A_{i j} v^{i}=0 \quad(i, j=1, \ldots, n)$. Contracting (2.3) by $K^{i j}$ we have

$$
\begin{equation*}
\left(n-4+K^{a b} A_{a b}\right) A_{k l}+K^{a b} A_{a b} K_{k l}-K^{i j}\left(A_{k i} A_{l j}+A_{i l} A_{k j}\right)=0 \tag{2.5}
\end{equation*}
$$

Since contracting (2.5) by v^{k} we have $\left(K^{a b} A_{a b}\right) K_{k l} v^{k}=0$, we have $K^{a b}$ $A_{a b}=0$, because $|K|$ is not zero. Hence we have from (2.5)

$$
(n-4) A_{k l}-K^{i j}\left(A_{i l} A_{l j}+A_{i l} A_{k j}\right)=0
$$

Substituting (2.1) in this equation we have

$$
\begin{equation*}
n \bar{K}_{k l}=(n-2) K_{k l}-K^{i j}\left(\bar{K}_{i k c} \widetilde{K}_{l j}+\bar{K}_{i l} \widehat{K}_{j k}\right) . \tag{2.6}
\end{equation*}
$$

From $|\bar{K}| \neq 0$, we have similarly

$$
\begin{equation*}
n K_{k l}=(n-2) \bar{K}_{k l}-\bar{K}^{i j}\left(K_{i k} K_{l j}+K_{i l} K_{j k}\right) . \tag{2.7}
\end{equation*}
$$

Now from (2.6) and (2.7) we have

$$
\begin{aligned}
& n \widetilde{K}_{k l}=(n-2) K_{k l}-K^{i j} \bar{K}_{i k}\left\{\frac{n}{n-2} K_{l j}+\frac{1}{n-2} \widetilde{K}^{a b}\left(K_{a l} K_{j b}\right.\right. \\
+ & \left.\left.K_{a j} K_{b l}\right)\right\}-K^{i j} \bar{K}_{i l}\left\{\frac{n}{n-2} K_{j k}+\frac{1}{n-2} \bar{K}^{a b}\left(K_{a j} K_{k b}+K_{a k} K_{b j}\right)\right\},
\end{aligned}
$$

and we deduce $\bar{K}_{k l}=K_{k l}(k, l=1, \ldots, n)$ for $n \geqq 6$.
(B) Suppose that rank of $\|K\|=2 \tau \quad(n>2 \tau \geqq 6)$. Transform $\|K\|$ into the form (I. 13). Then $\|\bar{K}\|$ has also the similar form at the same time. In fact, putting $i, j, k, l=1, \ldots, 2 \tau$ in (2.2) and contracting by $K^{i j}$ we have

$$
(2 \tau-2) K_{k l}=C_{k}^{h} \bar{K}_{h l} \quad(h, k, l=1, \ldots, 2 \tau)
$$

where

$$
C_{k}^{h}=\left(K^{a b} \vec{K}_{a b}\right) \quad \delta_{k i}^{h}-2 K^{a h} \vec{K}_{a k}
$$

Hence we have

$$
(2 \tau-2)\left|K_{\tau}\right|=|C| . \quad\left|\widehat{K}_{\tau}\right|
$$

Accordingly in $\|\bar{K}\|$ we have

$$
\left|\begin{array}{ccc}
0 & \widetilde{K}_{12} & \ldots . \bar{K}_{1(2 \tau)} \\
-\bar{K}_{12} & 0 & \\
\vdots & \vdots \\
-\bar{K}_{1(2 \tau)} & & \ddots
\end{array}\right| \neq 0 .
$$

Next putting $i>2 \tau$ and $j, k, l=1, \ldots, 2 \tau$ in (2.2) we have

$$
\widehat{K}_{i(j} \widetilde{K}_{k l)}=0
$$

and contracting this equation by $\bar{K}^{k l}$ we have $\bar{K}_{i j}=0$ for $i>2 \tau$ and $j=1$, $\ldots, 2 \tau$.

Finally putting $i, j>2 \tau$ and $k, l=1, \ldots, 2 \tau$ in (2.2) we have $\bar{K}_{i j} \bar{K}_{k l}$ $=0$. We have therefore $\bar{K}_{i j}=0$ for $i, j^{\prime}>2 \tau$. Accordingly, by the similar way as for (A), we have the theorem 2.I.

Now in relation to the equation (I.5) we shall prove the
Theorem 2.3:... When a Riemann space $R_{n}(n \geq 8)$ of class two and of type $\geqq 4$, a solution K 's of (I. 9) satisfies the equations (I. 5).

Riemann Spaces of Class Two and their Algebraic Characterization. 75
We differentiate covariantly (I. 9) with respect to x^{h} and subtract four equations obtained by interchanging h with i, j, k and l. Making use of (I. 10) and the Bianchi's identity we have

$$
\begin{align*}
& K_{i j} K_{k l h}+K_{i k} K_{j h l}+K_{i l} K_{j_{k h}}+K_{i h} K_{j l k}^{\prime}+K_{j k} K_{i l k} \tag{2.8}\\
+ & K_{j l} K_{i k k}+K_{j h} K_{i k l}+K_{k l} K_{i j_{h}}+K_{k k} K_{i l j}+K_{l h} K_{i j k}=0 ;
\end{align*}
$$

where $K_{i j_{k}}$ are left-hand member of (I. 5).
(A) Suppose det. $|K| \neq 0$. Contracting (2.8) by $K^{\text {lh }}$ we have

$$
\begin{equation*}
(n-6) K_{i j k}^{\prime}+K^{l h}\left(K_{i j}^{\prime} \bar{K}_{l h k}+K_{k i} K_{l h j}+K_{j_{k}} K_{l h i}\right)=0, \tag{2.9}
\end{equation*}
$$

and contracting (2.9) by $K^{i j}$ we have $K^{a b} K_{a b i}=0$ for $n \geqq 6$. We can therefore deduce from (2.9) that all of $K_{i j_{k}}$ are zero for $n \geq 8$.
(B) Suppose that the rank of $\|K\|=2 \tau \quad(n>2 \tau \geq 8)$. Transform $\|K\|$ into (I. 13) and take $i, j, k, l, h=1, \ldots, 2 \tau$ in (2.8). By the similar way as for (A) we have $K_{i j_{k}}=0$ for $i, j, k=1, \ldots, 2 \tau$.

Next putting $k>2 \tau$ and $i, j, l, h=1, \ldots, 2 \tau$ in (2.8) we have

$$
\begin{align*}
& K_{i j} K_{k l h}+K_{i l} K_{j k h}+K_{i \hbar} K_{k j l}^{\prime}+K_{j l} K_{i k k}+K_{j h} K_{i k l} \tag{2.10}\\
+ & K_{l h} K_{k i j}=0,
\end{align*}
$$

and contracting (2.10) by $K^{l h}$ we have

$$
\begin{equation*}
(2 \tau-4) K_{i j k}^{\prime}+K_{i j} \quad K^{\imath h} K_{i n k}=0, \tag{2.11}
\end{equation*}
$$

and contracting (2.11) by $K^{i j}$ we have $K^{l h} K_{l \hbar k}=0$ for $2 \tau>2$, and therefore from (2. 11) $K_{i j_{k}}=0$ for $i, j=1, \ldots, 2 \tau$ and $k>2 \tau$ if $2 \tau>4$.

Next putting $i, k>2 \tau$ and $i, l, h=1, \ldots, 2 \tau$ in 2.8 we have

$$
\begin{equation*}
K_{i l} K_{j_{k h}}+K_{l h} K_{j_{k i}}+K_{h i} K_{j_{k l}}=0 \tag{2.12}
\end{equation*}
$$

and contracting (2.12) by $K^{l h}$ we have $K_{i j_{k}}=0$ for $i=1, \ldots, 2 \tau$ and $j, k>$ 2τ.

Finally putting $i, j, k>2 \tau$ and $l, h=1, \ldots, 2 \tau$ in (2.8) we have $K_{l h} K_{i j k}$ $=0$ and therefore $K_{i j_{k}}=0$ for $i, j, k>2 \tau$. Since $K_{a b c}$ is skew-symmentric in its every two indices, all of $K_{a b c}$ are zero and we have the theorem 2.2.

It is to be noted here that (1.5) is a necessary and sufficient condition of integrability of the differential equations (1.4) for the determination of the unknowns H_{i} (we omit here the proof).

Revised Oct. 20, 1949.

References

1) M. Matsumoto: Riemann spaces of class two and their algebraic charactezation (part II), J. Math. Soc. Japan.
2) G. Kowalewski: Einführung in die Determinantentheorie, PP. 140 and 145.
3) 4. c. P. 134.
1) Amer. J. Math., 61 (1939). This paper is called here simply the Allendoerfer's paper.

Mathematical Institute,
Doshisha University.

