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Riemann Spaces of Class Two and their Algebraic Characterization.

Part 1.

Makoto MATSUMOTO.
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We shall investigate in this paper a necessary and sufficient condition
that an z-dimensional Riemann space R,(72=6) be of class two. Let the
line element of R, be a positive definite quadratic form

ds’=g,dxdv?;  (4,7,...=12,...,n);

n

where g’s are analytic functions of #',...,2"
Consider, in an (2+42)-dimensional euclidean space £, ., an z-dimens-
ional variety .S, defined by

y=¢"(xY..x”)  (a=1,.., n+2);

where y's are current coordinates of the point of .S, refered to a rectangular
cartesian coordinate system in Z,,, and ¢’s are analytic functions of #,...,2"

The line element along a curve on S, is given by
dst=SV(dy")=) By By dv'dri=gy; da'ds’;

where

Bp=""
ox?

Let BE(P=1,/IT) be the components of two mutually orthogonal unit vectors
normal to S,. The Variatio_n of B(u=1,....u+2; A=1,...n, I, IT) along
the curve can be written as

ABt=HS; Be dvét (i=1,..., n; o 2=1,..., n, LIl ; e=1,....2+2).

As a condition of integrability of these equations we get immediately that

% (4, /s8=1,...,n) are Christoffel’s symbols and Zf, (P=1,/];i,7=1,...,%)
are symmetric in 7 and 7; and b(P,Q=11I; i=1,...,n) are skew-sym-
metric in P and Q; those A%, satisfy the Gauss equation

P P r P
(1) Rijklzﬁ ik jt—— 42 4z jk»
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the Codazsi equation

(2) aty— Haga=HY H5—Hj HY,
the Ricci equation
(3) H-Qf-j ——H;A{;,’A =gﬂb(ff£H;)JP_H(‘:§H;'f)’

and finally the equation
[{/v§= _gaiHa§-

In this paper we discuss the type number of a Riemann space R,(n=>4)
of class two. Making use of it, we give, in the forthcoming paper,” a
necessary and sufficient condition that R, (2 >>6) be of class two.

We restrict oureselves the discussions in a domain of R,, where g,
are analytic.

§ L. Type number -
We put
(1.1) Liu=Hi; Hij—Hi Hi—HG Hiy+H{ Hj.

If we define K, as

. 1
(12) Aij'—_?" S v Lajbzv
we have from
(1.3) K,=g®(H} H,—HE Hi);

where K, is a skew-symmetric tensor. If *we put
Hiy=—Hii=H,
the Ricci equation (3) becomes
H; y— Hy=g® (Hi Hy—HY H)),
accerdingly we have from
(1.4) Ky =H; ;—H, ;.

If we differentiate this equation covariantly with respect to 2* and sum
three equations obtained by cyclic permutation of Z, ;7 and %, we have

(1.5) ]{ij,k-*' Kjk,i'*‘-[i’ki,jzo'

We write instead of
(1.3") o =8 (HE HI,—HE Hy),



Riemann Spaces of Class Two and their Algebraic Characterization. 69

and then we have immediately .
Kg.z-,-= —Kgij—-: _‘ngi-

When we multiply (1.3") by A%, sum for ¢, and sum up those three
equations obtained by cyclic permutaion of 7, ;/ and £, we have in conse-

quence of (I)
(1.6) ]{z?(iKIIDQIjk) =H R %1 g

If multiplying by A% and summing for P, we subtract three equa-
tions obtained by interchanging / with 7, /, and 4, we have in consequence

of (I) and :

(1-7) Nabtjkl =Lailbl(:i Kkl)'*'[(i(j Ligizinin;
where
(1°8) '_jv;bijlcl =Rebt(jR1«fl -lcz)+Ra-5(j Rlcblkl).'
Contracting by &% we have in consequence of
(1.9) Migre= Ky K+ Ky K;j+K;Z Ky s
where
1 ab ' 1 a 1]
(1-10) ]szu= '——2— g j\fabijlcl=‘_2'“ Rb-i(j R\ -

The intrinsic tensor A4, is skew-symmetric in its every two indices.

We have from the _

Mheorem L1... A necessary condition that a Riemann space R,(n>4)
be of class two is that there is a skew-symmetric tensor Ky whick satisfies the
algebraic equations (1.9), where M's are defined by (1. 10). 4

As K, is skew-symmetric, the rank of matrix [|&j], whose elements
are K, is even and we shall therefore define the type number of a Riemann
space R, of class two as follows:

Definition :...4 wvariety S, (n=>4) in a euclidearn space E,.o will be
said to be of type one if the rank of matriz ||K|| is zero or two. It will be
said to be of type Tt if the rank of the above matrix is 2t.

We shall now prove that type number of S, is determined by its in-
trinsic properties. According to the theory of the skew-symmetric deter-

minant® we have
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(1. 1I) Koy Ky)*=| O Ky Ki K,
—K; O Ky K‘:—;z
— K —Kjk ) K,
Ky —K; —Ky O

and if the rank is equal to 2r, there is necessarily one 2r-rowed principal
minor which is not zero.

(A) Suppose that rank of ||X]|| is zero or two. The determinant of
the right-hand member of (I. IT) must be zero. Hence, it follows from
that all of M’s are zero. Conversely, if all of A/’s are zero, we have

(1. 12) Ky Kuy =0 (i, 7, &, I=1,...,)

Suppose that the rank of ||X]| is » (even), then, contracting (1. 12) by K*
which is skew-symmetric in £ and /®, we have (#—2)K;;=0. Accordingly
all of K;; are zero for » >4 in contradiction to the hypothesis on the rank
of |IK]l. Next suppose that the rank of ||K]| is 2r (2> 2r>4). Now
transform the coordinate system in such a way that ||K]| has the form

(1. 13) IKl=] 0 Koo Kiony
:, 12 .... -E O
_]{1(‘2':) O
0 0

We consider the values of indices ¢, 7, £, /=1,..., 2¢ in (1. 12) and have

similarly K;=0 (¢4,7=1,...27) for 2r =4. Accordingly the rank of [|X]| is
zero or two.

B Consider the following two systems of equations
g y q

(1. 14) K, v'=0,
(1. 15) My v*i=0 @, 7, &, I=1,....1).

Suppose that the rank of ||K]] is # (even) and the rank of {|37]), i.e.

---------------
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of coefficients of the system (1. 15) is<z. Then the system (1. 15) has
a non-trivial solution #? and it results from that

(I. 16) Ky K v '=0.

But since the determinant | X |30 by hypothesis, it follows from (I. 16)
by contracting with A'# that all of v * are zero; hence the rank of || /]|
is also z. Conversely if the rank of ||| is » and that of || K| <,
(I. 14) would have a non-trivial solution v ? satisfying (I. 15) according
to (I. 16). This contradicts to the hypothesis on the rank of || #7]. Hence
the rank of || K|| is » if, and only if, the matrix || 47| has rank 7.

(C) Consider finally the case in which the rank of || A || is 2¢ (#>>2r
=>4). Now transform the coordinate system in such a way that || X|| has
the form (I. 13). All of solutions of (I. 14) satisfy (I. 15) by means of
(I. 16). Conversely, let any non-trivial solution of (I. 15) be »* and putting
indices ¢, 7, # and / to be 1,...,.2r in (I. 16) and contracting by A* we
have #'=...=2%=0; also we know that one of the quantities »**,...
..., o™ is not zero. Since these v’s satisfy the system (I. 14), and solu-
tion of (I. 19) is therefore a solution of (I. 14). Accordingly the rank of
| K| is equal to that of || #7|. Hence we have the

Theorem 1.2:...7%¢ type number of a varicty S,(n=>4) of a euclidean
space E, .o ts determined by its intrinsic properties

1) the type number is equal to one if, and only if, the tensor M,y ts
the zero tensor.

1) The type number is equal to t if, and only if, the rank of the
“matrix || M| is 2t (2 > 2t > 4).

For Riemann spaces of dimension less than four, tensor AZ;;, is cons-
tantly zero as is seen from (I. 10).

If S, is immersible in an (724 1)-dimensional euclidean space £, ,, the
Gauss equation is ‘

Rij/cle;'/c [{}z—ftfﬂ Hy,

J
and then we can see immediately that the tensor A7, is zero. Therefore
S, being of type == 2 is not immersible in £, ,4, i.e. not of class one or zero.
C. B. Allendoerfer discussed Riemann spaces of class p(=2)®. He
put :

I IT
Hy Hy

I 1L
[J;Jj bj

Cab 1137
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According to (I. 3) we have

(I. 17) gabCabli.’=’—K’i’.
Therefore contracting C; in his paper, i.e. Ci=C, .04, by £® we have
from (I. 17)

(1. 18) —2K,,=g%C;.

Moreover contracting C,, i.e. Co==Ch +Cesi 938, by g%¢** we have
from (I. 17)

(1. 19) (=122l V[ K, | =gg"C,
and so on; where |XK,| is symbolically a 4-rowed principal minor of ||X]|
ie.
VK| =K K -
Thus we have in general
(1. 20) (=) 2%tV | K, | =g™"......g%" Co
where |K.| is symbolically a 2z-rowed principal minor of ||X]|.
He defined such a type number that a Riemann space R, of class two
is of type r if there is one C. not zero and all of C.,,; are zero.
If a R, of class two is of type = in the sense of this paper, we must
have that |X;| is not zero. Hence, all of C; are not zero from (I. 20).

As the result, R, of class two and of lype © in the sense of this paper is of

type =t tn the sense of the Allendoerfer’s paper.
Hence, if we interchange the Allendoerfer’s definition of type number

with that in this paper, the theorem I and II, and Lemma I of his paper
become the following three theorems.

3:..If a variety S, (n=6) in a euclidean spacc E,., is
of type =3, S, is intrinsically rigid.

4:...If in a Ricmann space R,(n = 6) of type=> 3 there are
two sets of functions HY and Hy, (P, Q=I1, IT; ij=1,..., n) satisfying the
Gauss and Codazzi equations, the Ricci equation is automatically satisfied.

Theorem Y. 5:.../f in a Riemann space R, (n =8) of type =4 there
is a set of functions HG(p=1,1II; i, j=1,...,n) satisfying the Gauss equation,
there is a set of functions H};, (P,Q=1, IT; i=1,...,n) satisfying the Codasz:
and Ricci equations.

§2. Characters of a solution of the equations (I. 9)

Let the algebraic equations (I. 9) have a solution K’s. We shall
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discuss the characters of the solution.
From the theorem 1. 2, if there are two systems of solutions K’s and

K'’s we have that the rank o K| is equal to that of ||\K ||.
Now we shall prove the following theorem in -relation to intrinsic

rigidity :
Theorem 2. Li.... [f a Riemann space R,(n=6) of class two is of type
=3, a solution K’s of (L. 9) is uniquely determined to within algebraic sign.
The algebraic sign of K’s can not be determined by intrinsic proper-
ties, because it changes by interchanging indices / and // of the normals

as is seen from (I. 3).
Let K’s and K’s be two systems of solution and we put

(2.1) o Ky=K,+A4,; (G j=1,..2).
We have from (I. 9)

(2.2) E sy Ky =Koy Ky -
Substituting (2. 1) in we have

(2.3) Ky Awy +Aus Ky + Asi; Ay =0..

(A) Suppose det. |K|x0 and | 4| =0. Contracting by A*

we have ‘ |
(2.4) (n—4) K,y (n—2 + A K, ) A, =O.

Moreover contracting by A% we have A K,=—n/2, and substitu-

ting this expression in [(2.4), we have A,;=—2K; for » > 6. Hence from

2. 1) Ky=—K, for i, j=1,...,n.
Next suppose det. | 4 |=0. Let o's be a non-trivial solution of the

the system of equations A;2'=0 (7, /=1,...,n). Contracting by
K" we have ' . :
(2.5) (”— 4: + ]{abAab)Akl + KabAab[{]d - [(zj (A/ciAlj + A‘llAk]) =O-

Since contracting (2.5) by 2* we have (K®A4,) Kuyv*=0, we have K
A,=0, because | K| is not zero. Hence we have from (2.9)

(n—4)Auy— K¥(A,4,;+ Audry) =0.
Substituting (2.1) in this equation we have 4
- (2.6) K y= (n—2)Ky— K (Ky Ky+ Ky Kp).

From |K|==0, we have similarly
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(2.7) nKy=(n—2) K y— K" (KK + KKy
Now from [(2.6) and [(2.7) we have

7z]?k,=(71—2)Ku—Kfj]?ik{ " Ko ! Rex, X,

7n— n—2

+ sz KM) } - Kij K;il { ” ]{:,Ic + 1 ]{*ab (Kajkkb + Kakl{bj )} ’

n—2 n—2

and we deduce A =K, (4 I=1,...,7) for »=>6.
(B) Suppose that rank of || K[|=2r (#>2r>6). Transform | K|
into the form (I. 13). Then || K || has also the similar form at the same

time. In fact, putting ¢, j, £, /=1,...,.27 in and contracting by K%
we have
Q2r—DK,=Cht K (& #, 1=1,...27);
where “
Ci= (K"K ,) 0p—2K“K .
Hence we have
(2c=2)| K. |=|C|. | K.l.

Accordingly in [ A7 || we have

Next putting 7> 27 and 7, 4, /=1,..., 2t in [(2.2) we have
I;;i(j l;;kz)=0
and contracting this equation by A* we have K ,,=0 for i >2¢ andj=1,

.27
Finally putting 7, ;7 >2¢ and %, /=1,...,27 in we have K ,; K,,
=0. We have therefore K ,;=0 for 7,7 >2r. Accordingly, by the similar
way as for (A), we have the theorem 2.I.

Now in relation to the equation (I.5) we shall prove the

Theorem 2.3 :...1When a Riemann space R,(n=>8) of class two and of
type >4, a solution K’s of (1. 9) satisfies the equations (1. 5).
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We differentiate covariantly (I. 9) with respect to x* and subtract
four equations obtained by interchanging /% with 7, 7, # and /. Making use
of (I. 10) and the Bianchi’s identity we have

(28) Kti Klalh +](z'lc thl“"]{ﬂ kah+](ih szk +_Kjk](ilh
+ K, K +thKilcl +K/czKu‘h+Kh/c](izj +[(lthm=O ;

where K,;, are left-hand member of (I. 5).
(A) Suppose det. | K| ==0. Contracting by K we have

(29) (”_6)Kifk+Km(Kii ]{lhlc—*-K-lct thf“‘-](’}k Kllbi) =O’

and contracting by K% we have K K,,,=0 for n>6. We can
therefore deduce from that all of K;;, are zero for = >8.

(B) Suppose that the rank of || K| =2 (#>27r>8). Transform
| K| into (I. 13) and take 7, 7, 4, /, 2=1,...,.27 in |(2.8). By the similar
way as for (A) we have K,;,=0 for 7,7, £=1,...27.

Next putting 2 >2¢ and 4,7, 7/, /=1,..., 2t in we have

(2. 10) Ky K+ Ky Kipn+ K Ko+ Kjy Kinn+ Kin K
+ K;p Ky =0,

and contracting (2. 10) by A* we have
(2. 11) (20—4) Kip+ K,y K" K,,,=0,

and contracting (2. 11) by K%we have K K,,,=0 for 2r >2, and there-
fore from (2. 11) X,;,=0 for 7, /=1,...,2r and £>2r if 2 > 4.
Next putting 7, #> 27 and 7,7, 4=1,...,2c in [2.8) we have

(2. 12) Ky K+ Ky, K}‘ki+Kht K, =0,
and contracting (2.12) by K” we have K,;,=0 for 7=1,...,2r and /, 2>
2.

Finally putting 7,7, 2> 27r and /, 2=1, ....27 in we have K, K,
=0 and therefore X;;,=0 for 7,7, 4 >2r. Since K,,, is skew-symmentric
in its every two indices, all of X,, are zero and we have the theorem 2.2.

It is to be noted here that [(I.5) is a necessary and sufficient condition

of integrability of the differential equations [(1.4) for the de’celmmatlon of
the unknowns Z; (we omit here the proof). '

Revised Oct. 20, 1949.
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