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Abstract. We propose a method to compute a desingularization of a normal affine
variety X endowed with a torus action in terms of a combinatorial description of such a variety
due to Altmann and Hausen. This desingularization allows us to study the structure of the
singularities of X. In particular, we give criteria for X to have only rational, (Q-)factorial,
or (Q-)Gorenstein singularities. We also give partial criteria for X to be Cohen-Macaulay or
log-terminal. Finally, we provide a method to construct factorial affine varieties with a torus
action. This leads to a full classification of such varieties in the case where the action is of
complexity one.
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Introduction. The theory of singularities on toric varieties is well established. All
toric singularities are log-terminal and thus rational and Cohen-Macaulay. Furthermore, there
are explicit combinatorial criteria to decide if a given toric variety is (Q-)factorial or
(Q-)Gorenstein (see [Dai02]). In this paper we elaborate the analog criteria for more gen-
eral varieties admitting torus actions.

LetX be a normal variety endowed with an effective torus action. The complexity of this
action is the codimension of the maximal orbits. By a classic theorem of Sumihiro [Sum74],
every point x ∈ X posses an affine open neighborhood invariant under the torus action. Hence,
local problems can be reduced to the affine case.
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There are well-known combinatorial descriptions of normal T-varieties. We refer the
reader to [Dem70] and [Oda88] for the case of toric varieties, to [KKMS73, Chaps. 2 and 4]
and [Tim08] for the complexity one case, and to [AH06, AHS08] for the general case.

Let us fix some notation. We let k be an algebraically closed field of characteristic 0, M
a lattice of rank n, and T the algebraic torus T = Spec k[M] � (k∗)n. A T-variety X is a
variety endowed with an effective algebraic action of T . For an affine variety X = SpecA,
introducing a T -action on X is the same as endowing A with an M-grading.

We let NQ = N ⊗ Q, where N = Hom(M,Z) is the dual lattice of M . Any affine
toric variety can be described via a polyhedral cone σ ⊆ NQ. Similarly, the combinatorial
description of normal affine T-varieties due to Altmann and Hausen [AH06] involves the data
(Y, σ,D) where Y is a normal semiprojective variety, σ ⊆ NQ is a polyhedral cone, and D
is a polyhedral divisor on Y , i.e., a divisor whose coefficients are polyhedra in NQ with tail
cone σ .

The normal affine variety corresponding to the data (Y, σ,D) is denoted by X[D]. The
construction involves another normal variety X̃[D], which is affine over Y , and a proper bira-
tional morphism r : X̃[D] → X[D] (see Section 1 for more details).

This description is not unique. In Section 2, we show that for every T-variety X there
exists a polyhedral divisor D such that X = X[D] and X̃[D] is a toroidal variety. Hence, the
morphism r : X̃[D] → X[D] is a partial desingularization of X having only toric singulari-
ties.

Let X be a normal variety and let ψ : Z → X be a desingularization. Usually, the
classification of singularities involves the higher direct images of the structure sheafRiψ∗OZ.
In particular, X has rational singularities if Riψ∗OZ = 0 for all i ≥ 1 (see e.g., [Art66,
Elk78]). In Section 3, we compute the higher direct image sheaves Riψ∗OZ for a T-variety
X[D] in terms of the combinatorial data and we give a criterion for X[D] to have rational
singularities.

A well-known theorem of Kempf [KKMS73, p. 50] states that a variety X has rational
singularities if and only if X is Cohen-Macaulay and the induced map ψ∗ωZ ↪→ ωX is an
isomorphism. In Proposition 3.7, we apply Kempf’s Theorem to give a partial characterization
of T-varieties having Cohen-Macaulay singularities.

Invariant T -divisors were studied in [PS11]. In particular, a description of the class
group, and a representative of the canonical class of X[D] are given. In Section 4, we use
this results to state necessary and sufficient conditions for X[D] to be (Q-)factorial or (Q-)
Gorenstein in terms of the combinatorial data. Furthermore, in Theorem 4.9 we apply the
partial desingularization obtained in Section 2 to give a criterion forX[D] to have log-terminal
singularities.

In [Wat81], some of the results in Sections 3 and 4 were proved for a 1-dimensional torus
action onX. Our results can be seen as the natural generalization of these results of Watanabe
(see also [FZ03, Sec. 4]).

In Section 5, we specialize our results in Sections 3 and 4 for a T-variety X[D] of com-
plexity one. In this case, the variety Y in the combinatorial data is a smooth curve. This make
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the criteria more explicit. In particular, if X[D] has Q-Gorenstein or rational singularities,
then Y is either affine or the projective line.

Finally, in Section 6 we provide a method to construct factorial T-varieties based on the
criterion for factoriality given in Proposition 4.5. In the case of complexity one, this method
leads to a full classification of factorial quasihomogeneous affine T-varieties analogous to the
ones given in [Mor77] and [Ish77] for dimension two and three, respectively; and in [HHS11]
for the general case. A common way to show that an affine variety is factorial is to apply the
criterion of Samuel [Sam64] or the generalization by Scheja and Storch [SS84]. However, for
the majority of the factorial varieties that we construct with our method, these criteria do not
work.

In the entire paper, the term variety means a normal integral scheme of finite type over
an algebraically closed field k of characteristic 0.

Acknowledgments. We would like to thank Yuri Prokhorov for kindly and patiently answering
our questions and therefore helping us to finish this article and to overcome some inexcusable lacks in
our knowledge on birational geometry. We also thank Nathan Ilten, the editor and the referee. Their
suggestions helped us to improve this paper.

1. Preliminaries. First, we fix some notation. In this paper N is always a lattice of
rank n, and M = Hom(N,Z) is its dual. The associated rational vector spaces are denoted
by NQ := N ⊗ Q and MQ := M ⊗ Q. Moreover, σ ⊆ NQ is a pointed convex polyhedral
cone, and σ∨ ⊆ MQ is its dual cone. Let σ∨

M := σ∨ ∩M be the semigroup of lattice points
inside σ∨.

We consider convex polyhedra Δ ⊆ NQ admitting a decomposition as Minkowski sum
Δ = Π + σ with a compact polyhedron Π ⊆ NQ; we refer to σ as the tail cone of Δ and
to Δ as a σ -polyhedron. We denote the set of all σ -polyhedra by Polσ (NQ). With respect to
Minkowski addition, Polσ (NQ) is a semigroup with the neutral element σ .

We are now going to describe affine varieties with an action of the torus T = Spec k[M].
Let Y be a normal variety, which is semiprojective, i.e., projective over an affine variety. Fix
a pointed convex polyhedral cone σ ⊆ NQ. A polyhedral divisor on Y is a formal sum

D =
∑
Z

ΔZ · Z ,

where Z runs over the prime divisors of Y and the coefficients ΔZ are all σ -polyhedra with
ΔZ = σ for all but finitely many of them.

For every u ∈ σ∨
M we have the evaluation

D(u) :=
∑
Z

min
v∈ΔZ

〈u, v〉 · Z ,

which is a Q-divisor living on Y . This defines an evaluation map D∨ : σ∨ → DivQ(Y ),
which is piecewise linear and the loci of linearity are (not necessarily pointed) subcones of
σ∨. Hence, D∨ defines a quasifan which subdivides σ∨. We call it the normal quasifan of D.

We call the polyhedral divisor D on Y proper if the following conditions hold:
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(i) The divisor D(u) is Q-Cartier and has a base point free multiple for every u ∈ σ∨
M .

(ii) The divisor D(u) is big for every u ∈ relintσ∨ ∩M .

Recall that a divisorD on Y is Q-Cartier if there exists l > 0 such that lD is Cartier, and
big if there exists a divisorD0 in the linear system |lD|, for some l > 0, such that Y \ suppD0

is affine.
By construction, every polyhedral divisor D on a normal variety Y defines a sheaf A[D]

of M-graded OY -algebras and its ring A[D] of global sections:

A[D] :=
⊕
u∈σ∨

M

O(D(u)) · χu , A[D] := H 0(Y,A[D]) .

Now suppose that D is proper. The result of Altmann and Hausen [AH06, Th. 3.1] guar-
antees thatA[D] is a normal affine algebra. Thus, we obtain an affine varietiesX := X[D] :=
SpecA[D] and X̃ := X̃[D] := SpecY A[D]. Both varieties X and X̃ come with an effective
action of the torus T = Spec k[M] and there is a proper birational equivariant morphism
r : X̃ → X. Moreover, by the definition of X̃ there is an affine morphism q : X̃ → Y , and
the composition

π := q ◦ r−1 : X ��� Y
is a rational map defined outside a closed subset of codimension at least 2.

Note that there is a natural inclusion A[D] ⊂ ⊕
u∈M k(Y ) · χu which gives rise to a

standard representation f · χu with f ∈ k(Y ) and u ∈ M for every semi-invariant rational
function from k(X) = k(X̃). With this notation, the rational map π is given by the natural
inclusion of function field

k(Y ) ⊂ k(X) = Quot
(⊕

u k(Y ) · χu
)
.

By [AH06, Th. 3.4], every normal affine variety with an effective torus action arises from
a proper polyhedral divisor.

EXAMPLE 1.1. Letting N = Z2 and σ = pos((1, 0), (1, 6)), in NQ = Q2 we con-
sider the σ -polyhedra Δ0 = conv((1, 0), (1, 1)) + σ , Δ1 = (−1/2, 0) + σ , and Δ∞ =
(−1/3, 0)+ σ (see Figure 1).

FIGURE 1. The σ -polyhedra Δ0, Δ1 and Δ∞.
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Let Y = P 1 so that k(Y ) = k(t), where t is a local coordinate at zero. We consider the
polyhedral divisor D = Δ0 ·[0]+Δ1 ·[1]+Δ∞·[∞], and we letA = A[D] andX = Spec A.
An easy calculation shows that the elements

u1 = χ(0,1) , u2 = t − 1

t2
χ(2,0) , u3 = (t − 1)2

t3
χ(3,0) , and u4 = (t − 1)3

t5
χ(6,−1)

generateA as an algebra. Furthermore, they satisfy the irreducible relation u3
2−u2

3+u1u4 = 0,
and so

A � k[x1, x2, x3, x4]/(x3
2 − x2

3 + x1x4) .

For a polyhedral divisor D and a (not necessarily closed) point y ∈ Y , we define the slice
of D at y by Dy := ∑

Z⊃y ΔZ. Note, that DZ is equal to the polyhedral coefficientΔZ of D.

We want to describe the exceptional divisor of the morphism X̃[D] → X[D]. In general
on a T-variety there are two types of prime divisors. Prime divisors of horizontal type consist
of orbit closures of dimension rankN−1 and prime divisors of vertical type, of orbit closures
of dimension rankN . Note, that a generic point on a vertical prime divisor has a finite isotropy
group, while on a horizontal prime divisor every point has infinite isotropy.

Let ρ ∈ σ(1) be a ray of the tail cone. We call it a big ray of D if D(u) is big for
u ∈ relint(σ∨ ∩ ρ⊥). The set of big rays is denoted by big(D). For a vertex v ∈ D(0)

Z , we
consider the smallest natural number μ(v) such that μ(v) · v is a lattice point. A vertex v is
called an big vertex if D(u)|Z is big for every u in the interior of the normal cone

N (ΔZ, v) = {u ; 〈u,w − v〉 > 0 for every w ∈ ΔZ} .
The set of big vertices in DZ is denoted by big(DZ).

THEOREM 1.2 ([PS11, Prop. 3.13]). For the invariant prime divisors on X̃[D], there
are bijections

(i) between rays ρ in σ(1) and horizontal prime divisors Ẽρ of X̃[D],
(ii) between pairs (Z, v), where Z is a prime divisor on Y and v is a vertex in DZ, and

vertical prime divisors D̃Z,v of X̃[D].
Via this correspondences the non-exceptional invariant divisor of X̃[D] → X[D], and there-
fore the invariant divisors Dρ , DZ,v on X[D] correspond to the elements of ρ ∈ big(D) or
v ∈ big(DZ), respectively.

For a semi-invariant function f · χu, the corresponding invariant principal divisor on
X[D] is

(1)
∑
Z,v

μ(v)(〈u, v〉 + ordZ f ) ·DZ,v +
∑
ρ

〈u, nρ 〉 · Eρ .

Hence, for the pullbacks of a prime divisor Z on Y to X̃[D] and X[D], we obtain

q∗Z =
∑
v∈D(0)

Z

μ(v) · D̃Z,v and π∗Z =
∑

v∈big(DZ)

μ(v) ·DZ,v ,

respectively.
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2. Toroidal desingularization. The combinatorial description of affine T-varieties in
Section 1 is not unique. The following Lemma is a specialization of [AH06, Cor. 8.12]. For
the convenience of the reader, we provide a short argument.

LEMMA 2.1. Let D be a proper polyhedral divisor on a normal variety Y . Then for
any projective birational morphismψ : Ỹ → Y , the varietyX[D] is equivariantly isomorphic
to X[ψ∗D].

PROOF. We only need to show that

H 0(Y,OY (D(u))) � H 0(Ỹ ,OỸ (ψ
∗D(u))) for all u ∈ σ∨

M .

We let r be such that rD(u) is Cartier for all u ∈ σ∨
M . By Zariski’s main theoremψ∗OỸ = OY

and by the projection formula, for all u ∈ σ∨
M we have

H 0(Y,OY (D(u)))�
{
f ∈ k(Ỹ ); f r ∈ H 0(Ỹ ,OỸ (ψ

∗rD(u)))} = H 0(Ỹ ,OỸ (ψ
∗D(u))) .

�

In the previous lemma, X̃ = X̃[D] is not equivariantly isomorphic to X̃[ψ∗D], unless ψ
is an isomorphism.

DEFINITION 2.2. We define the support of a proper polyhedral divisor as

suppD = {Z prime divisor ;DZ �= σ } ∪ {Z prime divisor ;DZ = σ and big(DZ) = ∅} .

We say that D is an

(i) SNC polyhedral divisor if D is proper, Y is smooth, and suppD is a simple normal
crossing (SNC) divisor,

(ii) strictly ample if D(u) is ample for every u ∈ relintσ∨.

REMARK 2.3. The above notion of strictly ampleness has the following geometric
interpretation. A proper polyhedral divisor D is strictly ample if and only if Y is the unique
maximal element in the inverse system of GIT-quotients of X[D] (see [AH06, p. 597] for the
details of this construction). Hence, the existence of a strictly ample polyhedral divisor is a
quite restrictive condition for a T-variety.

In the case of complexity one, i.e., when Y is a curve, any proper polyhedral divisor is
SNC and strictly ample.

COROLLARY 2.4. For any affine T-variety X there exists an SNC polyhedral divisor
on a smooth variety Y such that X = X[D].

PROOF. Let D′ be proper polyhedral divisor on a semi-projective normal variety Y ′
such that X = SpecX[D′]. Let ψ : Y → Y ′ be a projective resolution of singularities of Y ′
such that suppψ∗D′ is SNC. By Lemma 2.1, D = ψ∗D′ is an SNC polyhedral divisor such
that X = X[D]. �
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Now we elaborate a method to effectively compute an equivariant partial desingulariza-
tion of an affine T-variety in terms of the combinatorial data (Y,D). A key ingredient for our
results is the following example (Cf. [Lie10, Ex. 3.20]).

EXAMPLE 2.5. Let Hi , i = 1, . . . , n be the coordinate hyperplanes in Y = An =
Spec k[t1, . . . , tn], and let D be the SNC divisor on Y given by

D =
n∑
i=0

Δi ·Hi, whereΔi ∈ Polσ (NQ) .

We let hi = minv∈Δi 〈u, v〉 be the support function of Δi . Since k(Y ) = k(t1, . . . , tn) we
obtain

H 0(Y,OY (D(u)))=
{
f ∈ k(Y ); div(f )+ D(u) ≥ 0

}
=

{
f ∈ k(Y ); div(f )+

n∑
i=1

min
v∈Δi

〈u, v〉 ·Hi ≥ 0

}
=

⊕
(r1,...,rn)
ri≥−hi (u)

k · tr11 · · · trnn .

Let N ′ = N × Zn, M ′ = M × Zn and σ ′ be the Cayley cone in N ′
Q, i.e., the cone spanned by

(σ, 0) and (Δi, ei), for i ∈ {1, . . . , n}, where ei is the i-th vector in the standard base of Qn.
A vector (u, r) ∈ M ′ belongs to the dual cone (σ ′)∨ if and only if u ∈ σ∨ and ri ≥ −hi(u).

With these definitions we have

A[D] =
⊕
u∈σ∨

M

H 0(Y,OY (D(u))) =
⊕

(u,r)∈(σ ′)∨∩M ′
k · tr11 · · · trnn � k[(σ ′)∨ ∩M ′] .

Hence X[D] is isomorphic as an abstract variety to the toric variety with the cone σ ′ ⊆
N ′

Q. Since Y is affine, X̃ � X is also a toric variety.

We say that a variety X is toroidal if for every x ∈ X there is a formal neighborhood
isomorphic to a formal neighborhood of a point in an affine toric variety.

PROPOSITION 2.6. Let D = ∑
Z ΔZ ·Z be a proper polyhedral divisor on a semipro-

jective normal variety Y . If D is SNC then X̃ = X̃[D] is a toroidal variety.

PROOF. For y ∈ Y we consider the fiber Xy over y for the morphism ϕ : X̃ → Y . We
let also Uy be a formal neighborhood of Xy .

We let n = dimY and

Sy = {Z prime divisor ; y ∈ Z andΔZ �= σ } .
Since suppD is SNC, we have that card(Sy) ≤ n. Letting j : Sy → {1, . . . , n} be any
injective function, we consider the smooth σ -polyhedral divisor

D′
y =

∑
Z∈Sy

ΔZ ·Hj(Z) , on An .
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Since Y is smooth, Uy is isomorphic to a formal neighborhood of the fiber over zero for
the canonical morphism π ′ : X̃[D′

y] = SpecAn Ã[D′
y ] → An. Finally, Example 2.5 shows

that X̃[D′
y] is toric for all y and so X is toroidal. This completes the proof. �

REMARK 2.7. Proposition 2.6 holds in the less restrictive case where only

{Z prime divisor; ΔZ �= σ }
is SNC. The definition of suppD given in Definition 2.2 will be useful in Section 4.

REMARK 2.8. The proof of Proposition 2.6 shows the following stronger statement: if
D is SNC polyhedral divisor, then (X̃[D], U = X̃[D] \ (q−1(suppD)∪⋃

ρ Ẽρ)) is a toroidal
embedding without self-intersection in the sense of [KKMS73, p. 57]. Indeed, the only thing
remaining to be proved is that the irreducible components of X̃[D] \ U are normal, but this
follows from the fact that orbit closures on a toric variety are normal [Oda88, Prop. 1.6].

Since the morphism ϕ : X̃[D] → X[D] is proper and birational, to obtain a desin-
gularization of X[D] it is enough to have a desingularization of X̃[D]. Since X̃[D] is a
toroidal embedding without self-intersection, there exists desingularization with toric meth-
ods [KKMS73, Chap. II, Th. 11]. We won’t use this fact in the sequel.

3. Higher direct images sheaves. In this section we apply the partial desingulariza-
tion ϕ : X̃[D] → X[D] to compute the higher direct images of the structure sheaf of any
desingularizationW ofX[D]. This allows us to provide information about the singularities of
X in terms of the combinatorial data (Y,D). We recall the following notion.

DEFINITION 3.1. A varietyX has rational singularities if there exists a desingulariza-
tion ψ : W → X, such that

ψ∗OW = OX , and Riψ∗OW = 0 for all i > 0 .

The sheaves Riψ∗OW are independent of the particular choice of a desingularization of
X. The first condition ψ∗OW = OX is equivalent to X being normal.

The following well-known lemma is obtained by applying the Leray spectral sequence.

LEMMA 3.2. Let ϕ : X̃ → X be a proper surjective, birational morphism, and let
ψ : W → X be a desingularization of X. If X̃ has only rational singularities, then

Riψ∗OW = Riϕ∗OX̃ for all i ≥ 0 .

In the following theorem, for a T-variety X = X[D] and a desingularization ψ : W →
X, we provide an expression for Riψ∗OZ in terms of the combinatorial data (Y,D). As usual
for an A-moduleM , M∼ denotes the associated sheaf on X = SpecA.

THEOREM 3.3. Let X = X[D], where D is an SNC polyhedral divisor on Y . If ψ :
W → X is a desingularization, then for every i ≥ 0, the higher direct image Riψ∗OW is the
sheaf associated to ⊕

u∈σ∨
M

H i(Y,O(D(u))) .
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PROOF. Let ψ : W → X be a desingularization of X. Consider the proper birational
morphism ϕ : X̃ := X̃[D] → X. By Lemma 2.6 X̃ is toroidal, thus it has only toric singular-
ities which are rational [KKMS73, p. 52]. By Lemma 3.2 we have

Riψ∗OW = Riϕ∗OX̃ , i ≥ 0 .

Since X is affine, we have

Riϕ∗OX̃ = Hi(X̃,OX̃)
∼ , i ≥ 0

(see [Har77, Ch. III, Prop. 8.5]). For Ã = Ã[D] = ⊕
u∈σ∨

M
OY (D(u)), we let π be the affine

morphism π : X̃ = SpecY Ã → Y . Since the morphism π is affine, we have

Hi(X̃,OX̃) = Hi(Y, Ã) =
⊕
u∈σ∨

M

H i(Y,OY (D(u))) , i ≥ 0 ,

by [Har77, Chap. III, Ex. 4.1], proving the theorem. �

As an immediate consequence of Theorem 3.3, in the following theorem, we characterize
T-varieties having rational singularities.

THEOREM 3.4. Let X = X[D], where D is an SNC polyhedral divisor on Y . Then X
has rational singularities if and only if

Hi(Y,OY (D(u))) = 0 , i = 1, . . . , dimY ,

for every u ∈ σ∨
M .

PROOF. Since X is normal, by Theorem 3.3 we only have to prove that⊕
u∈σ∨

M

H i(Y,OY (D(u))) = 0 for all i > 0 .

This direct sum is trivial if and only if each summand is. Hence X has rational singularities if
and only if Hi(Y,OY (D(u))) = 0 for all i > 0 and all u ∈ σ∨

M .
Finally, Hi(Y,F ) = 0 for all i > dimY and for any sheaf F (see [Har77, Chap. III,

Th. 2.7]). Now the theorem follows. �

In particular, we have the following corollary.

COROLLARY 3.5. Let X = X[D] for some SNC polyhedral divisor D on Y . If X has
only rational singularities, then the structure sheaf OY is acyclic, i.e., Hi(Y,OY ) = 0 for all
i > 0.

PROOF. This is the “only if” part of Theorem 3.4 for u = 0. �

Recall that a local ring is Cohen-Macaulay if its Krull dimension is equal to its depth. A
variety is Cohen-Macaulay if all its local rings are. The following lemma is well known (see
for instance [KKMS73, p. 50]).

LEMMA 3.6. Let ψ : W → X be a desingularization of X. Then X has rational sin-
gularities if and only ifX is Cohen-Macaulay and the morphism ψ∗ωW → ωX is isomorphic.
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As in Lemma 3.2, applying the Leray spectral sequence shows that the previous Lemma
is still valid if we allow W to have rational singularities. In the next proposition, we give a
partial criterion as to when a T-variety is Cohen-Macaulay.

PROPOSITION 3.7. Let X = X[D], where D is a proper polyhedral divisor on Y . If
big(D) = σ(1), and big(DZ) = D(0)

Z for all prime divisor Z ∈ Y , thenX is Cohen-Macaulay
if and only if X has rational singularities.

PROOF. By Theorem 1.2, the contractionϕ : X̃ → X is an isomorphism of open subsets
ϕ−1(U) ⊂ X̃ and U ⊂ X, where X̃ \ ϕ−1(U) and X \ U are of codimension at least two.
Furthermore, by the normality of X and X̃, the dualizing sheaves ωX̃ and ωX are reflexive
[Dai02, Prop. 1.2] and ϕ∗ωX̃ and ωX agree on U . In particular, for every open V ⊆ X we
have

H 0(V , ωX)=H 0(V ∩ U,ωX) = H 0(ϕ−1(V ∩U),ωX̃)
=H 0(ϕ−1(V ) ∩ ϕ−1(U), ωX̃) = H 0(ϕ−1(V ), ωX̃) .

Thus ϕ∗ωX̃ � ωX . The result now follows from Lemma 3.6. �

For isolated singularities, we can give a full classification whenever rankN ≥ 2.

COROLLARY 3.8. Let X = X[D], where D is an SNC polyhedral divisor on Y . If
rankN ≥ 2 andX has only isolated singularities, thenX is Cohen-Macaulay if and only ifX
has rational singularities.

PROOF. We only have to prove the “only if” part. Assume that X is Cohen-Macaulay
and let ψ : W → X be a resolution of singularities. Since X has only isolated singularities,
we have that Riψ∗OW vanishes except possibly for i = dimX − 1 (see [Kov99, Lemma
3.3]). Now Theorem 3.3 shows that Riψ∗OW vanishes also for i = dimX− 1 since dimY =
dimX − rankN and rankN ≥ 2. �

REMARK 3.9. In [Wat81] a criterion of X to be Cohen-Macaulay is given in the case
where rankN = 1. In this particular case, a partial criterion forX to have rational singularities
is given.

4. Canonical divisors and discrepancies. In the following, we will restrict to the
case that Y is projective and σ has the maximal dimension. This corresponds to the fact that
there is a unique fixed point lying in the closure of all other orbits. In particular, there is an
embedding k∗ ↪→ T inducing a good k∗-action on X. Hence, the singularity at the vertex is
quasihomogeneous.

LEMMA 4.1 ([PS11, Prop. 3.1]). If σ is full-dimensional and Y is projective, then ev-
ery T -invariant Cartier divisor on X[D] is principal.

THEOREM 4.2 ([PS11, Cor. 3.15]). The divisor class group of X[D] is isomorphic to

Cl Y ⊕
⊕
ρ

ZDρ ⊕
⊕
Z,v

ZDZ,v
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modulo the relations

[Z] =
∑

v∈big(DZ)

μ(v)DZ,v ,

0 =
∑
ρ

〈u, ρ〉Eρ +
∑
Z,v

μ(v)〈u, v〉DZ,v ,

where u runs over all elements of M (or equivalently over a spanning subset).

Fix a canonical divisor KY = ∑
Z bZ · Z on Y . Then by [PS11], T -invariant canonical

divisors on X̃[D] and X[D] are given by

KX̃ = q∗KY +
∑
v

(μ(v)− 1)D̃v −
∑
ρ

Ẽρ ,(2)

KX = π∗KY +
∑
v

(μ(v)− 1)Dv −
∑
ρ

Eρ ,

respectively. Here, the sums in the first formula run over all rays and vertices and in the second
only over the big rays and big vertices.

Since X[D] has an attractive point, its Picard group is trivial. Hence, X[D] is Q-
Gorenstein of index l (i.e., l · KX is Cartier and l is the minimal positive integer with this
property) if and only if there is a character u ∈ M and a principal divisor div(f ) = ∑

Z aZ ·Z
on Y such that div(f · χu) = l · KX and l is the minimal positive integer with this property.
Due to [PS11], the Weil divisor div(f · χu) can be calculated as

div(f · χu) =
∑
Z,v

μ(v)(〈u, v〉 + ordZ f ) ·DZ,v +
∑
ρ

〈u, nρ〉 · Eρ .

Our first aim is to express this formula as a matrix multiplication. We assume that suppD ∪
supp f ⊂ {Z1, . . . , Zs}. We set big(DZi ) = {v1

i , . . . , v
ri
i }, big(D) = {ρ1, . . . , ρr } and

nρ1 , . . . , nρr are the primitive lattice generators. We denote μ(vij ) by μij . Then we can read
of the coefficients of div(f · χu) as components of the product vector

(3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1
1 0 . . . 0 μ1

1v
1
1

...
...

...
...

μ
r1
1 0 . . . 0 μ

r1
1 v

r1
1

. . .

0 0 . . . μ1
s μ1

s v
1
s

...
...

...
...

0 0 . . . μ
rs
s μ

rs
s v

rs
s

0 0 . . . 0 nρ1
...

...
...

...

0 0 . . . 0 nρr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
a1
...

as

u

⎞⎟⎟⎟⎠
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Here, we fix isomorphisms N = Zn and write elements of N as row vectors and elements of
M = N∗ as column vectors.

Since we want to have div(f · χu) = l · KX, the equation (2) leeds to a system of
linear equations. Before writing down this system, we want to incorporate the condition that∑
i aiZi is principal. This implies that 0 = ∑

aiZi in NS(Y ) := DivY/
num∼ ∼= Zr . We end up

with the following system of equations

(4)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z1 Z2 . . . Zs 0
μ1

1 0 . . . 0 μ1
1v

1
1

...
...

...
...

μ
r1
1 0 . . . 0 μ

r1
1 v

r1
1

. . .

0 0 . . . μ1
s μ1

s v
1
s

...
...

...
...

0 0 . . . μ
rs
s μ

rs
s v

rs
s

0 0 . . . 0 nρ1
...

...
...

...

0 0 . . . 0 nρr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=:A

⎛⎜⎜⎜⎝
a1
...

as

u

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
μ1

1b1 + μ1
1 − 1

...

μ
r1
1 b1 + μ

r1
1 − 1

...

μ1
s bs + μ1

s − 1
...

μ
rs
s bs + μ

rs
s − 1

−1
...

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, we assume that suppD ∪ suppKY ⊂ {Z1, . . . , Zs} and that these prime divisors
span NS(Y ). The classes of Zi in NS(Y ) ∼= Zr by Zi . We fix an isomorphism NS(Y ) :=
Div Y/

num∼ ∼= Zr and write elements of NS(Y ) as column vectors.

PROPOSITION 4.3. X[D] is Q-Gorenstein if and only if the above system has a
(unique) solution u ∈ (1/l) ·M , a1, . . . , as ∈ Q, such that l · ∑s

i=1 ai · Zi is principal for
some l > 0. The Gorenstein index of X[D] is the minimal l satisfying these two conditions.

PROOF. This is immediate by the above considerations. �

THEOREM 4.4. X = X[D] is Q-factorial if and only if∑
Z

(#big(DZ)− 1)+ #big(D) = dimN − rank Cl Y .

In particular, Y has a finitely generated class group if X[D] is Q-factorial.

PROOF. We consider any set of prime divisors Z1, . . . , Zs which contains the support
of D. Then by Theorem 4.2 the vector space Cl(X)⊗Q is generated by a basis of Cl(Y )⊗Q

and the divisors Eρ , DZi,v with 1 ≤ i ≤ s and v ∈ bigDZi . These are

(5) rank Cl(Y )+ #big(D)+
(
s +

∑
Z

(#big(DZ)− 1)

)
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generators. The relations are

[Zi] =
∑

v∈big(DZi
)

μ(v)DZ,v , 1 ≤ i ≤ s ,

0 =
∑
ρ

〈u, ρ〉Eρ +
∑
Z,v

μ(v)〈u, v〉DZ,v , u ∈ {u1, . . . , ur } a basis ofM .

Hence, rank Cl(X) < ∞ if and only if Cl(Y ) < ∞. Moreover, Cl(X) ⊗ Q is isomorphic
to the cokernel of the matrix A in (4). Lemma 4.6, given below, shows that the rank of the
matrix is s + r . Now, Cl(X) ⊗ Q = 0 holds if and only if the number of rows of that matrix
and hence (5), the number of our generators, equals r + s. �

Note that the condition for Q-factoriality in Theorem 4.4 is equivalent to the fact that
Cl Y has finite rank and the matrix is square. Moreover, for factoriality we get the following
stronger condition.

PROPOSITION 4.5. X[D] is factorial if and only if Cl(Y ) ∼= Zl and the above matrix
is square and has determinant ±1.

PROOF. If we consider an arbitrary T -ivariant Weil divisor instead of the canonical one,
we end up with the system of equations from (4) but with an almost arbitrary right-hand side

A ·

⎛⎜⎜⎜⎝
a1
...

as

u

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
0
...

...

⎞⎟⎟⎠ .

Here, A denotes the matrix from (4). Now, being factorial means that for every choice on the
right-hand side, we find an integral solution such that

∑
aiZi is principal.

Lemma 4.6 shows that the columns of the matrix M are linearly independent. By Theo-
rem 4.4 we know that Cl(Y ) has finite rank. Moreover, in the case of a free class group, we
have Cl(Y ) ∼= NS(Y ) and every solution

(
a
u

)
automatically corresponds to an principal divisor

div f = ∑
aiZi on Y . Now, we will find an integral solution for every right-hand side if and

only if M has determinant ±1 (since this implies that M is invertible).
Let’s now assume that D = ∑

i biZi gives a torsion element in Cl(Y ). Then π∗D
would give a torsion element in Cl(X). Let us assume, that div(f · χu) = π∗D. Then
A · (ordZ1 f − b1, . . . , ordZs f − bs, u)

t = 0. By Lemma 4.6 this implies that u = 0 and
D = div f . Hence, every torsion element in Cl(Y ) has to be trivial. �

LEMMA 4.6. The columns of the matrix in (4) are linearly independent.

PROOF. We choose a non-big ray ρ ∈ tailD and a maximal cone δ from the normal
quasifan of D such that ρ⊥ ∩ δ is a facet, and we denote this facet by τ .

We have a linear map F : u �→ D(u) ∈ Qr ∼= NSQ(Y ). Now we choose any interior
element w ∈ relint δ, hence D(u) is big by the properness of D. We consider the subspaces

V := V1 + V2 , V1 := span (Z ; D(w)|Z is not big) , V2 := span (F (τ)) .
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We claim that F(w) /∈ V . The semi-ample and big divisor D(w) defines a birational
morphism

ϕ : Y → Proj
⊕
i≥0

H 0(Y, i · D(w)).

By definition ϕ∗D(u) is ample, hence big and ϕ contracts every prime divisor Z such that
D(u)|Z is not big. Let us assume that D(w) ∈ V . It follows that

ϕ∗D(w) ∈ ϕ∗(V ) = ϕ∗(V1)+ ϕ∗(V2) = 0 + ϕ∗V2.

But since V2 does not contain any big class, the same is true for ϕ∗V2. This contradicts the
ampleness of ϕ∗D(w).

Now we choose a basis B of V and complement {D(w)} ∪ B to get a basis of NSQ(Y ).
This leads to a coordinate map x1 : NSQ → Q corresponding to the basis element D(w).
For every Zi there is a vertex vi ∈ DZi such that 〈w, ·〉 is minimized at this vertex. Now
we sum up the corresponding rows in the matrix with multiplicity x1(Zi)/μ(vi) (by choice
of the matrix, all non-big vertices vi have x1(Zi) = 0) and get

(
x1(Z1), . . . , x1(Zr), vρ

)
,

where vρ := ∑
i x1(Zi) · vi . By construction we have x1(F (u)) = 〈u, vρ〉 for u ∈ δ. Since

x1(F (u)) = 0 and x1(F (u+ αw)) = α for u ∈ τ and α > 0, it follows that vρ is a non-zero
element in ρ.

Now assume that
∑
i λici = 0, where the ci’s are the columns of the matrix. Then for

every big ray ρ we get
∑n
i=1 λr+i · (nρ)i = 0, where (nρ)i denotes the i-th coordinate of the

primitive generator of ρ. Since
∑r
i=1 λi ·Zi = 0 holds because of the first rows of the matrix,

we get
∑n
i=1 λr+i · (vρ)i = 0 for every non-big ray of D. The fact that the tail cone tailD has

maximal dimension implies that λr+1, . . . , λr+n are zero.
Let us assume that the first r ′ columns correspond to prime divisors with big(DZ) �= ∅.

By construction of the matrix, these columns have staircase structure. Hence, the coefficients

λ1, . . . , λr ′ vanish. The remaining columns are of the form
(
Zi
0

)
, i.e., all but the first r entries

vanish. Since the sets of big vertices big(DZi ) are empty, D(u)|Zi is not big for every u ∈
relintσ∨. Hence, the Zi are exceptional prime divisor of the birational projective map

(6) ϑu : Y → Yu Proj

(⊕
j≥0

H 0 (Y,O(j · D(u)))
)
.

In particular, their images in NS(Y ) are linearly independent, which completes the
proof. �

Let us assume thatX is Q-Gorenstein. Remember that, for a birational proper morphism
r : X̃ → X, we have a canonical divisor KX̃ on X̃ such that that the discrepancy divisor
Discr(r) = KX̃ − r∗KX is supported only at the exceptional divisor

∑
i Ei of r . Hence, it has

the form
∑
i αiEi . The coefficient αi of Discr(r) is called discrepancies of r at Ei . Similarly,

the discrepancies of a pair (X,B), consisting of a normal variety and a Q-Cartier divisor, are
the coefficients βi of Discr(r, B) := KX̃ − r∗(KX + B) = ∑

βiEi . With this notation we
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have

(7) Discr(r ′ ◦ r) = Discr(r ′,−Discr(r)) .

Consider an SNC polyhedral divisor D. Fix y ∈ Y and consider the prime divisors
Z1, . . . , Zm from the support of D containing y. We may choose additional prime divisors
Zm+1, . . . , Zdim(Y ), such that Z1, . . . , Zdim(Y ) intersect tranversally at y.

From Section 2, we know that the formal neighborhood of every fiber X̃y of X̃[D] → Y

is isomorphic to that of of a closed subset of a toric variety corresponding to some cone
σ ′
y ∈ NQ ⊕ QdimY . Moreover, the isomorphism identifies D̃Zi,v and V (Q≥0(v, ei )) as well

as Eρ and V (ρ × 0).
Now we may calculate a representation KX = π∗H + div(χu) of the canonical divisor

on X by solving a system of linear equations as in Proposition 4.3. Here, H = ∑
Z aZ · Z is

a principal divisor on Y . Having such a representation, we get the discrepancies of X̃[D] →
X[D] at D̃Z,v or Ẽρ , respectively as

(8) discrZ,v = μ(v)(bZ − aZ − 〈u, v〉 + 1)− 1 , discrρ = −1 − 〈u, nρ〉 .
We may also consider a toroidal desingularization ϕ : X → X̃[D], obtained by toric

desingularisations of the Xσ ′
y
. Since the discrepancies discrZ,v vanish for Z /∈ suppD, the

discrepancy divisor on X̃[D] corresponds to a toric divisor B ⊂ Xσ ′
y

and we are able to
calculate the discrepancy divisor Discr(ϕ, B) by toric methods.

DEFINITION 4.7. We say that a pair (X,B) is log-terminal if, for a log-resolution of
(X,B), the discrepancies are greater than −1. We say that X is log-terminal if the pair (X, 0)
is log-terminal.

For the toric case we have the following lemma

LEMMA 4.8. A toric pair (Xσ ,B) is log-terminal as long as −B + ∑
ρ V (ρ) is effec-

tive and Q-Cartier.

PROOF. We may argue as in the proof of [Fuj03, Lemma 5.1]. Since we have the equal-
ity KXσ = − ∑

ρ V (ρ), the Q-divisor B + KXσ corresponds to an element u ∈ MQ such
that 〈u, nρ〉 < 0 for every ρ ∈ σ(1). But then the primitive generator nρ′ of a ray ρ′ in a sub-
division Σ of σ is a positive combination of primitive generators nρ of rays ρ of σ . Hence,
〈u, nρ′ 〉 < 0 holds. But now we have discrV (ρ′) = −1 − 〈u, nρ′ 〉 > −1. �

A Q-divisor B = ∑
Z bZ · Z is called a boundary divisor if 0 < bZ ≤ 1. For a strictly

ample polyhedral divisor on Y , we define the boundary divisor B := ∑
Z((μZ − 1)/μZ) · Z

on Y , where μZ is defined as max{μ(v); v ∈ DZ}.
THEOREM 4.9. Assume that D is strictly ample and X[D] is Q-Gorenstein, then

X[D] is log-terminal if and only if (Y, B) is log-terminal and −B −KY is ample.

PROOF. Let KX = π∗H + div(χw) be a representation as above. By (2) we have

(9) KY + B = H +
∑
Z

〈w, vZ 〉 · Z ,
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here vZ ∈ big(DZ) denotes the vertex where μ obtains its maximum.
For any ray ρ ∈ σ(1), the value 〈w, nρ 〉 has to be negative because of the condition

discrρ = −1 − 〈w, nρ 〉 > −1 for non-big rays or 〈w, nρ 〉 = −1 for big rays, respectively. It
follows that −w ∈ relint(σ∨).

Let v′
Z denote vertex in DZ , where −w is minimized. On the one hand, we get D(−w) ≤∑

Z〈w, vz〉 · Z. On the other hand we have

〈w, vZ〉 − μ(vZ)− 1

μ(vZ)
= 〈w, v′

Z 〉 − μ(v′
Z)− 1

μ(v′
Z)

,

and by the maximality of μ(vZ) we infer that 〈w, vZ 〉 ≤ 〈w, v′
Z〉. We conclude that

(10) KY + B = H − D(−w) = H +
∑
Z

〈w, v′
Z〉 · Z .

Since D(−w) is ample this implies the Fano property for the pair (Y, B).

Now consider a birational proper morphism ϕ : Ỹ → Y . Also denote X̃[ϕ∗D] by X̃.
Consider a prime divisor E ⊂ Ỹ and denote by (ϕ∗Z)E the coefficient of ϕ∗Z at E. Note
that v′

E := ∑
Z(ϕ

∗Z)E · v′
Z is a vertex in (ϕ∗D)E . If v′

E is not a big vertex, by (8) we get the
discrepancy

discrv′
E

=μ(v′
E)

(
(KỸ )E − (ϕ∗H)E − 〈w, v′

E 〉 + 1
) − 1(11)

=μ(v′
E)

(
(KỸ )E − ϕ∗(KY + B)E + 1

) − 1 .

For the case that E is an exceptional divisor of ϕ, this proves the log-terminal property for
(Y, B).

For the other direction, we first show that the Fano property for (Y, B) implies that −w ∈
σ∨. For big rays ρ ∈ big(D) we have 〈w, nρ 〉 = −1 by (2). For a non-big ray ρ we consider
a maximal chamber of linearity δ ⊂ σ∨ such that τ = ρ⊥ ∩ δ is a facet. This corresponds to
a family of vertices vuZ such that D(u) = ∑

Z〈u, vuZ〉 · Z for u ∈ relint δ. Now there exists a
decomposition −w = α · u+ uτ such that uτ ∈ τ and u ∈ relint δ. Hence, we have

−KY − B ≤ −H +
∑
Z

〈−w, vuZ〉 · Z ∼ D(uτ )+ αD(u) .

By our precondition −KY − B is big. This implies that the right-hand side is big, too. Then
we must have α > 0 since D(u) is big but D(uτ ) is not. By 〈−w, nρ〉 = α · 〈u, nρ 〉, we
conclude that 〈−w, nρ〉 > 0 and hence discrρ = −1 − 〈w, nρ 〉 > −1 and −w ∈ σ∨. Let
ϕ : Ỹ → Y be a desingularization such that ϕ∗D is SNC. By the equation (11), we infer that
discvE > −1 for every exceptional divisorE and every vertex vE ∈ (ϕ∗D)E . By Lemma 4.12
this completes the proof. �

REMARK 4.10. As a special case of the theorem, we recover the fact that the log-
terminal property of a section ring characterizes log-terminal Fano varieties [SS10, Prop.
5.4].
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REMARK 4.11. A variety is called of Fano type if there exists a boundary divisor such
that the pair (X,B) is Fano and log-terminal. In recent papers [Bro11, GOST12, KO12], va-
rieties Y of Fano type are characterized by the log-terminality of the Cox ring Cox(Z) :=⊕

D∈ClZ O(
Y,O(D)). This observation is very much related to Theorem 4.9. Indeed, there

exists a projective morphism Y → Z and a polyhedral divisor D on Y describing the multi-
graded ring Cox(Z) (see [AW11]). If we omit the condition that D is strictly ample, we may at
least conclude that −(KY +B) = D(−w) is semi-ample and big in the proof of Theorem 4.9.
Hence, as in (6) we get a birational contraction morphism Y → Y−w corresponding to this
divisor. By replacing Y with Y−w in the proof of Theorem 4.9, we conclude that (Y−w,B)
is Fano and log-terminal, hence Y is of Fano type. By construction Y−w is a small birational
modification ofZ (i.e., they are isomoriphic outside closed subsets of codimension 1). Hence,
by [GOST12, Lemma 3.1] Z is also of Fano type.

LEMMA 4.12. Let D be an SNC polyhedral divisor. Then X[D] is log-terminal if and
only if the discrepancies of ψ : X̃[D] → X[D] are all greater than −1.

PROOF. Proposition 2.6 shows that X̃[D] is toroidal. Moreover, the exceptional locus
of ψ is a toroidal subset. Hence, by Lemma 4.8 and (7) we get our claim. �

COROLLARY 4.13. Every Q-Gorenstein T-variety X of complexity c with singular
locus of codimension greater than c + 1 is log-terminal.

PROOF. We may assume that X is affine. Given an SNC polyhedral divisor for X, we
consider exceptional divisors D̃Z,v, Ẽρ of X̃[D] → X with discrepancies at most −1. By the
orbit decomposition ofX[D] given in [AH06], we know that Ẽρ is contracted via r to a closed
subvariety of codimension at most c + 1 in X[D] and D̃Z,v to a subvariety of codimension at
most c. But r(Ẽρ) and r(D̃Z,v) are necessarily parts of the singular locus. �

5. Complexity one. As an application, in this section we restate our previous results
in this particular setting. This allows us to rediscover some well-known results with our meth-
ods.

Let D be a proper polyhedral divisor on Y . If the corresponding T -action on X = X[D]
has complexity one then Y is a curve. Since any normal curve is smooth and any proper
birational morphism between smooth curves is an isomorphism, the base curve Y is uniquely
determined by the T -action on X.

Furthermore, any curve Y is either affine or projective, and any proper polyhedral divisor
D on Y is SNC and strictly ample. Let D and D′ be two proper polyhedral divisors on Y with
the same tail cone σ . Then X[D] � X[D′] equivariantly if and only if the application

Δ : σ∨ → DivQ(Y ) , u �→ D(u)− D′(u) ,

is the restriction of a linear map and Δ(u) is a principal Cartier divisor for all u ∈ σ∨
M .

The simplest case is the one where N = Z, i.e., the case of k∗-surfaces. In this particu-
larly simple setting, there are only two non-equivalent pointed polyhedral cones in NQ � Q

corresponding to σ = {0} and σ = Q≥0.
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If we assume further that Y is projective, then σ �= {0} since D(1) and D(−1) can not
be big simultaneously and so we have σ = Q≥0. In this case D(u) = uD(1). Hence D
is completely determined by D1 := D(1), and X[D] � X[D′] equivariantly if and only if
D1 − D′

1 is a principal Cartier divisor. We also let

(12) D1 =
r∑
i=1

ei

mi
· zi , where gcd(ei,mi) = 1 , and mi > 0 .

In this case, the algebra A[D] is also known as the section ring of D1.

5.1. Rational singularities. The following proposition gives a simple characteriza-
tion of T-varieties of complexity one having rational singularities.

PROPOSITION 5.1. LetX = X[D], where D is an SNC polyhedral divisor on a smooth
curve Y . Then X has only rational singularities if and only if

(i) Y is affine, or
(ii) Y = P 1 and deg�D(u)� ≥ −1 for all u ∈ σ∨

M .

PROOF. If Y is affine, then the morphism ϕ : X̃[D] → X is an isomorphism. By
Lemma 2.6 X is toroidal, and thus X has only toric singularities and toric singularities are
rational.

If Y is projective of genus g , we have dimH 1(Y,OY ) = g . Hence, by Corollary 3.5,
if X has rational singularities then C = P 1. Furthermore, for the projective line we have
H 1(P 1,OP 1(D)) �= 0 if and only if degD ≤ −2 [Har77, Chap. III, Th. 5.1]. Now the
corollary follows from Theorem 3.4. �

In the next proposition, we provide a partial criterion for the Cohen-Macaulay property
in the case of complexity one. Recall that if the complexity is one, a ray ρ ∈ σ(1) is a big ray
if and only if degD ∩ ρ = ∅.

PROPOSITION 5.2. Let X = X[D], where Y is a smooth curve and D is an SNC
polyhedral divisor on Y . Then X is Cohen-Macaulay if either

(i) Y is affine, or
(ii) rankM = 1.

Moreover, if Y is projective and big(D) = σ(1), then X is Cohen-Macaulay if and only if X
has rational singularities.

PROOF. If Y is affine then X = X̃[D]. Thus X has rational singularities and so X
is Cohen-Macaulay. If rankM = 1 then X is a normal surface. By Serre’s criterion, any
normal surface is Cohen-Macaulay (see [Eis95, Th. 11.5]). Finally, the last assertion is a
specialization of Proposition 3.7. �

REMARK 5.3. Corollary 3.8 and Proposition 5.2 give a full classification of isolated
Cohen-Macaulay singularities on T-varieties of complexity one.
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5.2. Log-terminal and canonical singularities. In the complexity one case, every
proper polyhedral divisor is strictly ample since ampleness and bigness coincide. Now, The-
orem 4.9 gives rise to the following corollary.

COROLLARY 5.4. Let D = ∑
z Δz · z be a proper polyhedral divisor on a curve Y .

Assume that X[D] is Q-Gorenstein. Then X[D] is log-terminal if and only if either

(i) Y is affine, or
(ii) Y = P 1 and

∑
z(μz − 1)/μz < 2.

PROOF. By Theorem 4.9 we know that −KY − ∑
z((μz − 1)/μz) · z has to be ample.

This is the case exactly under the conditions on the corollary. �

REMARK 5.5. (i) The second condition in the corollary can be made more explicit:
there are at most three coefficients Dz1 , Dz2 , Dz3 on P 1 having non-integral vertices, and the
triple (μz1, μz2 , μz3) is one of the Platonic triples (1, p, q), (2, 2, r), (2, 3, 3), (2, 3, 4), and
(2, 3, 5). Here p ≥ q ≥ 1, and r ≥ 2.

(ii) It is well known that log-terminal singularities are rational. Indeed, since a/b −
�a/b� ≤ (b−1)/b, the condition

∑
z(μz−1)/μz < 2 ensures that deg�D(u)� > degD(u)−

2 ≥ −2. Thus X[D] has rational singularities by Corollary 5.1.

As a direct consequence, we get the following corollary characterizing quasihomoge-
neous surfaces having log-terminal singularities. Recall the definition of D1 in (12).

COROLLARY 5.6. Every quasihomogeneous log-terminal surface singularity is iso-
morphic to the section ring of the divisor

D1 = e1

m1
· [0] + e2

m2
· [1] + e3

m3
· [∞]

with degD1 > 0 on Y = P 1. Here (m1,m2,m3) is one of the Platonic triples (1, p, q),
(2, 2, r), (2, 3, 3), (2, 3, 4), and (2, 3, 5), where p ≥ q ≥ 1, and r ≥ 2.

We now characterize quasihomogeneous surfaces having canonical singularities, i.e.,
double rational points.

THEOREM 5.7. Every quasihomogeneous canonical surface singularity is isomorphic
to the section ring of one of the following Q-divisors on P 1 :

Ai : i + 1

i
· [∞] , i ≥ 1 .

Di : 1

2
· [0] + 1

2
· [1] − 1

(i − 2)
· [∞] , i ≥ 4 .

Ei : 1

2
· [0] + 1

3
· [1] − 1

(i − 3)
· [∞] , i = 6, 7, 8 .
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PROOF. Canonical singularities are log-terminal. Hence, it suffices to consider a poly-
hedral divisors D on P 1 as in Corollary 5.6, i.e., those of the form

D1 = e1

m1
· [0] + e2

m2
· [1] + e3

m3
· [∞] , and degD1 > 0 .

Let 1 ≤ m1 ≤ m2 ≤ m3. Up to linear equivalence, we may assume that m1 > e1 ≥ 0
and m2 > e2 ≥ 0. If m1 = 1 we have e1 = 0 and X is isomorphic to the affine toric variety
given by the cone pos((e2,m2), (e3,−m3)). But every cone is isomorphic to a subcone of
pos((0, 1), (1, 1)). Therefore, we may assume that m1 = m2 = 1, e1 = e2 = 0 and e3 ≥ m3.

The system of equations from Proposition 4.3 takes the form

1 1 1 0 0
m1 0 0 e1 m1 − 3
0 m2 0 e2 m2 − 1
0 0 m3 e3 m3 − 1 .

Any solution (a1, a2, a3, u) must also fulfill

(13) u · degD =
∑
i

mi − 1

mi
− 2 .

The formula for the discrepancy at Eρ yields discρ = −1 − u. Hence, we need u ≤ −1.
For the case (1, 1, q), the equation (13) yields u = −(m3 + 1)/e3. Hence we must have
e3 = m3 + 1. For the case (2, 2, r), the equation (13) takes the form u(m3 + e3)/m3 = 1/m3

and we get e3 = 1 −m3. For the remaining case (2, 3, r), we get

3 + 2e2 + 2e3

6
= 1

6
,

6 + 4e2 + 3e3

12
= 1

12
,

15 + 10e2 + 6e3

30
= 1

30
.

Since 1, 2 are the only possibilities for e2, we infer that e2 = 1 and e3 = 1 −m3. �

5.3. Elliptic singularities. Let (X, x) be a normal singularity, and let ψ : W → X

be a resolution of the singularity (X, x). We says that (X, x) is an elliptic singularity if

Riψ∗OW = 0 for all i ∈ {1, . . . , dimX − 2} , and RdimX−1ψ∗OW � k .

An elliptic singularity is minimal if it is Gorenstein. (see, e.g., [Lau77] and [Dai02]).
In the complexity one case, Riψ∗OW = 0 for all i ≥ 2. Thus, the only way to have

elliptic singularities is to have M = Z. That is, the case of k∗-surfaces. In the following, we
restrict to this case.

We give now a simple criterion as to whenX[D] is Q-Gorenstein. This is a specialization
of Proposition 4.3. Recall that the boundary divisor is defined in this particular case as B =∑
i ((mi − 1)/mi) · zi . We let u0 = deg(KY + B)/ deg(D1).

LEMMA 5.8. The surface X[D] is Q-Gorenstein if and only if there exists l such that
u0 ∈ (1/l) · Z and the divisor l · (u0D1 − KY − B) is principal. The Gorenstein index of
X[D] is the minimal positive integer l satisfying these two conditions. Furthermore, if X[D]
is Q-Gorenstein of index 1 then X[D] is Gorenstein.
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PROOF. Let a canonical divisor of the curve Y be given by

KY =
k∑

i=r+1

bi · zi , where zi �= zj for all i �= j .

With the notation of Proposition 4.3, we have that big(Dzi ) = {ei/mi} for i ≤ r and
big(Dzi ) = {0}, otherwise. Furthermore, μi = mi and μivi = ei for i ≤ r , and μi = 1
and μivi = 0, otherwise. With this considerations, the system of equations in (4) becomes

miai + eiu = mi − 1 for all i ≤ r,

ai = bi for all i ≥ r + 1 ,

and so

ai = −u ei
mi

+ mi − 1

mi
for all i ≤ r .

This yieldsD = −uD1 +B+KY and u = u0. This shows the first assertion. The second
one follows at once since any normal surface is Cohen-Macaulay. �

REMARK 5.9. In [Wat81], a result similar to Lemma 5.8 is proved for affine k∗-
varieties. This result can also be derived from Proposition 4.3 with an argument similar to
the proof of Lemma 5.8.

In the following theorem we characterize quasihomogeneous (minimal) elliptic singular-
ities of surfaces.

THEOREM 5.10. Let X = X[D] be a normal affine surface with an effective elliptic
1-torus action, and let 0̄ ∈ X be the unique fixed point. Then (X, 0̄) is an elliptic singularity
if and only if one of the following two conditions holds.

(i) Y = P 1, deg�uD1� ≥ −2 for all u ∈ Z>0, and deg�uD1� = −2 for one and only
one u ∈ Z>0.

(ii) Y is an elliptic curve, and for every u ∈ Z>0, the divisor �uD1� is not principal and
deg�uD1� ≥ 0.

Moreover, (X, 0̄) is a minimal elliptic singularity if and only if (i) or (ii) holds, u0 is integral
and u0D1 −KY − B is principal.

PROOF. Assume that Y is a projective curve of genus g , and let ψ : Z → X be a
resolution of singularities. By Theorem 3.3,

R1ψ∗OZ =
⊕
u≥0

H 1(Y,OY (uD1)) .

Since dimR1ψ∗OZ ≥ g = dimH 1(Y,OY ), if X has an elliptic singularity then g ≤ 1.
If Y = P 1 then (X, 0̄) is an elliptic singularity if and only if H 1(Y,OY (uD1)) = k for

one and only one value of u. This is the case if and only if (i) holds. If Y is an elliptic curve,
then H 1(Y,OY ) = k. So the singularity (X, 0̄) is elliptic if and only if H 1(Y, uD1) = 0 for
all u > 0. This is the case if and only if (ii) holds.
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Finally, the last assertion concerning minimal elliptic singularities follows immediately
form Proposition 5.8. �

EXAMPLE 5.11. By applying the criterion of Theorem 5.10, the following combina-
torial data gives rational k∗-surfaces with an elliptic singularity at the unique fixed point.

(i) Y = P 1 and D1 = − 1
4 [0] − 1

4 [1] + 3
4 [∞]. In this case X = SpecA[Y,mD1] is

isomorphic to the surface in A3 defined by the equation

x4
1x3 + x3

2 + x2
3 = 0 .

(ii) Y = P 1 and D1 = − 2
3 [0] − 2

3 [1] + 17
12 [∞]. In this case X = SpecA[Y,mD1] is

isomorphic to the surface

V (x4
1x2x3 − x2x

2
3 + x2

4 , x
5
1x3 − x1x

2
3 + x2x4, x

2
2 − x1x4) ⊆ A4 .

This last example is not a complete intersection since otherwise (X, 0̄) would be Gorenstein,
i.e., minimal elliptic, which is not the case by virtue of Theorem 5.10. In the first example,
the elliptic singularities is minimal since every normal hypersurface is Gorenstein.

6. Factorial T-varieties. Let Y be a normal projective variety having class group Z.
Hence, we have a canonical degree map Cl(Y ) → Z by sending the ample generator to
1. We further assume that the complete linear system of the ample generator is of positive
dimension. We choose a set Z = {(Z1, μi), . . . , (Zs, μs)} of prime divisors of degree 1 and
corresponding tuplesμi = (μi1, . . . , μiri ) ∈ N ri , where N is the set of non-negative integers.
We assume that the integers gcd(μi) are pairwise coprime and define |Z| := ∑

i (ri − 1).
We give a construction of a polyhedral divisor on Y with polyhedral coefficients inNQ =

Q|Z|+1 by induction on |Z|.
CONSTRUCTION 6.1. If |Z| = 0 then μ11, . . . , μs1 are positive pairwise coprime

integers. Also the greatest common divisor of the integersMi := μ11 · · ·μs1/μi1 for 1 ≤ i ≤
s is 1. Hence, there are integer coefficients e1, . . . , es such that 1 = ∑

eiMi . Now, we define
the vertices vi1 := ei/μi1 ∈ NQ.

If |Z| > 0 there is j ∈ {1, . . . , s} such that rj > 1. Now, we consider the data Z ′
obtained from Z by replacing μj by

μ′
j := (μj1, . . . , μjrj−2, gcd(μjrj−1, μjrj )).

By induction, we obtain vertices v′
im ∈ NQ from the data Z ′ consisting of the integers μ′

im

with v′
jrj−1 being the vertex corresponding to μ′

jrj−1 = gcd(μjrj−1, μjrj ). We find coeffi-

cients α, β ∈ Z such that μ′
jrj−1 = αμjrj−1 + βμjrj . Now, we define the vertices

vjrj−1 =
(
v′
j1,−

β

μjrj−1

)
, vjrj =

(
v′
j1,

α

μjrj

)
,

and vim = (v′
im, 0) for i �= j or m < rj − 1.
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For every set of admissible data Z , we can define a polyhedral divisor D = D(Z) on Y .
The tail cone is spanned by the rays Q≥0 · ∑

i vimi , where 1 ≤ mi ≤ ri . Also the vertices of
DZi are exactly the vi1, . . . vi,ri . We denote the corresponding algebra A[D] also by A[Z].

THEOREM 6.2. A[Z] is a normal factorial ring.

PROOF. For |Z| = 0, the matrix of relations for the class group has the form

MZ =

⎛⎜⎜⎜⎝
1 . . . 1 0
μ11 . . . 0 μ11v11
...

. . .
...

...

0 . . . μs1 μs1vs1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 . . . 1 0
μ11 . . . 0 e1
...

. . .
...

...

0 . . . μs1 es

⎞⎟⎟⎟⎠ .

We get detMZ = ∑
i eiMi = 1 by the choice of vi1 = ei/μi .

By the inductive construction above, we obtain MZ from MZ ′ by adding first a column
of zeros on the left and then replacing the row (0 · · · 0, μ′

jrj−1, 0 · · · 0, μ′
jrj−1v

′
jrj−1, 0) by

the two rows
( 0 · · · 0 μjrj−1 0 · · · 0 μjrj−1v

′
jrj−1 −β ) ,

( 0 · · · 0 μjrj 0 · · · 0 μjrj v
′
jrj−1 α ) .

Via multiplication with a SL2-matrix, these rows transform to

( 0 · · · 0 0 0 · · · 0 0 1 ) ,
( 0 · · · 0 μ′

jrj−1 0 · · · 0 μ′
jrj−1v

′
jrj−1 0 ) .

Hence, we have detMZ = detMZ ′ . But detMZ ′ = 1 holds by induction. �

For the case Y = P 1 we obtain a complete classification. Now, z1, . . . , zs are points in
P 1. Without loss of generality, we may assume that the support of D consists of at least 3
points. Otherwise X would be toric, and this implies X = An. By applying an isomorphism
of P 1, we may assume z1 = ∞, z2 = 0 and z3, . . . , zs ∈ k∗. Via K(P 1) ∼= k(t) we get
div(t) = [0] − [∞] = z2 − z1.

COROLLARY 6.3 ([HHS11, Th. 1.9]). Every normal k-algebraA of dimension n ad-
mitting a (positive) grading by Nn−1 such that A0 = k is factorial if and only if it is isomor-
phic to a free algebra over some

A[Z] = k
[
Tij ; 0 ≤ i ≤ s, 1 ≤ j ≤ ri

]
/
(
T
μi
i + T

μ2
2 − ziT

μ1
1 , 3 ≤ i ≤ s

)
,

such that the integers gcd(μi) are pairwise coprime. Here, we define T μii := ∏
j T

μij
ij .

In particular, every such k-algebra is a complete intersection of dimension 2+∑
i (ri−1).

REMARK 6.4. For the cases of dimension two and three, this result was obtained in
[Mor77] and [Ish77], respectively.

PROOF. The corresponding polyhedral divisor D by Theorem 4.4 necessarily lives on
P 1. Since X = SpecA = X[D] is factorial, the Cox ring Cox(X) := ⊕

D∈ClXO(
X,O(D))

equals A. Now [HS10, Cor. 4.9] implies that A is of the desired form.
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For the other direction, the construction 6.1 provides a polyhedral divisor D being facto-
rial by Theorem 6.2 with A = A[D]. �

REMARK 6.5. We can easily identify the log-terminal singularities of the form A[Z].
Namely, by Theorem 4.9 A[Z] is log-terminal if and only if maxμi > 1 for at most three
1 ≤ i1 < i2 < i3 ≤ s and (maxμi1,maxμi2 ,maxμi3) is one of the platonic triples (1, p, q),
(2, 2, q), (2, 3, 3), (2, 3, 4), (2, 3, 5) with 1 ≤ p ≤ q .

In the case of complexity one, we are also able to characterize isolated factorial singu-
larities. Every (normal) factorial surface singularity is of course isolated. For the remaining
cases we provide the following theorem.

THEOREM 6.6. Every factorial T-variety of complexity one and dimension at least
three having an isolated singularity at the vertex is one of the following.

(i) A cAq threefold singularity of the form

k[T1, . . . , T4]/(T1T2 + T
q+1

3 + T r4 ) ,

with 0 < q + 1 < r being coprime.
(ii) A fourfold singularity which is stably equivalent to Aq

k[T1, . . . , T5]/(T1T2 + T3T4 + T
q+1

5 ) .

(iii) A fivefold singularity which is stably equivalent to A1

k[T1, . . . , T6]/(T1T2 + T3T4 + T5T6) .

PROOF. By Corollary 6.3, the variety is given by equations of the form
ri∏
j=1

T
μij
ij +

r2∏
j=1

T
μ2j
2j − zi

r1∏
j=1

T
μ1j

1j with 3 ≤ i ≤ s .

Now, we consider the Jacobian matrix of these equations.⎛⎜⎝
−z3f11 ··· −z3f1r1 f21 ··· f2r2 f31 ··· f3r3−z4f11 ··· −z4f1r1 f21 ··· f2r2 f41 ··· f4r4

...
...

...
...

. ..
−zsf11 ··· −zrf1r1 f21 ··· f2r2 fs1 ··· fsrs

⎞⎟⎠
Here, fij denotes the partial derivative ∂T μii /∂Tij . From Corollary 6.3, we know that the
variety has dimension 2 +∑

i (ri − 1). Since we consider varieties of dimension at least three,
we must have rl > 1 for at least one l. Then for

Tij =
{

1 if (i, j) = (l, 1) ,

0 otherwise,

all but one column vanish. Hence, we are in the case of a hypersurface. Now, one easily
checks that a multi-exponent μi > (1, 1) automatically leads to partial derivatives fij which
jointly vanish even if one of the terms Tij does not vanish. Hence, the singular locus has
dimension at least one. �
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