On the Stability of the linear Transformation in Banach Spaces.

Tosio Aoki

(Received Dec. 29, 1947)

Let E and E' be Banach spaces, and f(x) be a transformation from E into E', which is "approximately linear". Ulam proposed the problem: When does a linear transformation near an "approximately linear" transformation exist? This was solved by D. H. Hyers¹⁾. The object of this paper is to generalize Hyer's theorem.

In generalizing the definition of Hyers, we shall call a transfor mation f(x) from E into E' "approximately linear", when there exists $K(\geq 0)$ and $p(0 \leq p < 1)$ such that

$$||f(x+y)-f(x)-f(y)|| \le K(||x||^P + ||y||^P)$$

for any x and y in E.

Let f(x) and $\varphi(x)$ be transformations from E into E'. These are called "near", when there exists $K(\geq 0)$ and $\rho(0 \leq \rho > 1)$ such that

$$||f(x)-\varphi(x)|| \leq K||x||^P$$

for any x in E.

Theorem. If f(x) is an approximately linear transformation from E into E', then there is a linear transformation $\varphi(x)$ near f(x). And such $\varphi(x)$ is unique.

Proof. By the assumption there are $K_0(\geq 0)$ and $p(0 \leq p < 1)$ such that

(1)
$$||f(2x)/2-f(x)|| \leq K_0 ||x||^P.$$

We shall now prove that

(2)
$$||f(2^n x)/2^n - f(x)|| \leq K_0 ||x||^p \sum_{i=0}^{n-1} 2^{i(P-1)}$$

for any integer n. The case n=1 holds by (1). Assuming the case

¹⁾ D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., vol 27, No. 4 (1941), p. 222-4.

n, we shall prove the case n+1. Replacing x by 2x in (2), we get

$$||f(2^n.2x)/2^n-f(2x)|| \leq K_0||x||^P 2^P \sum_{i=0}^{n-1} 2^{i(P-1)}.$$

That is,

$$||f(2^{n+1}x)/2^n - f(2x)|| \le K_0 ||x||^p \sum_{i=1}^n 2^{i(P-1)}.$$

By (1)

$$||f(2^{n+1}x)/2^{n+1}-f(x)|| \leq ||f(2^{n+1}x)/2^{n+1}-f(2x)/2|| + ||f(2x)/2-f(x)|| \leq K_0 ||x||^{P} \sum_{i=0}^{n} 2^{i(P-1)}$$

Thus we get (2) for the case (n+1). Hence (2) holds for any n. Since $0 \le p < 1$, $\sum_{i=0}^{\infty} 2^{i(P-1)}$ converges to $2/(2-2^P)$. Therefore (2) becomes

(3)
$$||f(2^nx)/2^n - f(x)|| \le K||x||^P, K = 2K_0/(2-2^P).$$

Let us consider the sequence $(f(2^nx)/2^n)$. We have

$$||f(2^{m}x)/2^{m}-f(2^{n}x)/2^{n}|| = ||f(2^{m}x)/2^{m-n}-f(2^{n}x)||/2^{n}$$

$$< K||2^{n}x||^{P}/2^{n} = 2^{n(P-1)}K||x||^{P} \to 0 (n \to \infty).$$

Since E' is complete, the sequence in consideration converges. We put

$$\varphi(x) \equiv \lim f(2^n x)/2^n$$
.

Then $\varphi(x)$ is linear. For, by the approximate linearity of f(x)

$$||f(2^{n}(x+y)) - f(2^{n}x) - f(2^{n}y)|| \leq K_{0}(||2^{n}x||^{P} + ||2^{n}y||^{P}) = 2^{nP}K_{0}(||x||^{P} + ||y||^{P}).$$

Dividing both sides by 2^n and letting $n \rightarrow \infty$, we get

$$\varphi(x+y) = \varphi(x) + \varphi(y),$$

which shows that φ is linear. In (3), letting $n \to \infty$, we get

which shows that $\varphi(x)$ is near f(x).

т. Aoki.

It remains to prove the unicity of $\varphi(x)$. Let $\psi(x')$ be another linear transformation near f(x). Then there exist $K'(\leq 0)$ and $p'(0\leq p'<1)$ such that

(5)
$$\| \psi(x) - f(x) \| \leq K' \|x\|^{P}.$$

By (4) we have

$$\|\varphi(x) - \psi(x)\| \leq K \|x\|^{P} + K' \|x\|^{P'}$$
.

By the linearity of φ and ψ ,

$$\|\varphi(x) - \psi(x)\| = \|\varphi(nx) - \psi(nx)\|/n$$

$$\leq (K \|nx\|^P + K' \|nx\|^{P'})/n$$

$$= K \|x\|^P / n^{1-P} + K' \|x\|^{P'} / n^{1-P'} \to 0 \ (n \to \infty).$$

Therefore $\varphi(x) = \psi(x)$.

Kyushu Technical College.