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Abstract. In this paper we continue to explore the index of elliptic units. In a previous
article we determined the asymptotic behavior in Zp-extensions of the p-part of this index
divided by the p-part of the ideal class number. We proved the existence of an invariant µ∞
which governs this behavior, and gave sufficient conditions for the vanishing of µ∞. Here we
give examples with nonzero µ∞, especially in the case of anticyclotomic Zp-extensions.

1. Introduction. Let k be an imaginary quadratic field and let H be the Hilbert class
field of k . Let F be a finite abelian extension of k and let OF (resp. O×

F ) be the ring of
integers (resp. the group of units) of F . Let us also denote by CF the group of elliptic units
of F defined by Rubin in [12]. Let hF be the ideal class number of F . In [7] we studied the
behavior of the quotient [O×

K : CK ]/hK , where K runs through all the finite extensions of
k containing F and contained in a given Zp-extension of F abelian over k. We proved the
following result. Let p be a prime number and let F∞ be a Zp-extension of F abelian over k.
If n is a nonnegative integer, then we let Fn be the unique subextension of F∞/F of degree
pn over F . If A is a positive integer, then we denote by Ap the p-part of A, that is, the exact
power of p that divides A. If H ⊂ F , then there exist µ∞ ∈ N and ν∞ ∈ Z such that

[O×
Fn

: CFn]p = pµ∞pn+ν∞(hFn)p ,

for all sufficiently large n. Further, a sufficient condition to have µ∞ = 0 may be stated as
follows. Let SF∞,F be the set of prime ideals of Ok that ramify in F/k but not in F∞/F . If
the decomposition group of q in F∞/k is infinite for all q ∈ SF∞,F , then we have µ∞ = 0.
Moreover there exists cF∞ ∈ Q× such that

[O×
Fn

: CFn] = cF∞hFn ,

for all sufficiently large n. Let us observe that, in all the cases where the classical Iwasawa
main conjecture for imaginary quadratic fields is well formulated and proved, we have µ∞ =
0. Rubin has proved this conjecture in the semi-simple case, cf. [12], and Bley proved it in a
more general context, cf. [1]. One may ask if our µ∞ has any interpretation in terms of the
µ-invariant of the objects of Iwasawa main conjecture.

The aim of this paper is to give examples for which µ∞ is not zero. Indeed, under some
additional hypotheses, we are able to compute µ∞ when SF∞,F contains exactly three prime
ideals, all of them split completely in F∞/F . We conclude by giving numerical examples in
the case of the anticyclotomic Zp-extensions.
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1.1. Notation. All our number fields are considered as subfields of C, the field of
complex numbers. If F is a finite abelian extension of k, then we denote by µF the group of
roots of unity in F and by wF its order. Let a be a fractional ideal of k. If a is integral then
we let â be the product of the nonzero prime ideals of Ok that divides a. If a is prime to the
conductor of F/k, then we denote by (a, F/k) the automorphism of F/k associated to a by
the Artin map. Usually we shall use GF to denote the group Gal(F/k). The inertia group in
F/k of a non zero prime ideal p of Ok will be denoted Tp(F ). Let m be a nonzero ideal of
Ok . Then we denote by km the ray class field of k modulo m. We denote by N(m) (resp. em)
the cardinal number of the ring Ok/m (resp. Z/Z ∩ m). The number of roots of unity in k

that are equivalent to 1 modulo m will be denoted by rm. The cardinal number of a finite set
X will be denoted #X or |X| as well.

2. Elliptic units. Let F be a finite abelian extension of k. In this section we recall the
definition of CF and give the index formula (12). As we shall see below, this index formula
uses an intermediate group of elliptic units which we denote ΩF .

2.1. The group ΩF . The “discriminant-quotients” are one of the ingredients used to
construct elliptic units. Recall that the discriminant of a lattice L of C is

∆(L) = g2(L)3 − 27g3(L)2 ,

i.e., the discriminant of the equation

℘ ′(z, L)2 = 4℘(z,L)3 − g2(L)℘ (z, L) − g3(L) ,

satisfied by the Weierstrass ℘-function ℘(z,L) and its derivative ℘ ′(z, L). It is well known
that the theory of modular functions and the Shimura reciprocity law have the following im-
portant consequence. For all fractional ideal a of k, the quotient

(1)
∆(Ok)

∆(a)

is in H . Moreover, if τ ∈ Gal(H/k) then(
∆(Ok)

∆(a)

)τ

= ∆(b)

∆(ab)
,

where b is any fractional ideal of k satisfiying (b,H/k) = τ−1. See for instance [5, chap.11
Corollary and chap.12 Theorem 5]. Let us denote by Q the subgroup of H× generated by all
the quotients

∆(a)

∆(b)
,

where a and b run through the set of fractional ideals of k. Let σ be in Gal(H/k), a a fractional
ideal of k and x ∈ k be chosen so that (a,H/k) = σ−1 and ah = xOk (h = hk = [H : k]).
Then the number

ϕ(1)(σ ) = x12∆(a)h

depends only upon σ . This invariant will appear in the Kronecker limit formula (6).
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Robert-Ramachandra invariants are also important ingredients in the construction of el-
liptic units. To define them, it is necessary to introduce first the Weierstrass σ -function σ(z, L)

defined for a lattice L of C by the infinite product

σ(z, L) = z
∏
ω∈L

(
1 − z

ω

)
ez/ω+(z/ω)2/2 .

This is a holomorphic function on all C with simple zeros at the points of L and no other
zeros. The logarithmic derivative ζ(z, L) of σ(z, L) is called the Weierstrass ζ -function. It is
equal to the infinite sum

ζ(z, L) = d log(σ (z, L))

dz
= 1

z
+

∑
ω∈L

(
1

z − ω
+ 1

ω
+ z

ω2

)
,

which converges absolutely and uniformly on every compact subset of C − L. Thus, ζ(z, L)

is a meromorphic function on C with simple poles at the points of L and no other poles. We
have the identity

dζ(z, L)

dz
= −℘(z,L) .

Since ℘(z,L) is elliptic with respect to L, there exists a group homomorphism η(·, L) : L →
C such that

η(ω,L) = ζ(z + ω,L) − ζ(z, L)

for all ω ∈ L and all z ∈ C −L. Let us extend η(·, L) to the field C to obtain an R-linear map
from C into itself, still denoted η(·, L). Then Robert-Ramachandra invariants are defined by
using the function

(2) ϕ(z, L) = (e−η(z,L)z/2σ(z, L))12∆(L) .

Indeed, let m �= (1) be a nonzero proper ideal of Ok . Let σ be an element of Gal(km/k) and
a be a nonzero ideal of Ok prime to m such that σ = (a, km/k), then

(3) ϕm(σ ) = ϕ(1, a−1m)em

is nonzero and depends only on σ . We call ϕm(σ ) the Robert-Ramachandra invariant associ-
ated to σ . Here also the theory of modular functions and Shimura reciprocity law give

(4) ϕm(σ ) ∈ Okm and ϕm(σ )σ
′ = ϕm(σσ ′) ,

for all σ, σ ′ ∈ Gal(km/k). See [5, Chap. 19, p. 263, Theorem 2] to get integrality and [ibid.
p. 265, Theorem 3] to get the galois action. In [8], G. Robert shows that the functions ϕ(z, L)

satisfy very remarkable distribution relations from which he deduces, thanks to (4), the fol-
lowing norm formulas. Let q be a non zero prime ideal of Ok . Then we have

Nkmq/km(ϕmq(1))rm/rmq =




ϕm(1)emq/em , if q|m

[ϕm(1)](emq/em)(1−(q,km/k)−1) , if q � m and m �= (1)

(
∆(Ok)

∆(q)

)eq

, if m = (1) .
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Since Robert-Ramachandra invariants are algebraic integers, we deduce from the above that
ϕm(1) is a unit of km if m is divisible by at least two prime ideals. If m = qe, where q is a
prime ideal of Ok , then

(5) ϕm(1)Okm = qu
m ,

where qm is the product of the prime ideals of km that divide q and u = 12rmem/wk .
The last property we would like to recall are the Kronecker limit formulas which may be

stated as follows. Let us set hm = h if m = (1) and hm = 1 otherwise. Let χ be a nontrivial
complex character of Gal(km/k). Then we have

(6) L′(0, χ) = − 1

12rmemhm

∑
σ∈Gm

χ(σ) log(|ϕm(σ )|2) ,

where Gm = Gal(km/k) and s �→ L(s, χ) is the L-function associated to χ defined, for the
complex numbers s such that Re(s) > 1, by the Euler product

L(s, χ) =
∏
l�m

(1 − χ(l)N(l)−s )−1 ,

where l runs through all the non zero prime ideals of Ok not dividing m (cf. [2]).
Let f be the conductor of the extension F/k. If f �= (1) then for all ideal g �= (1) of Ok

that divides f, we set

(7) ϕF,g = Nkg/kg∩F (ϕg(1))e(f,g) , e(f, g) = wkef

rgeg
.

The algebraic integers (ϕF,g)h are introduced for the first time in [3, p. 307]. Kubert and Lang
call them Kersey invariants. One may consider them as suitable normalisations of Robert-
Ramachandra invariants. Let q be a prime ideal of Ok such that gq|f. Then we have

(8) Nkgq∩F /kg∩F (ϕF,gq) =




ϕF,g , if q|g

[ϕF,g]1−(q,kg∩F/k)−1
, if q � g and g �= (1)

NH/H∩F

(
∆(Ok)

∆(q)

)ef

, if g = (1) .

Now we are ready to define the group ΩF .

DEFINITION 2.1. Let us set QF = NH/H∩F (Q)ef and let PF be the galois submodule
of F× generated by µF , QF and all ϕF,g with g|f and g �= (1). Then we let

ΩF = PF ∩ O×
F .

2.2. The group CF . The most elegant definition of CF uses the elliptic functions
Ψ (· ; L,L′) : z �→ Ψ (z; L,L′) introduced by G. Robert in [9] and [11], parametrized by
the pairs of lattices (L,L′) of C such that L ⊂ L′ and [L′ : L] is prime to 6. It is interesting
to compare Robert’s definition of Ψ (z; L,L′) with that proposed by D. Kubert in [4]. We do
not give here any of these definitions. Instead, we recall some significant properties of special
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values taken by the functions Ψ (· ; L,L′) when L and L′ are fractional ideals of k of a certain
type. See [10] and [11].

Let m �= (1) be a proper nonzero ideal of Ok . Let a be a nonzero ideal of Ok prime to
6m, then Ψ (1; m, a−1m) is in km. Moreover, we have

(9) Ψ (1; m, a−1m)12em = ϕm(1)N(a)−(a,km/k) .

If m = q is a nonzero prime ideal of Ok , then the value Ψ (1; q, a−1q) is related to the
“discriminant-quotients” by the formula

(10) Nkq/H (Ψ (1; q, a−1q))12wk/rq =
(

∆(Ok)

∆(q)

)N(a)−(a,H/k)

.

Now we have the necessary materials for the definition of CF . For each nonzero integral ideal
m �= (1) of Ok , we define CF,m to be the subgroup of O×

F generated by µF and the norms

Nkm/km∩F (Ψ (1; m, a−1m))σ−1 ,

where σ is in Gal(F/k) and a runs through the set of all nonzero integral ideals of k prime to
6m.

DEFINITION 2.2. We denote by CF the subgroup of O×
F generated by all the CF,m

with m �= (1). Also we set VF = µFC12wkef

F , where f is the conductor of F .

Let us denote by RF the abelian group ring Z[GF ]. As we will see below, the Q-algebra
Q[GF ] contains an RF -submodule UF which is closely related to our groups of elliptic units.
The investigation of UF is the key step not only in the proof of the existence of µ∞ but also
in its computation in some special cases. To introduce UF , we need more notations. If D is a
subgroup of GF , then we set

s(D) =
∑
σ∈D

σ ∈ RF .

Let p be a nonzero prime ideal of Ok and let Fp be a Frobenius automorphism at p in F/k.
Then we define

(p, F ) = F−1
p

s(Tp(F ))

#Tp(F )
.

For all nonzero ideal r �= (1) of Ok , we denote by Tr(F ) the subgroup of GF generated by
the inertia groups Tp(F ) with p|r. If r = (1) then we set T(1)(F ) = {1}.

DEFINITION 2.3. Let f be the conductor of F/k. Let s be a divisor of f̂. If s �= (1),
then we denote by Us or Us,F the RF -submodule of Q[GF ] generated by all the elements

α(r, s) = s(Tr(F ))
∏

p|s/r

(1 − (p, F )) , r|s .

Moreover we set U(1) = U(1),F = RF and U = UF = U
f̂,F

.



258 H. OUKHABA

To go further, we need to recall the definition of Sinnott’s generalized index. Let E be a
Q-vector space of finite dimension d; and let M and N be two lattices of E, that is two free
Z-submodules of E, of rank d . Then we define the index (M : N) by

(M : N) = |det(γ )|
where γ is any endomorphism of the Q-vector space E such that γ (M) = N . If N ⊂ M

then (M : N) coincides with the usual index [M : N]. We also have the following transitivity
formula

(M : P) = (M : N)(N : P) .

This leads to the identity

(M : N) = [M + N : N]
[M + N : M] ,

which one may use as a definition of (M : N). We refer the reader to [13] for more details
about this generalized index. Here we are concerned with the RF -modules Us,F . One may
prove, exactly as in [13, Lemma 5.1], that Us,F is a lattice of Q[GF ]. Moreover, if q is a
prime ideal of Ok that divides f but does not divide s, then the index (Us,F : Usq,F ), which is
well-defined, is a positive integer whose set of prime divisors is contained in the set of prime
divisors of #Tq(F ). Thus, if s0, . . . , se are the ideals defined by the relation s0 := (1) and
si+1 := sipi+1, where p1, . . . , pe are the prime divisors of f, then the decomposition

(R : U) =
e−1∏
i=0

(Usi : Usi+1)

of (R : U) as the product of the indices (Usi : Usi+1) shows that (R : U) is in N . Moreover,
if l is a prime number such that l|(R : U), then l divides #Gal(F/F ∩ H).

In [6], we succeeded in computing the index [O×
F : ΩF ]. We obtained the following

formula when H ⊂ F .

(11) [O×
F : ΩF ] = hF

(12wkef)
[F :k]−1

wF/wk

∏
p[Fp∞ : H ]
[F : H ] (RF : UF ) ,

where, for every nonzero prime ideal p of Ok , Fp∞ is the maximal extension of k in F un-
ramified ouside p. In view of (7) and (10), one may easily check the inclusion VF ⊂ ΩF and
hence the index formula

(12) [O×
F : CF ] = hF

∏
p[Fp∞ : H ]
[F : H ] (RF : UF )

[ΩF : VF ]
wF /wk

.

3. The index (RF : Us,F ) in a very special case. In this section, we compute the
index (RF : Us,F ) for the ideals s = q1q2q3, where q1, q2 and q3 are prime ideals of Ok

satisfying the following four conditions, which we shall denote by condp(F, d).
1. There exists a positive integer d such that the inertia groups Tqi (F ) , i = 1, 2 or 3

are cyclic p-groups of order pd .
2. We have Tqi (F ) ∩ Tqj (F ) = {1} for all i �= j .
3. The decomposition group Dq3(F ) of q3 in F/k is equal to Tq3(F ).
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4. We have Ts(F ) 	 Z/pdZ × Z/pdZ.
Let us set s2 = q1q2 and T = Ts2(F ) = Ts(F ). Then we have the decomposition

(RF : Us,F ) = (RF : Us2,F )(Us2,F : Us,F ) .

But one may prove that (RF : Us2,F ) = 1 exactly as in [13, Proposition 5.2]. Let M be an RF -
submodule of Q[GF ] and let D be a subgroup of GF . Then the kernel in M of multiplication
by 1 − eD , where

eD = s(D)

#D
,

is equal to MD , the maximal RF -submodule of M on which D acts trivially. If M and N are
two RF -submodules of Q[GF ] such that (M : N) is defined, then the indices (MD : ND)

and ((1 − eD)M : (1 − eD)N) are also defined, and we have the equality

(M : N) = (MD : ND)((1 − eD)M : (1 − eD)N) ,

which we now apply to D = Tq3(F ), M = Us2,F and N = Us,F . It is easy to check that
(1 − eD)Us2,F = (1 − eD)Us,F . Moreover, we have

U
Tq3 (F )

s,F = Us2,F (Tq3(F )) + (1 − Fq3)[U
Tq3 (F )

s2,F
] ,

where Us2,F (Tq3(F )) is the RF -submodule of Q[GF ] generated by the elements

s(Trq3(F ))
∏

p|s2/r

(1 − (p, F )) , r|s2 .

By the condition 3, we have (1 − Fq3)[U
Tq3 (F )

s2,F
] = 0. Hence we have

(13) (RF : Us,F ) = (Us2,F : Us,F ) = [A : B] ,

where A and B are the RF -modules defined by

A = U
Tq3 (F )

s2,F
/s(Tq3(F ))Us2,F and B = Us2,F (Tq3(F ))/s(Tq3(F ))Us2,F .

In the following we compute the orders of A and B.

LEMMA 3.1. The inclusion s(T )RF ⊂ Us2,F (Tq3(F )) induces a surjective homomor-
phim of RF -modules

h : s(T )RF → Us2,F (Tq3(F ))/s(Tq3(F ))Us2,F ,

whose kernel is equal to the RF -submodule of s(T )RF generated by pds(T ), γ = s(T )(1 −
Fq1) and δ = s(T )(1 − Fq2).

PROOF. By its very definition and thanks to the conditions 1, 2 and 3, we see that
Us2,F (Tq3(F )) is generated as an RF -module by the four elements

s(T ) , γ , δ and θ = s(Tq3(F ))(1 − (q1, F ))(1 − (q2, F )) .

Furthermore, s(Tq3(F ))Us2,F is generated by

pds(T ) , γ , δ and θ .
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It is now clear that h is onto. Let x ∈ RF be an element satisfying s(T )x is in ker h. We have

s(T )x = pds(T )a + γ b + δc + θd ,

for some elements a, b, c, d ∈ RF . In particular, θd is in Q[GF ]T since γ and δ are elements
of Q[GF ]T by their very definition. But θ−s(Tq3(F )) is also in Q[GF ]T since T is generated
by any two inertia groups Tqi (F ) and Tqj (F ) for i �= j , as one may deduce from the condi-
tions 1, 2 and 4. Hence, we deduce that s(Tq3(F ))d is invariant under the action of T . Thus,
we have s(Tq3(F ))d = s(T )d ′ for some d ′ ∈ RF , and then θd = s(T )d ′(1−F−1

q1
)(1−F−1

q2
).

The lemma follows. �

LEMMA 3.2. Let F ′ be the maximal extension of k in F such that q1, q2 and q3 split
completely in F ′/k. Let X : RF → Q[GF ′ ] be the RF -homomorphism which sends σ ∈ GF

to

X(σ ) = 1

p2d
(σ|F ′) ,

where σ|F ′ is the restriction of σ to F ′. Let X be the restriction of X to s(T )RF . Then we have
Im(X) = RF ′ . Moreover, X induces an isomorphism of RF -modules

s(T )RF / ker(h) 	 RF ′/pdRF ′ .

PROOF. It is obvious that X induces a surjective map

s(T )RF / ker(h) → RF ′/pdRF ′ .

On the other hand, if τ is an automorphism of F ′/k and σ is an extension of τ to F , then
s(T )σ is well-defined modulo ker(h). Actually, if σ1 is some other extension of τ to F ,
then σ1 = σθ for some θ in Gal(F/F ′). But this group is generated by T , Fq1 and Fq2 . In
particular 1 − θ may be written as

1 − θ = (1 − Fq1)u + (1 − Fq2)v + (1 − γ )w ,

where u, v,w ∈ RF and γ ∈ T . Thus, s(T )(σ − σ1) is in ker(h). In particular we obtain a
surjective Z-homomorphism

RF ′ → s(T )RF / ker(h) ,

whose kernel contains pdRF ′ . This proves the lemma. �

The structure of the RF -module B is now entirely decided by Lemmas 3.1 and 3.2. We
have

(14) B = Us2,F (Tq3(F ))/s(Tq3(F ))Us2,F 	 RF ′/pdRF ′ .

Let us now investigate the RF -module A. Since Tq3(F ) is assumed to be cyclic, the RF -
module A is equal to the second Tate cohomology group of Tq3(F ) with coefficients in Us2,F ,
i.e.,

(15) A = Ĥ 2(Tq3(F ),Us2,F ) .

As we shall see in a moment, A is related to the Tate cohomology groups

An = Ĥ n(Tq3(F ), [Uq1,F ]Tq2 (F )) , n ∈ N .



THE INDEX OF ELLIPTIC UNITS IN Zp-EXTENSIONS, II 261

We are able to decide the structure of An. But let us first point out the equality

[Uq1,F ]Tq2 (F ) = s(Tq2(F ))Uq1,F ,

and more generally the identity

(16) Ĥ n(Tqj (F ),Uqi ,F ) = 0 , for all i �= j

which one may prove as follows. Consider the idempotent

ei = s(Tqi (F ))

#Tqi (F )
.

Multiplication by (1 − ei) gives us the exact sequences

0 → [Uqi ,F ]Tqi
(F ) → Uqi ,F → (1 − ei)Uqi ,F → 0 ,

0 → R
Tqi

(F )

F → RF → (1 − ei)RF → 0 .

But it is easily seen that

(1 − ei)Uqi ,F = (1 − ei)RF and [Uqi ,F ]Tqi
(F ) = R

Tqi
(F )

F .

On the other hand RF and R
Tqi

(F )

F are cohomologically trivial as Tqj (F )-modules. This im-
plies formula (16).

LEMMA 3.3. Let us denote s(T )RF by W , then we have

An = Ĥ n(Tq3(F ), [Uq1,F ]Tq2 (F )) 	




W/pdW + (1 − Fq1)W if n is even

(W/pdW)Fq1 if n is odd .

PROOF. Let us consider an element α of [Uq1,F ]Tq2 (F ). There exist x, y ∈ RF such that

(17) α = s(Tq2(F ))[s(Tq1(F ))x + (1 − (q1, F ))y]
in view of (16). If α is invariant under the action of Tq3(F ), then the element s(Tq2(F ))y is
in RT

F . Indeed, since T is generated by any two inertia groups Tqi (F ) and Tqj (F ) for i �= j ,
we have

s(Tq2(F ))s(Tq1(F )) = s(T ) and pds(Tq2(F ))(q1, F ) = s(T )F−1
q1

.

Therefore we may write s(Tq2(F ))y = s(T )y ′ for some y ′ ∈ RF . This clearly shows that

[Uq1,F ]〈Tq2 (F ),Tq3 (F )〉 = [Uq1,F ]T = s(T )RF .

But it is also obvious that

s(Tq3(F ))[Uq1,F ]Tq2 (F ) = s(T )Uq1,F = pds(T )RF + (1 − Fq1)s(T )RF .

This proves the isomorphism

Ĥ 2(Tq3(F ), [Uq1,F ]Tq2 (F )) 	 W/pdW + (1 − Fq1)W .
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Furthermore, we may define an RF -homomorphism Θ : [Uq1,F ]Tq2 (F ) → W/pdW by the
formula

Θ(α) = s(T )y mod pdW .

The map Θ is well-defined because if x, y are replaced by some other elements x ′, y ′ ∈ RF

in the formula (17), then

s(Tq2(F ))y − s(Tq2(F ))y ′ ∈ RT
F = s(T )RF .

Moreover, if s(Tq3(F ))α = 0 then Θ(α) is invariant under the action of Fq1 . Let us suppose
that s(T )y = pds(T )y ′ for some y ′ ∈ RF . Since s(Tq2(F ))RF is cohomologically trivial as
a Tq3(F )-module, we may find z ∈ RF such that

s(Tq2(F ))y = pds(Tq2(F ))y ′ + (1 − σ)s(Tq2(F ))z ,

where σ is a generator of Tq3(F ). If, in addition, we have s(Tq3(F ))α = 0, then s(T )x =
−s(T )(1 − F−1

q1
)y ′ and

α = [s(Tq2(F ))y ′(pd − s(Tq3(F ))) + (1 − σ)s(Tq2(F ))z](1 − (q1, F )) .

But it is straightforward that (1 − σ)[Uq1,F ]Tq2 (F ) = (1 − σ)s(Tq2(F ))RF . Hence we have
proved that Θ induces a monomorphism

Ĥ 1(Tq3(F ) , [Uq1,F ]Tq2 (F )) → (W/pdW)Fq1 ,

which is onto as one may easily check. The proof is now complete. �

LEMMA 3.4. There exists an exact sequence of RF -modules

0 → A2/(1 − Fq2)A
2 α−→A

β−→ (A1)Fq2 → 0 .

PROOF. The map α is induced by the inclusion

[Uq1,F ]Tq2 (F ) = s(Tq2(F ))Uq1,F ⊂ Us2,F ,

which extends the inclusion used to define the map h of Lemma 3.1. On the other hand, if we
let σ be a generator of Tq3(F ), then β is induced by the well-defined map

[Us2,F ]Tq3 (F ) → (A1)Fq2 ,

which associates to γ = s(Tq2(F ))µ + (1 − (q2, F ))ν, where µ and ν are elements of Uq1,F ,
the class of (σ − 1)ν in A1. Actually, the identity 0 = (σ − 1)γ implies the relation

(σ − 1)ν = (q2, F )(σ − 1)ν − s(Tq2(F ))(σ − 1)µ ,

from which we deduce that (σ −1)ν is invariant under the action of Tq2(F ). Therefore we may
rewrite it as follows: (1−F−1

q2
)(σ −1)ν = −(σ −1)s(Tq2(F ))µ. Hence the image of (σ −1)ν

in A1 is in fact in (A1)Fq2 . To prove that we have an exact sequence is straightforward. We
leave the details to the interested reader. �
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Let us remark that both (A1)Fq2 and A2/(1 − Fq2)A
2 are isomorphic as RF -modules to

RF ′/pdRF ′ by Lemma 3.3. The field F ′ was introduced in Lemma 3.2. Even though we are
not sure that the exact sequence of Lemma 3.4 splits, we may use it to deduce the order of A.
We have

(18) #A = p2d[F ′: k] .

COROLLARY 3.5. Suppose that there exist three prime ideals q1, q2, q3 in Ok satisfiy-
ing condp(F, d). Then we have

(19) (RF : Us,F ) = pd[F ′: k] ,
where s = q1q2q3 and F ′ is the maximal extension of k in F such that q1, q2 and q3 split
completely in F ′/k.

PROOF. This is a straightforward consequence of the three formulas (13), (14) and
(18). �

4. Zp-extensions. Let F be a finite abelian extension of k such that H ⊂ F . Then
we define

AF = [F : H ]∏
p[Fp∞ : H ] .

Let F∞ be a Zp-extension of F abelian over k. In [7, Théorème 4.1], we proved the existence
of a positive constant c∞ ∈ Q× such that

(20) [ΩFn : VFn] = c∞
wFn

wk

AFn

for all sufficiently large n. Let S̃F∞,F be the set of prime ideals q ∈ SF∞,F such that the
decomposition group of q in F∞/k is finite. Let f0 be the product of the prime ideals q ∈
S̃F∞,F . Then, one may find ν ∈ N such that

(21) (RFn : UFn)p = pν(RFn : Uf0,Fn)p

for all sufficiently large n. This is a consequence of [ibid., Proposition 3.2 and Corollaire 3.4].
Let q1, q2 and q3 be three prime ideals of Ok satisfying condp(F, d) and such that

{q1, q2, q3} ⊂ S̃F∞,F . Then, for all n ∈ N , the condition condp(Fn, d) is satisfied by these
three prime ideals. Moreover, we have F ′ = F ′

n ∩ F by their very definition. The degree
[Fn : F ′

n] does not depend on n and Fn = F ′
nF . In particular, we have [F ′

n : k] = pn[F ′ : k].
Therefore, by Corollary 3.5, we have

(22) (RFn : Us,Fn) = pd[F ′: k]pn

,

for all n ∈ N , where s = q1q2q3. Now, from the index formula (12) and the identities (20)
and (22), we derive the following theorem.

THEOREM 4.1. Let q1, q2 and q3 be three prime ideals of Ok chosen as above. Then,
there exists ν0 ∈ Z such that

(23) [OFn : CFn]p = pd[F ′: k]pn+ν0(hFn)p(Us,Fn : Uf0,Fn)p
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for all sufficiently large n. In particular, we have

µ∞ ≥ d[F ′ : k] ,

with equality µ∞ = d[F ′ : k] if S̃F∞,F = {q1, q2, q3}.
PROOF. The formula (23) is a direct consequence of (12), (20), (21) and (22). Since the

index (Us,Fn : Uf0,Fn) is a positive integer, we obtain the lower bound of µ∞. �

4.1. The anticyclotomic Zp-extension. In this subsection, we give examples to illus-
trate Theorem 4.1. First we explain a method to find a finite abelian extenion F of k, and three
non zero prime ideals of Ok , say q1, q2 and q3 that satisfy condp(F, d), where p and d are
given. Further we consider the anticyclotomic Zp-extension of F denoted by Fa∞.

Let q1, q2 and q3 be prime numbers not dividing wk . For each i we fix qi a nonzero
prime ideal of Ok lying over qi . Consider the ray class field K = ks where s = q1q2q3.
Then, Tqi (K) is isomorphic to the multiplicative group of the finite field Ok/qi . In particular,
Tqi (K) is cyclic.

Let d be a positive integer and let p be an odd prime number such that N(qi ) ≡ 1
modulo pd and N(qi ) �≡ 1 modulo pd+1. Let L be the maximal p-extension of H in K .
Then, Tqi (L) is a cyclic p-group of order pd . Moreover, Gal(L/H) = Ts(L) is the direct
product of Tqi (L) for i ∈ {1, 2, 3}. Let us choose for each i a generator σi of Tqi (L). Then
we let F be the subfield of L fixed by the product σ1σ2σ3, i.e.,

F = L〈σ1σ2σ3〉 .

It is easy to check that q1, q2 and q3 satisfy the conditions 1, 2 and 4 of condp(F, d). If q3

is inert in k/Q and satisfies the congruence q3 ≡ 1 modulo q1q2, then the condition 3 is
also satisfied. Moreover, if we suppose that q1 and q2 are not split in k/Q, then we have
S̃F a∞,F = SFa∞,F = {q1, q2, q3} and µ∞ = d[F ′ : k]. Here are three examples with p = 3,
d = 1 and (q1, q2, q3) = (7, 13, 547), in which we denote µ∞ by µa∞ to mean that we are
considering the anticyclotomic Zp-extension of F . Let us remark that 3 is inert in the first
example, split in the second and ramified in the third one.

EXAMPLE 4.2. For k = Q(
√−7), we have µa∞ = 1.

EXAMPLE 4.3. For k = Q(
√−11), we have µa∞ = 1.

EXAMPLE 4.4. For k = Q(
√−33), we have µa∞ = [F ′ : k].
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