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On the invariant differential forms of local Lie groups.

Yukivost KAwADA.
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Let G be an 7-dimensional connected compact Lie group and let p,
(4=0,1,..., #) be its Betti numbers. The polynomial Pg(?) =3 p,_.* is
=0

called the Poincaré polynomial of G. H. Hopf [1] has proved in 1941 the
following remarkable results :

(i) Pe()=Q+ztm)d+2)...(L+2m),
(ii) m=1 (mod. 2) (¢=1.2,..., 1),
(iii) N=0+F eennn. + .

On the other hand H. Cartan [1] has called Pg(2) =3]ga.-#* the Poincaré
=0

polynomial of G where ¢, is the dimension of the module of all the z-th
invariant differntial forms of G over the field of real numbers. Then Pg(2)
is defined also for a local Lie group. By the results of de Rham [1] and
Cartan [1] p,=¢, (?=0,1,...,#) hold for connected compact Lie groups.

In this note we shall prove that the Hopf’s results (i), (ii) are also
true for the Poincaré polynomials in Cartan’s sense if we consider local
, Lie groups with the property P, formulated in Theorem 1. This property
P concerns with the complete reducibility of some representations of G.
Hence every compact Lie groups and every real seml-simple Lie groups
have the property P, and we can apply our results for these Lie groups.
Our proof rests entirely on the Cartan’s local method of differential forms
and does not use any topological methods in the large.

1. Let G={S,} be a real n-dimensional local Lie group with parameter
a=(a,...,a,) in a neighbourhood U™ of (0,...,0) in z-dimensional Euclid
space R". Denote by ¢;=¢* (a, 6) (i=1,...,n) the composition function of
G: 5,=S5.S,. Let

(1) WP =31 Aiayciqn () dxi0y-- Ay
i(1) <eeee <t(p)

‘be a Grassmann-Cartan’s differential form of degree p defined on some
neighbourhood of (0,...... 0) in R*. The left (right) translations x,—7,=

¢ (a, ) (x;>%, =¢,(x, a)) (¢=1,...,n) with parameter @ induce the left
(right) transformations
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(2) W’ w’=S,0, (w,—"=0w"S,)
These transformations satisfy

3 S.(aw?+ Bat) =aS,0f +BS.0f, S, (0Pw?) = (S,0") (S.0?),

S.(dw?) =d(S,0"),
and the same relations hold for the right transformations. We call a differ-
ential form w” a lzt (right) invariant diffcreniial form (in short L.I.D.F.
or R.I.LD.F) if
S,0?=0" (0"S,=w,)

hold for all S, € G. A differential form which is both left and right invariant
is called an Znvariant differcntial form (in short 1.D.F.). Put

N 3¢ (x, ¢)° — (. (2)) =1
wy@ =) | Bu)sern = ()5

and
4) w, =37 B (x)dx, (i=1,...2).
J=l
Then w,,...... ,w, are left invariant. The differential form of degree p

P =3 Aityrnipictyereee- @y (Aiyeesee- «» are constants)
is also left invariant, and conversly any L.I.D.F. is of this type. We can
define the structure constants ¢ (7, 7, £#=1,..., ) of G by

©)) dw;=%) & ww, (=1,..., 7).
i<k

Denote by L the Grassmann-algebra of all L.ILD.F With dimension 2"
over the field £ of real numbers, and by L? the module of all the L.I.D.F.

of degree p with dimension (ﬁ) over £. We have L=L°+...+L" Put

(6) ?={w?; o € L* dw”=0}, Z=2+...4+72"
and
(N H?= {0, «’=dw,,, w,; € L.} , H=H'+...+H"

By the relations
€)) Wo?=(—1D)o'w?, d (0}, + Beh) =u(dw?) + L (de?),
d(wPe?) = (do?”) '+ (—1)70? (deo?), Jd(dw”)=0.
Z is a subalgebra of L and H is an ideal of Z. The factor algebra
€)) B=Z/H
is called the cokomology ring of G and the factor modules
(10) B*=77/H” (2=0,1,...... , )
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are called the p-th cokomology groups of G.
Now we consider the right transformation by S, for o” € L?(p=1,...,

7). It is easy to see that

(11) wiSazé d;;(a) w; (i=1,...7z)
holds for wy,...... ,, defined by (4), where d;;(@) is defined by

(dy(@)) = (B5(a)) (a45(a)),  (Bi5(a)) = (af(a)) 7, =(§‘%ﬂ)

The correspondence S,—~»D® ((z)--:(a’j(zz)) satisfies the relation

(12) ‘ DP () =D® (a) DV (6) for S,=S,S,.
D®(a) is called the adjoint representation of G. Now put:
217-(1),__‘1G7>=(D;(1) ...... (01(77) (i(l) < ------ <Z'(p)).

These are the basis of L” If we apply the right transformation S, on
Usty....;n We have the representation D% (a)-

: ”’m)j(l)(”) """ di(l)j(p) (‘Z) t
(13) Zli(l)----i(p)saj'(_i;".‘<j(p) iy (@) +vv e iz (@) J;'”jm"“j(p)
with degree (z ) (p=1,...... 7). Especially
14) D™ (@) =det |d,y(a)] -

Denote by I and I? (p=1,..., ) the modules af all the I.D.F. and
the I.D.F. of degree p respectively. ¥” is the submodule of all the L.I.D.
F. of L” which are also right invariant. T is also an algebra.

2. From now on we consider a canonical parameter of G. Put

(15) ' ris (a)=<£_%£ia)_
| YRR
Let the expansion of ¢; be ¢;(a,6) =a; + &+ > A¥ab;+ ...... Then we have
I
aﬁ(a)_—_ﬁﬁ—}—; Ao+ ...... , B (a):b‘ij——-%} Ao+ ...... v
and ‘
7:;(2) =31 (dP—d¥)ay=73a,% (Z, j=1,...... , 7).
k i
Now we define the infinitesimnl transformation 7, for «w;...... ,w, defined in
(4) by . ‘
(19) 0, T, = 1;(@) w;= eV w; (=1,...... , 72)
=1 %

and for @?=73] A;qyccsimy Wipyr----- Wy € L,  (Aiy....s) are constants)
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p
(].7) wp]-;__—ZAt(l)-w-t(p) (j;l (05(1) ------ ((Uf(J)TG) ...... wi(}?))‘
This infinitesimal transformation 7, may be defined by
(18) P Ty=lim - & (Sy, —S,).
A0 A .

It is easy to see
(19) (a?+ BaR) To=a(2T.) + B(a2T), (¢ ) To= (097T,) *+ ?(0* T2),
(dw?) T,=d(«*T,) :
(20) MY;:E‘ 2 (PToy) for az‘i,:,'),a(z').

It follows from
Lemma 1. A4 L 1. D. F. o is invariant if and only if «*7T,=0 for -

all S, € G.
From the relations (%), (8) (16) (I7), [(18) we can verxfy

21 do® = -——2wj (& Ty)

for ¢(7)=(0,...... ,0,1,0,...... 0). Hence we have the following Cartan’s
theorem : :

Lemma 2. Ir c 7° (£,=0,1,......, 7).
Let =73 A,m A @i Wiy € ZP. Taking terms in which
(1) <oves <i(p) .

contain w; we have the relation
@ Iy =dwf™

for @ '=" Ay 4@ty @r@yeeeen W) . Using we have

1<#(2) <+--- <t(p)

Lemma 3. If «” € Z? then o7, € B? holds for any S, € G.

By these Lemmas we can prove the following theorem :

Theorem 1. Suppose that an n-dimensional local Lie group G sarisfies
the following property P

P: The represemaions S,—»D® (a) (p=1,...... , 1) of degree ( ;)

of G defined by (13) are completely reducible.
Then B°—L” (p=1,...... , 7)
and B—L (ving-isomor phismn)
hold. Moreover 2IP=FP+H (p=1,...... , ) and Z=I+H /old.

Proof. We can prove this theorem just as in the proof of Theorem
19.1 in Chevalley-Eilenberg [1]. Let L», 7Z¢, B, I* be the modules derived
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from 17, 727, H?, I respectively by the extension of the coefficient field 2
to .the field K of complex numbers. Since £7 € Iris representable as 27
=t +inf (of 0} € L) the relations (19), [(20), etc. hold -also for 1.
I. D. F. with complex coefficients, By the relations (3) I, 722, H” are re-
presentation modules for the right transformations S, € G. Hence by our
assumption P 'we can decompoqe
Ir=N+7Zr , Z,=W+R>

as the direct sum of representation modules,

Since M? is a representaion module we have 2T, € M for 97 ¢ M?
from the relation m On the other hand 1t~f0110\z€ from Lemma 3 that
9T, =49 ¢ H” for 27 ¢ 7. Hence 2 7,eM? n H?=0 for £ ¢ M,
Thus we have M? =T~

Then we shall prove T» n H?=0. Take 27 ¢ I 0 H~, By the mapp-
ing @401 from L»~" into L” we have N*-'=Hr. Since =4O,
Q-1 e N*~1 for Q7 ¢ H?, it follows from £7 € 17 that 0=27, = =(d@ ) T
—d(!.?”‘l 7,), that is, @7* 7, € Zr-'. On the other hand we have .2»~'7,
€ N*=! and so &' 7, e Z*-'n N*~'=0. Hence £~'e "' and & =701 =
0. Thus we have I? nHr=0. ‘

From M? ¢ 1?7 and I’n H?=0 we have M? = I” and Z* = I + H.
From this follows also Z?=1"+H?” and Z=I+H , Q.E.D,

. Corollary. Fvery residie class of 22 mod. WP contains exactly onc I.
D.F. of P. We denote this representative I.D.F. by 7o” € I.  We have
then ‘ o

(22) I(a0? + Bt ) =a(le? )+ B(lat ) for of, of e 77
I (o 0?) =lw?)([w?) for w? € 27, w* € 7.

3. Let G, and G, be two local Lie groups. Let I, and I, be their

algebra of all I.LD.F. and

M
=3 f w, |, L= 0
i=1

M=
V}‘

J

[

J
where ,, 0, are homogeneous differential forms. Now we define formal
product of I, and L, by v
LExL=33 #(w, -0
¢ J

We assume here ‘that o, - 0, (7=1,...... y M; j=1,...,N) are linearly in-
dependent,

(23) (w; - 0:}) (0 + 0,) =(—1)**(o, w)- (0; 0,), a=deg w,B=deg 0,
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and the distributive law for multfplication. We can easily prove the follow-
ing Lemma;

Lemma 4. 7Vc algcbra N. of all the I.D.F. of the dircct product local
Lic' groups G=G, x G, s isomorplic with I, x1,.
Now take w,=0,=1 and we write
(24) I> 2= o w;-0,=1(2)+A()+> D0, w;-0;, —ay
ij o i>1 j>1

where
- M N
(25) ]1(!:.)) =21 &ﬂ Wy, A (.Q) =Z] Uy; 0
i= i=1

It is easy to see that the mappings £2—/1(£) and £—A4(£) from L into
I, and I, respectively are ring-homomorhic. We note here the following
fact. If £ is a homogeneous differential form of degree /, then a,;*0
ine (24) only for ZA=deg w,+deg 0, , so that 0 < deg w,< £ and 0 <deg
0, <#£ for (>1;>1). .

Denote &,=p, (@) (i=1,...,n) for S;'=S, and put

(26) g(ah) =¢,(a, 1)) (=100 0).
Now we consider the mapping S,=S,S,’, namely
(Es s Vigereeen yIn) —> (P (2, 2),eeeee Wa(x, 7))

from G x G into G. This mapping ¢ induces the inverse transformation for

the differential form @,=3 4;4....s00(8)Zz;caye -2+ dz; » on G to the differen-
tial form ¥ («”) on GxG:

/ /s
@7) ¥ (") =24diwyeeien (@ (%, 7)) (E-—gi?—”)—dxj(]) + E*Q‘lﬁ‘q)_ i)« -+

(1) Wkt

J

3¢, 8¢
(2*_?_;(2),-— dlj(p) + 2_&(@_— dyk(p))
3% ) , W

Denote by S and S{? the left transformations to the first and second
component of S,x .S, € GXxG, namely

(28) S (85.xS,)=(S.S5.) xS, SP-(S.xS5,)=S.%x(S,S,).
Then it holds that

(29) SPT () =T (S,0,), SPT (@) =T (0”S;?)
Hence ¥ (w?) is a LILDF. on GxG if « is a I.LD.F. on G. Moreover,
from dw?=0 follows &¥ («”)=0.

Let w”—p(w”) of I onto itself be the isomorphic transformation induced
on I by the mapping x—x""of G. Then we have
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: / A,
2 Ay (P (%, J’))(E—gﬂ'—@— a’xj(l))...(}“_,‘—a—"&@« dx ) =P (2,42) S;*

J 0%
= w"(x, a’x)

D Aityeceian (P (2, 7)) (Zﬁﬁg)—* AYry) -+ (2%&"%@)) =S,0(0”(y, 4))
OV OV k)

=p(&"(y, )S;) =p(o"(y, dp)).
Applying these relations it follows from (27) that

V(") =0”(x, dz)+p(”(1,4y)) + ;(uli(x, dx) -wy (y, dy)

where w(x, k%), w,(y, dy) are homogeneous differential forms with
dimension <p. We consider here the mapping / defined in the Corollary
of Theorem 1. Then we see that

(T (")) =1’ (x,dx) +Ip(”( 3,dy)) +,;‘fwh-(x, dx) - Iwy;( y,dy)

=o” (%,dx) + (" (3:D)) + 2 2:(1,d3) - 20, dp)

where £,,, £,, are homogeneous I.D.F. of degree <p. We state these facts
in the following Lemma: ‘

Lemma 5. Lot Y and Y*  be the algebra of all tht I.D.F. of G and
G x G respectively.  Then theve exists a ring-homomor phic mapping o”— @ (w?)
=I¥ (&) from Y into T* suckh that

(30)  @(e”)=o"(xdx) + (" (9, dp)) +22:(2, dx) - 22:(3,dy)

where 2y, 8y are homogencous I.D.F. of degree <p.

By means of this Lemma we can prove the following theorem just as
in the proof of the corresponding theorem in Hopf [1].

Theorem 2. Lot G be an n-dimensional local Lie group with the property
P i Theorem 1. Let g; be the dimension of the module ¥ of all the 1.D.F.
of degree t of G over k, and pus )

(1) P(7) ;:'éo Guos 1°.

Then the following relations hold - ‘
(i) Pi()=A+z)(1+2m2)...... (L +7£m)
(i) m=1 (mod. 2) (i=1,...... D).

Moreover, the algebra Y of all the I.D.F. of G has ! homogeneous 1.D.F.
0, O,.......0, with degree m,,...... , my respectively suclk that
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1, 0, 08,(:<7), 00,0, (:<j<k)s-eee., 0,6,...0,
are t/ze basis of 1 over k.
If the adjoint representation of G saiisfies the condition :

32) det | dy(a)| =1
for every ebement S, € G, then
(iii) N=y+ ereenn + 11
feolds. | '
For the completeness we shall sketch the proof. Let a system of
homogenous I.D.F. {0,,...... ,0;{ be a generating system of the algebra L

We assume that this system is irreducible, namely any proper subest of it
is not a generating system of I. For the proof of (i), (ii) it is sufficient
to see that

(a) 0.0,...... 0,<0
(b) m;=deg 0 =1(mod. 2) (¢=1,...... » D).
We shall prove (a) by induction. Namaly we shall assume that
6.0....... 0,0 (£X1) and deg 0,>deg 0, (:=2,...... %). Let U= (0,,...... ,0)
be the ideal of I generated by 6,,...... s 0, Then U*={3,w,(x,dx) - m(y, a’y)

w;, € U} is an ideal of I¥=IxL From (30) follows

@(0)=0,(x, dy) +p0,(y, dy) (mod. U¥)
D)= p0.(y, dy) (mod. U¥*) (i=2,...... ).

Since @ is a ring homomorphism of I into I we have

@(0,...0,) =0,(x,d%) - p(0.(y,4p) -0, (y,dy))

+0(0(Ddp) e bu(pdy))  (mod. U¥).
If 6,...... 6,=0, then we would have
0, (xdx) -p(0.(3,@p) .-.... 0.(dy)) € U*
and so 0,(x,dx) € U= (0,,...... ,0;) ; which is a contradiction. Hence we have
o,...... 0,0.

We can prove (b) analogously by means of Lemma §.

If the condition holds, then I contains an ILD.F. 2=o,...... @,
with degree .. Since the term of I with the highest degree is 4,...... 0,
we have £=6,...... 0, . Therefore,

n=deg .Q:deg 0,+...... +deg 0,=m1+ ...... +my , q.ed.

Corollary 1. Let G bc an n-dimensional real semi-simple bocal Lie group.
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Then the Poinearé polynomzal m of G satzsﬁes the relations (i), (ii), (iii)
in Theovem 2, ‘
From the well known results of de Rham and Cartan we have alao

Corollary 2. Let G be an n-dimensional connected compact Lie group.
Then the. Poincaré polynomial Pg(2) =30 Pn: t* of G satisfics the relations
(i), (i), (iii).
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