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Abstract. In this note, stimulated by the existence result by Futaki, Ono and Wang
for toric Sasaki-Einstein metrics, we obtain new examples of Sasaki-Einstein metrics on S1-
bundles associated to canonical line bundles of P 1(C)-bundles over Kähler-Einstein Fano
manifolds, even though the Futaki’s obstruction does not vanish. Here our examples include
non-toric Sasaki-Einstein manifolds.

1. Introduction. Sasaki-Einstein manifolds were studied not only by mathematicians
but also by physicists, as Sasaki-Einstein manifolds have various interesting phenomena such
as “AdS/CFT correspondence” in theoretical physics (cf. [1], [2], [3], [4], [5], [12], [19], [20],
[21], [22]). Recently in [6] and [10], classification of toric Sasaki-Einstein manifolds was
given.

A Sasaki manifold is a (2m + 1)-dimensional Riemannian manifold (S, g) whose cone
manifold (C(S), g) is a Kähler manifold with

C(S) := S × R>0 and g := (dr)2 + r2g ,

where r is the standard coordinate on the set R>0 = {r > 0} of positive real numbers. Then
S is a contact manifold with the contact form

η := (√−1(∂ − ∂)log r
)|r=1.

Here S is viewed as the submanifold of C(S) defined by the equation r = 1. We further
consider the Reeb field ξ characterized by

i(ξ)η = 1 and i(ξ)dη = 0 ,

where i(ξ) is the interior product by ξ . The Reeb field ξ is a Killing vector field on (S, g)
with a lift to a holomorphic Killing vector field on (C(S), g). This generates a 1-dimensional
foliation on S, called the Reeb foliation. The Sasaki metric g naturally induces a transverse
Kähler metric gT for the Reeb foliation on S. A Sasaki manifold (S, g) is toric, if C(S) is a
toric manifold.
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The following well-known fact allows us to reduce the existence of Sasaki-Einstein met-
rics to that of transverse Kähler-Einstein metrics:

FACT 1.1 (cf. [3, Chapter 11]). A Sasaki manifold (S, g) is Einstein with positive
scalar curvature 2m if and only if the transverse Kähler metric gT is Einstein with positive
scalar curvature 2(m+ 1).

We now pose the following conjecture:

CONJECTURE 1.2. Let M be a Fano manifold. If there exists a Kähler-Ricci soliton
(see for instance [28] for Kähler-Ricci solitons) on M , then the S1-bundle associated to the
canonical line bundleKM of M admits a Sasaki-Einstein metric with a suitable choice of the
Reeb field.

By the results of Wang and Zhu [28], the existence of Kähler-Ricci solitons is known for
toric Fano manifolds. Hence, the results in [10] shows that Conjecture 1.2 is affirmative for
toric Fano manifolds.

We now consider Koiso-Sakane’s examples (cf. [23], [16], [17]) of P 1(C)-bundles over
Kähler-Einstein Fano manifolds. To fix our notation, recall the paper [18]. Under the assump-
tion below, we fix once for all a compact connected n-dimensional complex manifoldW with
c1(W) > 0 and an Hermitian holomorphic line bundle (L, h) overW .

ASSUMPTION 1.3. (1) There exists a Kähler-Einstein form ω0 on W , i.e., Ric(ω0) =
ω0, where Ric(ω0) is the Ricci form for ω0.

(2) 2πc1(L; h) := √−1 ∂∂ logh has constant eigenvalues

μ1 � μ2 � · · · � μn

with respect to ω0 satisfying −1 < μk < 1 for k = 1, 2, . . . , n.

By this assumption, the compactification ML
W := P (L⊕ OW) of L is a P 1(C)-bundle over

W with c1(M
L
W) > 0. Then ML

W admits a Kähler-Einstein metric if and only if its Futaki’s
obstruction (cf. [8]) vanishes:

(1.4)
∫ 1

−1
x

n∏
k=1

(1 + μkx) dx = 0.

Let SLW be the S1-bundle over ML
W associated to the canonical line bundle KML

W
of ML

W . In

[15], Koiso showed that a Kähler-Ricci soliton exists on ML
W , whether or not equality (1.4)

holds. Hence by Conjecture 1.2, a Sasaki-Einstein metric is expected to exist on SLW . The
purpose of this note is to give the following affirmative result:

THEOREM 1.5. Under the Assumption 1.3, whether or not the equality (1.4) holds, SLW
always admits a Sasaki-Einstein metric for a suitable choice of the Reeb field. Furthermore,
KML

W
admits a complete Ricci-flat Kähler metric in every Kähler class.
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REMARK 1.6. Kobayashi [14] (see also Jensen [13], Wang and Ziller [27]) constructed
Einstein metrics on S1-bundles over Einstein manifolds. Our theorem above shows that SLW
always admits an Einstein metric, even thoughML

W admits no Kähler-Einstein metrics.

2. Transverse holomorphic structures on SLW . For an open cover {Uα ; α ∈ A} of
W , we choose a system of holomorphic local coordinates (w1

α,w
2
α, . . . , w

n
α) on each Uα, and

by taking a holomorphic local frame eα for L, we have the fiber coordinate ζ+
α for L over

Uα with respect to eα. Then (w1
α,w

2
α, . . . , w

n
α; ζ+

α ) forms a system of holomorphic local
coordinates for U+

α := L|Uα . Let fα be the frame for L−1 dual to eα , and let ζ−
α be the fiber

coordinate for L−1 over Uα with respect to fα . Then (w1
α,w

2
α, . . . , w

n
α; ζ−

α ) form a system
of holomorphic local coordinates on U−

α := L−1|Uα . Then U+
α and U−

α are glued together by
the relation

ζ+
α = (ζ−

α )
−1

to formML
W = P (L⊕ OW) = ⋃

α∈A(U+
α ∪ U−

α ). Here,

±dw1
α ∧ dw2

α ∧ · · · ∧ dwnα ∧ dζ±
α

is a holomorphic local frame forKML
W

over U±
α , and with respect to this local frame, we have

the fiber coordinate τ±
α for KML

W
, respectively, i.e., all (+)-signs and all (−)-signs should be

chosen respectively. Note that

τ+
α dw

1
α ∧ dw2

α ∧ · · · ∧ dwnα ∧ dζ+
α

= τ+
β dw

1
β ∧ dw2

β ∧ · · · ∧ dwnβ ∧ dζ+
β

= τ+
β φβα(w)ψβα(w)

−1dw1
α ∧ dw2

α ∧ · · · ∧ dwnα ∧ dζ+
α

for w ∈ Uα ∩Uβ . Here {ψβα ; α, β ∈ A} are the transition functions for L with respect to the
local frames {eα ; α ∈ A} for L, while {φβα ; α, β ∈ A} are the transition functions for KW
with respect to the local frames {dw1

α ∧ · · · ∧ dwnα ; α ∈ A} forKW , i.e.,

eβ = ψβα(w)eα , fβ = ψβα(w)
−1fα ,

dw1
β ∧ dw2

β ∧ · · · ∧ dwnβ = φβα(w)dw
1
α ∧ dw2

α ∧ · · · ∧ dwnα
for w ∈ Uα ∩ Uβ . Hence τ+

α can be viewed as the fiber coordinate for KW ⊗ L−1 over Uα
with respect to the local frame

(
dw1

α ∧ · · · ∧ dwnα
) ⊗ fα . Similarly, τ−

α is also viewed as the
fiber coordinate forKW ⊗L overUα with respect to the local frame

(
dw1

α ∧ · · · ∧ dwnα
)⊗eα .

Moreover, since τ+
α ζ

+
α = τ−

α ζ
−
α on U+

α ∩ U−
α , it follows that

τ+
α (ζ

+
α )

2 = τ−
α .

Now, for −1/2 < a ∈ R, we consider holomorphic vector fields

a
√−1ζ+

α

∂

∂ζ+
α

+ √−1τ+
α

∂

∂τ+
α

on p̃−1(U+
α ) ,

−a√−1ζ−
α

∂

∂ζ−
α

+ (1 + 2a)
√−1τ−

α

∂

∂τ−
α

on p̃−1(U−
α ) ,
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where p̃ : KML
W

→ ML
W is the natural projection. Then these are glued together to define a

well-defined global holomorphic vector field ξa onKML
W

. We choose ξa + ξ̄a as the Reeb field

on SLW . However, we call ξa also as the Reeb field by abuse of terminology. Put

z+α := (τ+
α )

−aζ+
α and z−α := (τ−

α )
a/(1+2a)ζ−

α .

Then (w1
α,w

2
α, . . . , w

n
α; z+α ) and (w1

α,w
2
α, . . . , w

n
α; z−α ) are transverse holomorphic local co-

ordinates on Ũ+
α := p−1(U+

α ) and Ũ−
α := p−1(U−

α ), respectively, with respect to the Reeb
field ξa , in view of the identities

dz+α (ξa) = 0 and dz−α (ξa) = 0 ,

where p : SLW → ML
W is the natural projection. Note that z+α and z−α satisfy the relation

z+α = (τ+
α )

−aζ+
α = (τ−

α )
−a(ζ−

α )
−(1+2a) = (z−α )−(1+2a) .

For the natural projection q : SLW → W , the fiber q−1(w) over each w ∈ Uα has a transverse
holomorphic structure defined by the transverse holomorphic coordinate z±α . Then on q−1(w),

G :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1

|z+α |−2 + 1 + |z+α |2/(1+2a)

) |dz+α |2
|z+α |2 on q−1(w) ∩ Ũ+

α ,

(
(1 + 2a)2

|z−α |2(1+2a) + 1 + |z−α |−2

) |dz−α |2
|z−α |2 on q−1(w) ∩ Ũ−

α

defines an Hermitian metric for the transverse anti-canonical line bundle of the fiber q−1(w),

which is invariant under the standard S1-action z+α
t
−→ tz+α , t ∈ S1, for each w ∈ Uα , where

S1 := {z ∈ C ; |z| = 1}. By setting x := −2 log |z+α |, we define

v(x) := log

{
exp (x)+ 1 + exp

(
− x

1 + 2a

)}
.

Then its derivative v′(x) defines a moment map whose image is the closed interval [−1/(1 +
2a), 1].

3. Sasaki-Einstein metrics on SLW . In this section, by an argument as in [18], we
construct a Sasaki-Einstein metric on SLW by reducing the Sasaki-Einstein equation to the
transverse Einstein equation (3.1) below. For a > −1/2, define a polynomialAa(x) in x by

Aa(x) := −
∫ x

−1/(1+2a)
s

n∏
k=1

(
1 + μk,as

)
ds ,

where μk,a := μk + a(1 + μk) for k = 1, 2, . . . , n. Now, we assume that Aa(1) = 0. Since
a > −1/2, it follows from Assumption 1.3 that

0 < Aa(x) � Aa(0) and
A′
a(x)

x
< 0
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for −1/(1 + 2a) < x < 1. In particular, the rational function

A′
a(x)

xAa(x)

is free from poles and zeros over the open interval (−1/(1 + 2a), 1) and has a pole of order
1 at both x = −1/(1 + 2a) and x = 1. Hence,

Ba(x) := −
∫ x

0

A′
a(s)

sAa(s)
ds

is monotone increasing over the interval (−1/(1 + 2a), 1) and moreover, Ba maps (−1/(1 +
2a), 1) diffeomorphically onto R. Let

B−1
a : R →

(
− 1

1 + 2a
, 1

)
be the inverse function of Ba : (−1/(1 + 2a), 1) → R, and define C∞ functions xa(ρ) and
ua(ρ) in ρ ∈ R by xa(ρ) := B−1

a (ρ) and ua(ρ) := − log(Aa(xa(ρ))), respectively. Then
u′
a(ρ) = xa(ρ) and hence

(3.1) u′′
a(ρ)

n∏
k=1

(
1 + μk,au

′
a(ρ)

) = e−ua(ρ).

On Ũα := Ũ+
α ∪ Ũ−

α , we define

(3.2) ρα :=
{

− log |z+α |2 − log
(
κ−a
α h1+a

α

)
on Ũ+

α ,

(1 + 2a) log |z−α |2 − log
(
κ−a
α h1+a

α

)
on Ũ−

α ,

by setting κα := hKW
(
dw1

α ∧ · · · ∧ dwnα, dw1
α ∧ · · · ∧ dwnα

)
and hα := h(eα, eα), that is, on

Ũ+
α , exp (−ρα/2) can be formally viewed as the norm of

z+α
((

∂

∂w1
α

∧ · · · ∧ ∂

∂wnα

)a
⊗ e1+a

α

)
with respect to the Hermitian metric h−a

KW
⊗ h1+a for K−a

W ⊗ L1+a . Here hKW denotes the

Hermitian metric for KW induced by ω0. Then we have ρα = ρβ on Ũα ∩ Ũβ . Now we
consider the following transverse (n+ 1, n+ 1)-formΦα , with respect to ξa , on Ũα:

Φα :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√−1 (n+ 1)e−ua(ρα) (q∗ω0)

n ∧ dz+α ∧ dz+α
|z+α |2 on Ũ+

α ,

√−1 (n+ 1)e−ua(ρα) (q∗ω0)
n ∧ (1 + 2a)2

dz−α ∧ dz−α
|z−α |2 on Ũ−

α .

Then {Φα ; α ∈ A} define the transverse (n+ 1, n+ 1)-formΦ on SLW . Note that Ric(ω0) =√−1 ∂∂ logωn0 = ω0 and that, for each fixed w0 ∈ Uα , we can choose a local frame eα for L
and a system (w1

α,w
2
α, . . . , w

n
α) of holomorphic local coordinates on Uα satisfying

d(κ−a
α h1+a

α )(w0) = 0 , ω0(w0) = √−1
n∑
k=1

dwkα ∧ dwkα ,
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(
√−1 ∂∂ loghα)(w0) = √−1

n∑
k=1

μkdw
k
α ∧ dwkα .

Then, along q−1(w0) ∩ Ũα , we write ωT
α := {√−1/(2n+ 4)}∂∂ logΦα as a sum

1

2n+ 4

n∑
k=1

{(
1 + μk,au

′
a(ρα)

) √−1dwkα ∧ dwkα
}

+ 1

2n+ 4
u′′
a(ρα)

√−1dz+α ∧ dz+α
|z+α |2

on Ũ+
α , and

1

2n+ 4

n∑
k=1

{(
1 + μk,au

′
a(ρα)

)√−1dwkα ∧ dwkα
}

+ 1

2n+ 4
(1 + 2a)2u′′

a(ρα)

√−1dz−α ∧ dz−α
|z−α |2

on Ũ−
α . Since a > −1/2 and −1 < μk < 1 (k = 1, 2, . . . , n), ωT

α is a transverse Kähler
form, with respect to ξa , on Ũ+

α \ {z+α = 0} = Ũ−
α \ {z−α = 0}. Furthermore, by (3.1), we

have
{
(2n+ 4)ωT

α

}n+1 = Φα . Therefore, ωT
α defines a transverse Kähler-Einstein metric,

with respect to ξa , on Ũ+
α \ {z+α = 0} = Ũ−

α \ {z−α = 0}. Since ρα = Ba(xa(ρα)), we have

ρα =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− log(1 − xa(ρα))

+ real analytic function in xa(ρα) near xa(ρα) = 1 ,

(1 + 2a) log

(
1

1 + 2a
+ xa(ρα)

)
+ real analytic function in xa(ρα) near xa(ρα) = −1

1 + 2a
,

while we see from (3.2) that⎧⎪⎨⎪⎩
|z+α |−2 = (1 − xa(ρα))

−1 exp σ+ near xa(ρα) = 1 ,

|z−α |−2 =
(

1

1 + 2a
+ xa(ρα)

)−1

exp σ− near xa(ρα) = −1

1 + 2a
.

Here σ+ and σ− are real analytic functions on Ũ+
α and Ũ−

α , respectively. Hence the argument
as in Step 2 in the proof of [18, Theorem 10.3] is valid for transverse Kähler cases even when
the Reeb field is irregular. Therefore, the condition Aa(1) = 0 implies that

{
ωT
α ; α ∈ A}

are
glued together to define a well-defined global transverse Kähler-Einstein form ωT on SLW with
the Reeb field ξa .

REMARK 3.3. Let a ∈ R be such that Aa(1) = 0. On Ũ+
α (resp. Ũ−

α ), Φα is formally
viewed as a Hermitian metric for

K−1
W ⊗ (

Ka
W ⊗ L−(1+a))−1 = (

KW ⊗ L−1)−(1+a)
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resp. (KW ⊗ L)−(1+a)/(1+2a)) .

Then, on Ũ+
α (resp. Ũ−

α ), we put

r :=
{(|τ+

α |)2(1+a) exp(ua(ρα)) κα|z+α |2
n+ 1

}1/(2n+4)

(
resp. r :=

{(|τ−
α |)(2(1+a))/(1+2a) exp(ua(ρα)) κα|z−α |2

n+ 1

}1/(2n+4))
,

and η := (√−1(∂ − ∂) log r
)|r=1. On Ũ+

α (resp. Ũ−
α ), rn+2 is regarded as the norm of(

τ+
α

)1+a((
dw1

α ∧ · · · ∧ dwnα
) ⊗ dz+α

)(
resp. − (1 + 2a)

(
τ−
α

)(1+a)/(1+2a)((
dw1

α ∧ · · · ∧ dwnα
) ⊗ dz−α

))
,

with respect to the Hermitian metric (Φα)−1 for

(KW ⊗ L−1)1+a (
resp. (KW ⊗ L)(1+a)/(1+2a) ) .

Hence r defines a well-defined C∞ function onKML
W

\ {zero section}, and in particular SLW is
identified with the submanifold of KML

W
defined by the equation r = 1. Here, we note that,

on Ũ+
α ∩ Ũ−

α , (
τ+
α

)1+a((
dw1

α ∧ · · · ∧ dwnα
) ⊗ dz+α

)
= −(1 + 2a)(τ−

α )
(1+a)/(1+2a)((dw1

α ∧ · · · ∧ dwnα
) ⊗ dz−α

)
.

Moreover, g := (η)2+gT is a Riemannian metric on SLW and η is a contact form on SLW , where
gT is the transverse Kähler metric associated to ωT. Furthermore, the fundamental form ω of
the cone metric g associated to g is given by

ω := rdr ∧ η + r2ωT .

In view of dη = 2ωT, we obtain dω = 0, and hence (SLW , g) is a Sasaki manifold with the
Reeb field ξa .

Now by Fact 1.1, we obtain the following criterion on the existence of Sasaki-Einstein
metrics on SLW :

PROPOSITION 3.4. Under the Assumption 1.3, if

(3.5) Aa(1) = −
∫ 1

−1/(1+2a)
x

n∏
k=1

(1 + μk,ax)dx = 0 ,

then SLW admits a Sasaki-Einstein metric with the Reeb field ξa .

REMARK 3.6. In the special case a = 0, we easily see that (3.5) is nothing but the
condition (1.4) in the introduction.
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Next, we shall show the existence of a ∈ R such that both a > −1/2 and Aa(1) = 0
hold. We now put

f (x; a) := x

n∏
k=1

(
1 + μk,ax

)
,

F (a) :=
∫ 1

−1/(1+2a)
f (x; a) dx (= −Aa(1)) .

Since lima→+∞ F(a) = +∞ and lima→−1/2+0 F(a) = −∞, the continuity of F allows us
to find a0 > −1/2 such that F(a0) = 0. Moreover,

F ′(a) =
∫ 1

−1/(1+2a)

∂

∂a
f (x; a)dx + −2

(1 + 2a)2
f

(
− 1

1 + 2a
; a

)
.

Note also that μk,a = μk + a(1 + μk). Hence for −1/(1 + 2a) � x � 1,

∂

∂a
f (x; a) = x2

n∑
j=1

{
(1 + μj)

∏
k �=j

(1 + {μk + a(1 + μk)} x)
}

� 0 ,

f

(
− 1

1 + 2a
; a

)
= −

(
1

1 + 2a

)n+1 n∏
k=1

{(1 + a)(1 − μk)} < 0 .

Now in the expression of F ′(a), the first term is nonnegative and the second term is positive.
Therefore F ′(a) > 0. Hence we obtain the following lemma.

LEMMA 3.7. Under the Assumption 1.3, there exists a unique real number a0 > −1/2
such that F(a0) = 0.

Therefore, by Proposition 3.4 and Lemma 3.7, if Assumption 1.3 is satisfied, then SLW
always admits a Sasaki-Einstein metric with the Reeb field ξa0 . On the other hand, in view
of [9], [11](see also [26]), we now conclude that KML

W
admits a complete Ricci-flat Kähler

metric in every Kähler class. The proof of Theorem 1.5 is now complete.

4. Examples. In this section, we shall give a couple of examples of Sasaki-Einstein
manifolds as an application of Theorem 1.5.

EXAMPLE 4.1. We first put

W :=
l∏
i=1

P ni (C) ,

L :=
l⊗
i=1

p∗
i

(OP ni(C)(νi)
)
,

where pi : W → P ni (C) is the natural projection to the i-th factor (i = 1, 2, . . . , l). In view
of the isomorphismK−1

P k(C)
∼= OP k(C)(k + 1), if

−(ni + 1) < νi < ni + 1 , (i = 1, 2, . . . , l) ,



NEW EXAMPLES OF SASAKI-EINSTEIN MANIFOLDS 251

then the pair (W,L) satisfies Assumption 1.3. Hence by Theorem 1.5, SLW admits a Sasaki-
Einstein metric, though this is toric. Then F(a) in Section 3 is given by

F(a) =
∫ 1

−1/(1+2a)
x

l∏
i=1

(
1 +

{
νi

ni + 1
+ a

(
1 + νi

ni + 1

)}
x

)ni
dx .

For instance, we consider the simplest case, that is, W = P 1(C) and L = OP 1(C)(1). In this

case, ML
W is a del Pezzo surface obtained from P 2(C) by blowing up one point, and we see

the irregularity of (SLW , ξa0) by

a0 = −5 + √
13

12
.

EXAMPLE 4.2. Next, let W := Gr(k, p) be the complex Grassmannian manifold of
all p-dimensional subspaces of Ck, which is a complex manifold of dimension p(k − p).
Then there exists an ample line bundle A(k, p) over Gr(k, p) such that K−1

Gr(k,p)
∼= A(k, p)k

(see for instance [24, p. 205]). We put L := A(k, p)ν . If −k < ν < k, then the pair (W,L)
satisfies Assumption 1.3. Hence by Theorem 1.5, SLW admits a Sasaki-Einstein metric, and if
2 � p � k − 2, then SLW is non-toric.

EXAMPLE 4.3. Let Mn be the moduli space of smooth hypersurfaces of degree n in
P n+1(C). For the Fermat type hypersurface

W0 :=
{
[X0,X1, . . . , Xn+1] ∈ P n+1(C) ;

n+1∑
i=0

(Xi)
n = 0

}
∈ Mn ,

a theorem of Tian [25] shows that W0 admits a Kähler-Einstein metric, and in particular

MKE
n := {W ∈ Mn ; W admits a Kähler-Einstein metric}

is a non-empty open subset of Mn. For everyW ∈ MKE
n , we haveKW ∼= OP n+1(C)(−2)|W by

adjunction formula. Put L := OP n+1(C)(1)|W . Then the pair (W,L) satisfies Assumption 1.3,

and Theorem 1.5 shows that SLW admits a Sasaki-Einstein metric. If n = 3,W is a well-known
cubic threefold, and in this case by [7, Theorem 13.12], W is not birationally equivalent to
P 3(C), and SLW is again non-toric.
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