On the cohomology theory of rings.

By Yukiyosi Kawada. -

(Received Oct. 25, 1947.)

Recently G. Hochschild has developed the theory of cohomology groups of associative algebrasⁿ. We shall consider in this paper some problems concerning the cohomology groups of rings. Especially we shall be able to characterize the vanishing of $H_n(\mathbf{R}, \mathbf{m})$ for every \mathbf{R} - \mathbf{R} -module \mathbf{m} in the case n=1 and 3 by the extension properties (Theorem 6 and 8).

In § 1 necessary definitions from Hochschild's theory are given. § 2 concerns the extensions of R-R-modules. In § 3 we define a useful mapping $F_{\beta\gamma}$ of $H_n(R, m)$ to $H_{n+1}(R, n)$ for any R-R-modules m and n, which is a generalization of the fundamental isomorphism of Hochschild. In § 4 we consider the special extension problem, which corresponds to the Teichmüller's theory for simple algebras. These considerations can also be applied to Lie algebras, as I s all show in another paper.

§ 1. Definitions of the cohomology groups of rings.

Let **R** be a ring and **m** an **R-R**-module. Namely, we suppose that am, mb ($m \in \mathbf{m}$, a, $b \in \mathbf{R}$) belong to **m**, are linear, distributive in a, b, m, and satisfy the associative law a(bm) = (ab)m, (ma)b = m(ab), (am)b = a(mb). We call an element $f_0 \in \mathbf{m}$ a 0-cochain, and $f_n(a_1, \ldots, a_n) \in \mathbf{m}$ ($a_i \in \mathbf{R}$), which is linear with respect to a_1, \ldots, a_n , a n-cochain $(n \ge 1)$. We denote the module of all n-cochains by $\mathbf{L}_n(\mathbf{R}, \mathbf{m})$. Moreover, we define the coboundary operator $\partial f_n = f_{n+1}(f_n \in \mathbf{L}_n(\mathbf{R}, \mathbf{m}), f_{n+1} \in \mathbf{L}_{n+1}(\mathbf{R}, \mathbf{m}))$ by

$$(\delta f_n)(\alpha_1, \ldots, \alpha_{n+1}) = \alpha_1 f_n(\alpha_2, \ldots, \alpha_{n+1}) + \sum_{k=1}^n (-1)^k f_n(\alpha_1, \ldots, \alpha_k \alpha_{k+1}, \ldots, \alpha_{n+1}) + (-1)^{n+1} f_n(\alpha_1, \ldots, \alpha_n) \alpha_{n+1}.$$
 (1)

Then δ is a linear mapping and satisfies the relation $\delta(\delta f_n) = 0$ for any f_n . We call an element f_n with $\delta f_n = 0$ an *n-cocycle* $(n \ge 0)$ and an element f_n with $f_n = \delta g_{n-1}(n \ge 1)$ an *n-coboundary*. We denote the module of all *n*-cocycles (*n*-coboundaries) by $C_n(R, m)$ $(B_n(R, m))$. And we define the *n-cohomology group* $H_n(R, m) = C_n(R, m)/B_n(R, m)$, $(n \ge 1)$.

§ **2.** Extension of $\mathbf{R} ext{-}\mathbf{R} ext{-}module$ and $1 ext{-}cohomology group <math>\mathbf{H}_1(\mathbf{R},\mathbf{m})$.

Def. Let m, n be two R-R-modules. We call an another R-R-module M an extension of m by n, if (i) $M \supseteq n$, (ii) $M/n \cong m$ (as R-R-module), (iii)

 $M \cong m+n$ (direct sum as module) hold. If $M \cong m+n$ (direct sum as R-module) we say that M splits.

Now we consider an extension \mathbf{M} of \mathbf{m} by \mathbf{n} . We denote elements of \mathbf{m} by a, b, \ldots , and of \mathbf{n} by a, β, \ldots . For an element $m \in \mathbf{m}$ take linear representatives $\mathcal{B}_m \in \mathbf{M}$ from the class corresponding to $m \in \mathbf{m}$ by the relation $\mathbf{M}/\mathbf{n} \cong \mathbf{m}$. Then

$$aB_m = B_{am} + \beta(\alpha, m), \ B_m \alpha = B_{ma} + \gamma(m, \alpha) \ (\alpha \in \mathbf{R}, m \in \mathbf{m}, \beta, \gamma \in \mathbf{n}).$$
 (2)

 $\beta(a, m)$ and $\gamma(m, a)$ are linear in a, m. By the associative law $\alpha(bB_m) = (ab)B_m$, $(B_m a)b = B_m(ab)$, $(\alpha B_m) = \alpha(B_m b)$ we have

$$\alpha\beta(b,m) + \beta(a,bm) - \beta(ab,m) = 0, \quad \gamma(m,a)b + \gamma(ma,b) - \gamma(m,ab) = 0,$$

$$\beta(a,mb) - \beta(a,m)b = \gamma(am,b) - \alpha\gamma(m,b).$$
 (3)

If we choose another linear representatives

$$B_m^* = B_m + \mu(m) \qquad (m \in \mathbf{m}, \ \mu \in \mathbf{n}), \tag{4}$$

we have

$$\beta^*(a, m) = aB_m^* - B_{am}^* = \beta(a, m) + \{a\mu(m) - \mu(am)\},\$$

$$\gamma^*(m, a) = B_m^* a - B_{ma}^* = \gamma(m, a) + \{\mu(m)a - \mu(ma)\}.$$
(5)

We call $\{\beta, \gamma\}$ satisfying the relations (3) a factor system, and two factor systems $\{\beta, \gamma\}$ and $\{\beta^*, \gamma^*\}$ satisfying (5) for some $\{\mu\}$ associated. The structure of an extension M is completely determined by $\{\beta, \gamma\}$. Hence, we write $M = (m, n, \beta, \gamma)$. Conversely, for any factor system $\{\beta, \gamma\}$, there exists an extension $M = (m, n, \beta, \gamma)$ satisfying t e relation (2). Two extensions $M_i(m, n, \beta_i, \gamma_i)$ (i = 1, 2) are isomorphic (as R-R-module, each element of $n \subseteq M_i$ (i = 1, 2) corresponding to itself) if and only if $\{\beta_1, \gamma_1\}$ and $\{\beta_2, \gamma_2\}$ are associated. We identify these M_1 and M_2 .

We define $\{\beta_1, \gamma_1\} + \{\beta_2, \gamma_2\} = \{\beta_1 + \beta_2, \gamma_1 + \gamma_2\}$, then all the factor systems make a module $\mathbf{F}(\mathbf{m}, \mathbf{n})$. Splitting factor systems

$$\beta(a, m) = a\mu(m) - \mu(am), \quad \gamma(m, a) = \mu(m)a - \mu(ma)$$
 (6)

make a submodule S(m, n) of F(m, n). Then we have obviously

Theorem 1. Each element of F(m,n)/S(m,n) corresponds one to one to the extension M of m by n.

Now we consider the relation to the cohomology groups. We shall

first assume that we can select the linear representatives $\{B_m\}$ with

$$B_m a = B_{ma} \qquad (m \in \mathbf{m}, \ a \in \mathbf{R}). \tag{7}$$

Such extension has factor system $\{\beta^*, 0\}$. The condition for β^* is

$$\alpha \beta^*(b, m) + \beta^*(a, bm) - \beta^*(\alpha b, m) = 0, \ \beta^*(a, m)b - \beta^*(a, mb) = 0 \ (8)$$

Let \mathbf{r} be the set of all the linear mappings λ of \mathbf{m} into \mathbf{n} wit

$$\lambda(m)a = \lambda(ma) \qquad (m \in \mathbf{m}, a \in \mathbf{R}). \tag{9}$$

If we define the left and right operations by an element $a \in \mathbf{R}$ to \mathbf{r} by

$$(a*\lambda)(m) = a\lambda(m), \quad (\lambda*a)(m) = \lambda(am) \qquad (m \in \mathbf{m}), \quad (10)$$

then r is an R-R-module. We denote this r by $r=1(m, \dot{n})$.

Each 1-cochain $f(a) \in L_1(\mathbf{R}, \mathbf{r})$ is representable by

$$f(a) = \varphi(a, m) \in \mathbf{n}$$
 $(a \in \mathbf{R}, m \in \mathbf{m})$

with $\varphi(a, m)b = \varphi(a, mb)$. The condition $\delta f = 0$ amounts to $\delta \varphi = a * \varphi(b, m) - \varphi(ab, m) + \varphi(a, m) * b = a\varphi(b, m) - \varphi(ab, m) + \varphi(a, bm) = 0$. This is exactly the condition (8). The condition $f = \delta f_0$ is

$$\varphi(a, m) = \delta \psi(m) = a * \psi(m) - \psi(m) * a = a \psi(m) - \psi(am).$$

This means that $\{\beta^*, 0\}$ splits.

Now let $F^*(m, n)$ be the set of all factor systems $\{\beta^*, 0\}$, and put $S^*(m, n) = F^*(m, n) \cap S(m, n)$. Then we have

Theorem 2. For r=1(m, n), it holds

$$H_{\scriptscriptstyle \rm I}(R,r) \,{\, \cong \,} \, F^*(m,n)/S^*(m,n)$$

Corollary 1. If R contains the left unit $e(ca=a \text{ for } cv:ry \ a \in \mathbb{R})$ and if $aR \neq 0$ for $a \neq 0$ ($a \in \mathbb{N}$), then

$$H_{{\scriptscriptstyle \rm I}}(R,n) \cong F^*(R,n)/S^*(R,n).$$

For, any linear mapping λ from \mathbf{R} to \mathbf{n} with (9) can be represented as $\lambda(a) = ua(u = \lambda(e))$. Hence, it holds $\mathbf{r} = \mathbf{1}(\mathbf{R}, \mathbf{n}) \cong \mathbf{n}$.

Corollary 2. (Hochschild [1], § 4) If $H_1(R, n) = 0$ for every n, then any representation of R is completely reducible.

For, any R-left modules m, n can be made to R-R-modules by ma=0, na=0 ($a \in \mathbb{R}$), and any linear mapping λ from m to n satisfies the relation

(9). Therefore, any \mathbf{R} -submodule $\dot{\mathbf{n}}$ of \mathbf{R} -module \mathbf{M} is a factor of direct sum.

If we consider R-right modules instead of R-left module, then we can also conclude that any R-right module M which is an extension of R-right module m by n splits: $M \cong m+n$ (direct sum as R-right module).

Now if we consider an R-R-module $\mathbf{M} = (\mathbf{m}, \mathbf{n}, \beta, \gamma)$ merely as R-right module, then we can choose linear representatives \mathcal{B}_m with the property (7). This means $\mathbf{F}(\mathbf{m}, \mathbf{n})/\mathbf{S}(\mathbf{m}, \mathbf{n}) \cong \mathbf{F}^*(\mathbf{m}, \mathbf{n})/\mathbf{S}^*(\mathbf{m}, \mathbf{n}) = 0$. Hence we have

Corollary 3. If $H_1(\mathbf{R}, \mathbf{m}) = 0$ for every \mathbf{m} , then every extension \mathbf{M} of \mathbf{m} by \mathbf{n} splits (the converse will be proved in § 3).

§3. Mapping F_{3r} from $\mathbf{H}_n(\mathbf{R}, \mathbf{m})$ to $\mathbf{H}_{n+1}(\mathbf{R}, \mathbf{n})$.

Let m, n be two R-R-modules and $M = (m, n, \beta, \gamma)$ an extension of m by n. We define the linear mapping $F = F_{\beta \tau}$ from $L_n R, m$ into $L_{n+1}(R, n)$ $(n \ge 0)$:

$$F_{\mathfrak{d}\mathfrak{d}}(g) = f_{n+1} \in \mathbf{L}_{n+1}(\mathbf{R}, \mathbf{n}) \qquad (g_n \in \mathbf{L}_n(\mathbf{R}, \mathbf{m}))$$

by

$$f_{n+1}(a_1, \ldots, a_{n+1}) = \beta(a_1, g_n(a_2, \ldots, a_{n+1})) + (-1)^{n+1} \gamma(g_n(a_1, \ldots, a_n), a_{n+1}).$$
(11)

Lemma 1. $F_{\beta \gamma}(\delta g_n) + \delta(F_{\beta \gamma}(g_n)) = 0$ $(n \ge 0)$.

 $Proof. \quad F_{\beta \tau}^{\bullet}(\delta g_{n}) + \delta(F_{\beta \tau}(g_{n})) = \{\beta(\alpha_{0}, \alpha_{1}g_{n}(\alpha_{2}, \dots, \alpha_{n+1})) + \sum_{k=1}^{n} (-1)^{k} \beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{k}\alpha_{k+1}, \dots, \alpha_{n+1})) + (-1)^{n+1}\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n})\alpha_{n+1})\} + (-1)^{n+2} \{\gamma(\alpha_{0}g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + \sum_{k=1}^{n} (-1)^{k}\gamma(g_{n}(\alpha_{0}, \dots, \alpha_{k-1}, \alpha_{k}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}))\} + \{\alpha_{0}\beta(\alpha_{1}, g_{n}(\alpha_{2}, \dots, \alpha_{n+1}) - \beta(\alpha_{0}\alpha_{1}, g_{n}(\alpha_{2}, \dots, \alpha_{n+1})) + \sum_{k=1}^{n} (-1)^{k+1}\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{k}\alpha_{k+1}, \dots, \alpha_{n+1})) + (-1)^{n}\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}))\alpha_{n+1}\} + (-1)^{n+1}\{\alpha_{0}\gamma(g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + \sum_{k=1}^{n} (-1)^{k}\gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n})\alpha_{n+1}\} + (-1)^{n+1}\gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + (-1)^{n+1}\gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n})\alpha_{n+1}\} = \{\beta(\alpha_{0}, \alpha_{1}g_{n}(\alpha_{2}, \dots, \alpha_{n+1})) + \alpha_{0}\beta(\alpha_{1}, g_{n}(\alpha_{2}, \dots, \alpha_{n+1}) - \beta(\alpha_{0}\alpha_{1}, g_{n}(\alpha_{2}, \dots, \alpha_{n+1})) + (-1)^{n+1}\{-\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\} - \beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\{-\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\} - \beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\{-\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\} - \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + (-1)^{n+1}\{-\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\} - \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + (-1)^{n+1}\{-\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\} - \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + (-1)^{n+1}\{-\beta(\alpha_{0}, g_{n}(\alpha_{1}, \dots, \alpha_{n}), \alpha_{n+1}) + (-1)^{n+1}\} - \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n}) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n}) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n}) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n}) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n}) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n}) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1}), \alpha_{n}) + \gamma(g_{n}(\alpha_{0}, \dots, \alpha_{n+1})) + \gamma(g$

Lemma 2. For two associated factor systems $\{\beta, \gamma\}$, $\{\beta^*, \gamma^*\}$ with (5), we have for $h_n(a_1, \ldots, a_n) = \mu(g_n(a_1, \ldots, a_n))$

$$F_{\beta \tau}(g_n) - F_{\beta \tau \tau^*}(g_n) = (\partial h_n) - \mu(\partial g_n), \qquad (n \ge 0).$$

Proof. $\{F_{\beta\gamma}(g_n) - F_{\beta\gamma\gamma^*}(g_n)\}(a_0, \ldots, a_n) = a_0\mu(g_n(a_1, \ldots, a_n)) - \mu(a_0, \ldots, a_n) + (-1)^{n+1}\{\mu(g_n(a_0, \ldots, a_{n-1})a_n) - \mu(g_n(a_0, \ldots, a_{n-1})a_n)\} = a_0\mu(g_n(a_1, \ldots, a_n)) + \sum_{k=1}^n (-1)^k\mu(g_n(a_0, \ldots, a_{k-1}a_k, \ldots, a_n) + (-1)^{n+1} + \mu(g_n(a_0, \ldots, a_{n-1})) a_n - \mu(\delta g_n(a_0, \ldots, a_n)) = (\delta h_n) (a_0, \ldots, a_n) - \mu(\delta g_n(a_0, \ldots, a_n)), Q.E.D.$

From Lemma 1 we have $\delta(Fg_n) = 0$ for $\delta g_n = 0$ $(n \ge 0)$ and $F(g_n) = \delta F(h_{n-1})$ for $-g_n = \delta h_{n-1}$ $(n \ge 1)$. Hence we have

Theorem 3. The mapping $F_{\beta \tau}$ of (11) induces a linear mapping $F_{\beta \tau}'$ of $H_n(R, m)$ into $H_{n+1}(R, n)$ $(n \ge 1)$.

From Lemma 2 we have

Theorem 4. If factor systems $\{\beta,\gamma\}$ and $\{\beta^*,\gamma^*\}$ are associated, then $F_{\beta\gamma}$ and $F_{\beta^*\gamma^*}$ induce the same mapping $F_{\beta\gamma'}=F_{\beta^*\gamma^*}$ of $\mathbf{H}_n(\mathbf{R},\mathbf{m})$ into $\mathbf{H}_{n+1}(\mathbf{R},\mathbf{n})$ $(n \geq 1)$.

Corollary. If $\{\beta, \gamma\}$ splits, then $F_{\beta\gamma}'=0$, that is, $F_{\beta\gamma}$ maps $H_n(\mathbf{R}, \mathbf{m})$ into 0 $(n \ge 1)$.

Now we show that the fundamental mapping defined by Hochschild [1] is a special case of $F_{3\tau}$. Let **n** be any given **R**-**R**-module. Then we take as **m** the set of all linear mappings m of **R** into **n** ($m=L_1(\mathbf{R},\mathbf{n})$) with the relations

$$a*m(b) = am(b), (m*a)(b) = m(ab) - m(a)b$$
 (a, be**R**, mem),

which is also an R-R-module. We take then factor system

$$\beta(a, m) = 0$$
, $\gamma(m, a) = m(a)$,

which evidently satisfies the condition (3). Then the mapping $F_{\beta\tau}$ is defined by

$$F_{3\tau}(g_n)(a_0,\ldots,a_n) = (-1)^{n+1}g_n(a_0,\ldots,a_{n-1})(a_n).$$
 (13)

Conversely for any given $f_{n+1} \in L_{n+1}(\mathbf{R}, \mathbf{n})$, take $g_n \in L_n(\mathbf{R}, \mathbf{m})$ with

$$g_n(a_0, \ldots, a_{n-1})(a_n) = (-1)^{n+1} f_{n+1}(a_0, \ldots, a_n),$$

then we have $F(g_n) = f_{n+1}$. This shows the isomorphism $\mathbf{L}_n(\mathbf{R}, \mathbf{m}) \cong \mathbf{L}_{n+1}$. $(\mathbf{R}, \mathbf{n}) \ (n \ge 0)$. Lemma 1, 2 show also $\mathbf{C}_n(\mathbf{R}, \mathbf{m}) \cong \mathbf{C}_{n+1}(\mathbf{R}, \mathbf{n}) \ (n \ge 0)$. and $\mathbf{B}_n(\mathbf{R}, \mathbf{m}) \cong \mathbf{B}_{n+1}(\mathbf{R}, \mathbf{n}) \ (n \ge 1)$. Thus we have

Theorem 5. (Hochschild) For the special R-R-module m defined above

$$H_n(\mathbf{R}, \mathbf{m}) \cong H_{n+1}(\mathbf{R}, \mathbf{n}) \qquad (n \geq 1).$$

Now take $C_0(\mathbf{R}, \mathbf{m}) = \{m; \delta m = 0, m \in \mathbf{m}\}$, and $B_0(\mathbf{R}, \mathbf{m}) = \{F_{\beta \gamma}^{-1} f_1; f_1 \in \mathbf{B}_1(\mathbf{R}, \mathbf{n})\}$, then $C_0(\mathbf{R}, \mathbf{m}) / \mathbf{B}_0(\mathbf{R}, \mathbf{m}) \cong \mathbf{H}_1(\mathbf{R}, \mathbf{n})$. This isomorphism is given by $F_{\beta \gamma}'$. But if $\{\beta, \gamma\}$ splits, then $F_{\beta \gamma}' = 0$, and we have $\mathbf{H}_1(\mathbf{R}, \mathbf{n}) = 0$. Hence we have the converse of Corollary 1 of Theorem 2.

Theorem 6. A necessary and sufficient condition for the vanishing of $H_1(R, n)$ for every R-R-module n is that every extension M of m by n splits. § 4. 3-cohomology group.

2-cohomology group $\mathbf{H}_2(\mathbf{R}, \mathbf{m})$ was related by Hochschild [1] to the extension \mathbf{R} by \mathbf{m} as follows. We call the extension $\mathbf{A} = (\mathbf{R}, \mathbf{m})$ of \mathbf{R} by \mathbf{m} the following ring: (i) \mathbf{A} contains \mathbf{m} as two sided ideal, (ii) $\mathbf{m}^2 = 0$, (iii) $\mathbf{A}/\mathbf{m} \cong \mathbf{R}$ (iv) the linear representatives $A_a \in \mathbf{A}$ corresponding to $a \in \mathbf{R}$ by $\mathbf{A}/\mathbf{m} \cong \mathbf{R}$ satisfies $A_a m = am$, $mA_a = ma$ ($a \in \mathbf{R}$, $m \in \mathbf{m}$). The structure of \mathbf{A} is completely determined by

$$A_a A_b = A_{ab} + g(a, b) \qquad (a, b \in \mathbf{R}, g \in \mathbf{m}), \tag{14}$$

where g satisfies the condition corresponding to $A_a(A_bA_c) = (A_aA_b)A_c$

$$ag(b,c) + g(a,bc) = g(ab,c) + g(a,b)c.$$
 (15)

This is, $g \in C_2(\mathbf{R}, \mathbf{m})$. Conversely, for any given $g \in C_2(\mathbf{R}, \mathbf{m})$ there exists an extension \mathbf{A} with this g. We denote this extension \mathbf{A} by $(\mathbf{R}, \mathbf{m}, g)$. If we take another system of representatives $A_a^* = A_a + h(a)$ (hem), the corresponding $g^*(a, b)$ is given by $g^*(a, b) = g(a, b) + \{ah(b) - h(ab) - h(a)b\}$, namely $g^* \equiv g \pmod{\mathbf{B}_2(\mathbf{R}, \mathbf{m})}$. This shows that the vanishing of $\mathbf{H}_2(\mathbf{R}, \mathbf{m})$ for every \mathbf{m} means the splitting of all extensions $\mathbf{A} = (\mathbf{R}, \mathbf{m})$.

Now we consider the meaning of $H_3(R, m)$ in relation to the Teichmüller's theory of factor systems of higher degree. Let A=(R, m, g) be an extension of R by m, and let $M=(m, n, \beta, \gamma)$ be an extension of m by another R-R-module m. We shall consider the problem to construct an extension B=(R, M), for which $B/n \cong A$ holds.

Suppose that we have such an extension. We take linear representatives $A_n \in \mathbf{B}$ $(a \in \mathbf{R})$, $B_m \in \mathbf{B}(m \in \mathbf{m})$ corresponding to $\mathbf{B}/\mathbf{M} \cong \mathbf{R}$ and $\mathbf{M}/\mathbf{n} \cong \mathbf{m}$, then in \mathbf{B} hold the relations

$$\begin{cases} \lambda \mu = 0, \ B_m \lambda = \lambda B_m = 0, \ (\lambda, \mu \in \mathbf{n}); \ A_a u = \alpha u, \ \alpha A_a = u\alpha \ (u \in \mathbf{n}), \\ A_a B_m = B_{am} + \beta (\alpha, m), \ B_m A_a = B_{ma} + \gamma (m, \alpha), \ (\beta, \gamma \in \mathbf{n}), \\ A_a A_b = A_{ab} + B_{g(a, b)} + \alpha (a, b), \ (u \in \mathbf{n}). \end{cases}$$
(16)

By the associative law we have the conditions (3) for β , γ and from $A_a(A_bA_c) = (A_aA_b)A_c$

 $\beta(a, g(b, c)) - \gamma(g(a, b), c) + \{au(b, c) - u(ab, c) + u(a, bc) - u(a, b)c\} = 0, \quad (17)$ that is.

$$F_{\mathfrak{d}_{7}}(g_{2}) + \delta a_{2} = 0. \tag{17*}$$

Conversely, if we have a(a,b) in with (17) or (17*), then we can construct an extension $\mathbf{B} = (\mathbf{R}, \mathbf{M})$ by (16) with the desired properties. Thus we have

Theorem 7. For any given extensions A = (R, m, g) and $M = (m, n, \beta, \gamma)$ the necessary and sufficient condition for the existence of another extension B(R, M) with $B/n \cong A$ is that 3-cocycle $F_{\beta\gamma}(g)$ is a coboundary.

If $\mathbf{H}_3(\mathbf{R}, \mathbf{n}) = 0$, then there is always such an extension.

Now for any given R-R-module n take m and β , γ as in Theorem 5. And let f_3 be any 3-cocycle which is not a 3-coboundary. Then there is g_2 such that $F_{\beta\gamma}(g_2) = f_3$. For such $A = (R, m, g_2)$ and $M = (m, n, \beta, \gamma)$ we cannot construct the desired extension. Hence we have

Theorem 8. A necessary and sufficient condition for the vanishing of $H_3(R, n)$ for any R-R-module n is the possibility of an extension B = (R, m) with $B/n \cong A$ for any A = (R, m, g) and $M = (m, n, \beta, \gamma)$.

Mathematical Institute,

Tokyo Bunrika Daigaku.

References.

¹⁾ G. Hochschild, [1]: On the cohomology groups of an associative algebra. Annals of Math., 46 (1945), [2]: On the cohomology theory for associative algebras, ibid., 47 (1946).

²⁾ O. Teichmüller, Ueber die sogenannte nichtkommutative Galoissche Theorie und die Relation $\xi_{\lambda,\mu,\nu}\xi_{\lambda,\mu\nu,\pi}\xi_{\mu,\nu,\pi}^{\lambda}=\xi_{\lambda,\mu,\nu\pi}\xi_{\lambda\mu,\nu,\pi}$. Deutsche Math., 5 (1940).