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~ A boundary value problem of some special ordinary .
differential equations of the second order.

Shigeo SASAKI.

‘' (Received Oct. 2, 1947)

§ 1. Statement of the problenj.

1. Among .various results concerning the behaviour of geodesics in
the large, there are many theorems’ which can be-stated ‘without the con-
cept of length. They seem to be only plOpeltICS in the large of integral
curves of a system of differential equations of the second .order. Hence,
some of them may be generahzed to the geometry of paths in the large. |

Now, the first-problem in the theory of geodesms in the large is that
“ Given any two points on a surface, can they always be bound by a
geodesic? ”  From the point of view stated above, there then arises the.
following problem: Given any two points in a plane, can the)‘f always be
bound by a path? A path is, by definition, an integral curve of a system
of ordinary differential equations of the second order of the following type

' | 2=A15;72+2317;'J.’+ ClJ.’z’ ' !
- e e | (1)’

y=Ax* +2Boxy + G, '

"where dots denote derivatives with respect to a parameter 7, and A, Bi,..-

., C, denote continuous functions of x and y. Putting xr=2z', y=27 the
set of equations (1) are usually written as

CF TRt =0, (G, j, k=1, 2) ’ 2) .

i, being called parameters of an affine connexion.

The answer of the problem is in general negative. But, it is desirable
to know in what manner it becomes impossible, in other. words, the be-

haviour of integral curves.
In this paper we shall confine ourselves to the s1mp1cst case where 4,

By ... , C, are all real constants. Our result may be 'stated as follows :
. Theorem. Let there be given a system of differential equations of the
Jorm (1) with real constant coefficients Ay By, «..... , Co. Then they, can be

classified into two types. For one of them any two points in p[ane can be
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bound always by a path, and for another any point in plane can de bound
"y a path with those and only those points whick lic between certamn parallel
. lines at rgzzal distance from the firss point.

2. If we eliminate the pa1amete1 ¢, the set of equatlons (1) leduces
to a single equation

Y+ Gy + (231"62)],2‘*' (A1—2BZ)J/_A2:O ’ (3)

where dashes denote derivatives with respect to x. Hence our problem

may, be regarded also as a boundary value problem of a differential equation
of the second order of the type ‘

Y'+PB()=0,
where P;(y') denotes a polynomal of the third order of p' with constant

coefficients.
The equation (3) will be -also used to give a proof of our theorem.

§2. Canonical forms of the differential equations.

3. The equation (3) shows that system of paths depends only on the
values (i, 4, and the differences 28,—C,, A;,—28,. Hence we can change
the coefficients of (T) without altering paths. This fact corresponds to the
projective change of affine conne‘ﬂon in the geometry of paths which is
analytically expressed by :

[h=15+0+oy, = @

where ¢; and ¢. are arbitrary functions of » and y. Thus we can put any
given set of equations (1) in the form -

=AF+ G2, S
| o ®)
’ y=4A.x"+ "
without altering the system-of pdths.

Now consider the transformation of coordinates :

=4z,  yr=py,

where 4, g denote non zero constants. Then the set of e(juations )

reduces to -
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. e 4 P AC

X 5 .*2 ’
e ©)
J'/'*_:‘ rA, /,'r*z_*_ Co J'/*z. k
AT 7

Taking 2 and g suitably, we can reduce (5) to the following * canonical

forms o
Case 1. C==0, A4,==0. If we put °

A=y G4y »  p=p Ci4, >

C* and A4,* become both 1. Hence (6) reduces to
r=azr’ +92,
L y=2+ b7,

where 2 and 4 may be zero. ,
Case II. (3=0, 4,70, C»=F0. Take the sign of g so that pA, be-
comes positive, and define the values of 4 and # by the relations

, A=y pd, \ %%=1v,
then (6) reduces to
N imai?,
F=rt?,

where @ may be ‘zero. ,
. Case III.  (;=0, 4,0, ;=0, 4,==0. It is clear that (6) reduces in
this case to ‘

r=22,
jitl |

lCase V. =0, A0, Cc_,:—:Q, A;=0. (6) .reduces in this case to
=0,

y=x".
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In the cases II, III, IV, we have treated the case where (;=0, 4~0.
There may happen also the case where 4,=0, C;=0. However, the latter
is equivalent to the former as is easily seen by interchanging x and .
Hence we can omit it. : ’

. Case V. (=0, A4,=0, A=20, C~=0. In this case (6) reduces to
| =
Case VI. C,=0, 4,=0, A,=0, C=0.
- 2=0,
S=5. . .
By a similar .reason as above we. can omit the case where C};O, A,=0,
A=0, C,=0. .
Case VII. All coefficients are zero.

=0,
. y=0.

"These are the canonical forms of the equations (?). The correspond-
ing non-homogeneous forms are as follows : '

Y+ = ey =1=0, @
yll.‘ RS y/2+ay/_1=0 , ’ » (II)
P +y —1=0, ; (II1)
N4 . —1=0, (Iv)
P — % =0, - (V)
]/N e ylﬂ =O s i (VI)
P . =0. (I

§ 3. Canonical forms of the differential equationé (continued).

4. If we transform the coordinates by a linear transformation :

x[ —_ x + - , .
PEXDT =0, @
’f§m¥w,
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. the parameters of the affine connexion obey the following transformation
law ’ ' ' : ‘

AaAIjAHc Jk ,

where we have put

=P» ' A‘f’.:q,
A=y, Az=s,

A,i“‘ N A’é: —q |
ps—gr P g
A= T e P
Ds—gr ) ]75'—97’

If we apply this transformation to (5), we get .

B . A (ps——gr) [(PAF*‘QA?)S + (pCi+ _‘ZC‘z)”]

A= W[(pA1+qA>g+(pa+ga>p] ON

Bi= Gy | s Adas+ (Gt sCpr ],

etc.,

"where weé have put
_—F’ll; Cl,f:_:[v‘zl‘.’y . ='_11’1"’ etc.

- Now, consider the ,diffe’rential equations of the type II: .

P=az?,
L )
y=x"1y
Then, we can easily see that . .
Ay=a, =0, 4=1, G=+1. (10)

Let us study whether equations of the type (9) with 2==0 are redtcible -
to the form : ’ ‘ '

-
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x' =0,

J’ A*x/2+c* ‘12

-

or not. If we put (10) into (8), we see that C, becomes zero when wé

“put ¢g=0. Moreover, when ¢=0, we get

_oB)= +27+as e
?s :
Hence, if we put
q b s + 2 ?

’
N ~

C! and A4/—2B/ become both zero. Accordiﬁgly, by an appropriate pro-
jective change of affine connexion, it is. possible to reduce our. equations
of paths to the desired form. ' '

Now the curvature tensor of the affine connexion defined by (5)

easily calculated. from-the formula :

i : a[ a - 15 8 E
. = ox z - axf + 1w ]i J’;’ (11)

and givec us .

}12: ClAz ’ R;m: - Alcl ’ i
(12).
Rigz= C2 2 Rie= ;Azcl ’

the other components bemd all zero.

(12) show that the affine connexion defined by equations of the type II is
not affinely flat. Hence A,* and (.* can not vanish. Consequently, our
equations ‘are reducible to the canonical form = '

x=0,
- (IL)
y=a"ty.
- 9. In the next pléce, let us- consider the equations of the type I:
. ’ - ;.L:=6l;-t‘2+)./2‘,

y=2 4 b
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e
Putting

Ai=a, C =1, A=1, G=b
into (6),, we see that C, ‘becomes zero when and only when

2 +5pq+aff+9 =0.

Evidently there exist real values of  and g satisfying "this equation. We
denote these values by p; and ¢, and take arbltrary real values 7y and &
so as to satisfy

Pi51— 17’1:*:0
Then by the transformation (7, ¢/ becomes zero. .
, Accordingly, if we perform a suitable projective change of affine con-

.

nexion, the equations of the type I reduce.to the form
:'t';r:Aj*'élz
V=AF G,

where A,* and &* can not vanish in virtue of t}le same reasor as--above.
Hence they are reducible to the canonical form II and consequeh_tly to the
canonical form II,, Thus we have proved the folloWing lemma ;

Lemma. 7%e equations of the type I and II are always veducible to the
canonical form I, 5 0y applying suitable coordinat: z‘mszormzztzans and pro=
_;ectwp changes of affine conncxions.

_ Consequently all the equations of paths in considerations are reduced
‘to one of the canomcal forms of the type . IIO, 11, 1V, V, VI and VIL

§$4. The possﬂ:nhty of bmdmg any two pomts
in plane by a path. '

6. Now the parameters of an affine. connexign. vary by coordinate

transformations as follows:

. "

I A o Ox'" 3x'T
*oxt T 8x"8x"'+ P“T‘Sx" ox*

If the given system of paths is affinely flat, coordinate system x can be
taken so that in the new coordinate system all paths can be represented
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. analyticﬁlly by linear equations of coordinates 2’  These coordinate systems
are characterized analytically by those for -which [7§,=0. fTlence, in our
two dimen'sional problem the tranformation functions #'=x'(x, »), ¥ =y

" (x, p) are characterized as a pair of solutions of the following system of

partial differential equations :

o __ 40, o

oxt - ’ ! oxr . 2 ay ’

¥ 5 3 _ 5 Of

xdy = 3x- 5 ay ' (13)
3 __ 0 _ . 0

a: G or 2 )

7. Although we are considering of binding arbitrary points (xo, Jo)
and (x, ;) each other by, a path, it will be sufficient to discuss only the
possibility of binding the origin with an arbitiary points (x4, 1) by a path.
For the set of differential equations (1) is invariaft under any translation

¥=x+a, y*=p+8,

where @ and B are arbitrary constants.
. Using these facts we shall study the possibility of bmdmg any' two
points in plane by a path of the given system.
8. Case VII. In this case, evidently, any two pomtq in plane can
be bound by a path (straight line). . ’
‘ Case VI. From (12) we see that the system of paths of the the VI
is affincly flat. The set of equations (13) reduces in this case to
« % _ 3 _o ¢ __ of
- Y dxdy ’ 3y 8y

Hence we can take, as a pair of solutions,
¥ ==z, J=cv.

In the new coordinate system: (#/, 7'), the paths are straight.lines and the
whole plane (#, ) is mapped onto the upper half plane >0. The image
of the origin of the (#, ) plane is the point (0, 1) in the (4/, /) plane.
Hence, the problem whether the origin and any point in the (#x, ») plane
can be bound by a pafh or not is equivalent to the problem : whether the
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point (0,°1) and any point (x’, ) #>0 can be bound or not by a straight
line in the upper half plane /> 0, which is evidently possible. - Conséquently,
in the Case VI the answer of our boundary value problem is affirmative.

" Case V. -The system of paths of the type V being also affinely flat,
the set of equations (13) reduces in this case to

o __ 8 & _, oF __ 0
ox? ox ’  x93y ., & y

. Hence we can take, as a pair of solutions,
X =% py=ec7",

In the new coordinate system (4’, »'), paths afe straight lines and the
whole plane (#, ») is mapped onto the first quadrant #'>0, 3/>0. - The
image of origin of the (x, ») plane is the point O(1, 1) in the («/, J')
plane. Hence by the same reasoning as in, Case VI, we can conclude
that any two points in the (#, ) plane can be bound by a path.

Case IV. The system, of paths of the type IV is also affinely flat.
The set of equations (13) reduces in this case to,

o __ b % _, 9P _,

Axt 8,1/ > Bxdy 0, 3" .

Hence, we' can take, as a pair of solutions,

x’=x, V=

'

" The whole plane (x, ») is mapped onto the whole plane (',9) one-to-
one and continuously. The origins on both planes correspond to each other.
. In the new coordinate .systém (', '), paths are straight lines. By the
same reasoning as in cases' VI and V, we can conclude that any two points
in (x, ») plane can be bound always by a path.

Case III. The system of paths of the type III ‘is also afﬁnely’ ﬂat
The set of equations (13) reduces in this case to

#6 _ op_op & _, 89 o
. ox? ox ay -’ 8x8y .

We can take, as a pair of solutions,
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;r’:e‘—z’ )/ ———"L+y

The whole plane (x,-7) is mapped onto the right half plane >0 one-to-
one and continuously. The origin of the (x, ») plane is transformed to
the point (1, 0) on the (27, ') plane. In the new coordinate system
(«', ¥'), paths are straight lines. Hence by the same reasoning as in cases
VI, V, and IV, we can conclude that any two points in (x, ,’V) plane can ,
be bound always by a path.

9. Case T, =0,
j_/.=,1.:2+s);2, e=+1.

In this case the corresponding affine connexion is not flat. Indeed its

curvature tensor becomes
R%,=¢ and the others are all zero.

However, if we apply a projective change of affine connexion (4) with
=0, ¢,=¢ the equations of paths II, reduce to -

}=a§:i'—28xy ,
)./.:’{:2_6);2 ) *
which show that the affine connexion is flat, as we can easily verlfy it.
The set of equations (13) reduces in this case to

% __ 98 % _ . 9p ¢ % (14

— [ S— 5 = £

ax* 3y - B3xdy  dx ay*

We can easily see that the general solution of the last_set of equations is
p=a(x)e? +4,
where 8 is a const. and «(x) is a solution of the equation
© W tea=0. ;
10. Case e=41. In this case a pair of solutions of (14) is given by
_ | 2 =c¥sinx, y' =¢e¥cosx. |

Every other solution is given as a linear -combination of them :

\
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. 2y +y,
the coefficients being all constants. .

"Now, in the new coordinate - system (x’ ), the paths are stm]o‘ht
lines. - However, in this case there happens somewh'lt dlfferent cxrcumstance
from before. : '

Consider the strip between two straight lines both parallel to y axis
and passing through the points (—m, 0) and (7, 0) respectively. ' Then
the strip is mapped one-to-one and continuously onto the whole (47, 3/)
plane with the ‘exception of the negative j/-axis. Indeed, the points on
both boundary parallel lines of the strip are mapped onto the points of
negative jp/-axis. Moreover, the origin of (#/, /) plane is the image of
points at infinity y= —co, (#: arbitrary) of (x, ») plane. ‘

Accoridingly, the problem whether the origin and any point in (and
not on the boundary of) the strip can be bound by a path or not is equi-
valent to the problem whether the point (0, 1) (image of the’ origin in
(x, ») phne) and a point (not on the negative y/-axis) can be ‘bound by
a straight line or not, which does not pass through the origin. This is
evidently possible. But, the origin and any point on the boundary of the
“strip in (#x, y) plane can not be bound by a path. For, it is equivalent to
inquire whether the point (0, 1) and a point on the negative p'-axis can’
be bound by a straight line or not, which does not pass through the origin.
We can not allow the straight line segment between these two points pass
through the origin of the (&', »/)-plane, for the origin is the image of the
points at infinity of (x, y)-plane. ' This is evidently impossible. Hence we
can not bind the origin ‘and any point on the boundary of the strip in
(x, )-plane by a path. Moreover, we can not bind the origin with any )
point outside of the strip, too. It is clear that this fact does not alter
when we take any other pair of solutions of (14), ’

Case e=—1. JIn this case a pair of solutions of (14) is given by

A= Y =T,

.

The whole plane ‘is mapped onto the first quadrant />0, »/>0 one-to-one
and continuonsly. In the new coordinate system (4/, »'), paths are straight
lines. Hence by the same reasoning as in cases III—IV we can conclude
that any two points in the (x, y)-plane can always be bound by a path.
Summing up the results obtained in n® 8 and n® 10 we can recognize
the truth of our theorem. ' ' '
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§5. A remark on the geometry of paths in. the large.

11, " In the theory of geodesics in the large, we know that- any two
points on a closed surface of any genus can always be bound at least by
one geodesic which is homotopic to any preassigned curve passing through
the given two points. However, this fact does not hold in general for
. systems of paths even for the case of constant coefficients 4, By, ...... , Co.
To see this, let us take the system of paths of the type II, with e=+1.
Devide the (&, ») plane into a set of rectangles by two sets of equidistant
parallel lines including x-axis and p-axis respectively. We can regard
the (x, ») plane as the universal covering surface. 6f a torus endowed with
a system of paths of the type II, with e= 41. Then, on account of the
fact proved in n°® 10, we can easily see the truth of our assertion.

Mathematical Institute
Tohoku University.
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