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NONCONSTANT SELFSIMILAR BLOW-UP PROFILE
FOR THE EXPONENTIAL REACTION-DIFFUSION EQUATION
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Abstract. We study the blow-up profile of radial solutions of a semilinear heat equa-
tion with an exponential source term. Our main aim is to show that solutions which can be
continued beyond blow-up possess a nonconstant selfsimilar blow-up profile. For some partic-
ular solutions we determine this profile precisely.

1. Introduction. We consider the following problem

(1.1)



ut = �u+ f (u) , x ∈ Ω , t > 0 ,

u = 0 , x ∈ ∂Ω , t > 0 ,

u(x, 0) = u0(x) ≥ 0 , x ∈ Ω ,

where Ω = B(R) = {x ∈ Rn ; |x| < R}. Throughout the paper, we assume that the initial
condition u0 ∈ C1(Ω̄) is radially symmetric. In the first part of the paper, we shall assume
that

(1.2) f ∈ C1 , f (·) ≥ 0 in [0,∞) and lim
u→∞ e

−uf (u) = 1 .

We shall study solutions that blow up in finite time, by which we mean that there is T =
T (u0) ∈ (0,∞) such that

lim
t↗T

‖u(·, t)‖L∞(Ω) = ∞ .

Our first result is the following

THEOREM 1.1. Let n ∈ [3, 9]. Assume that (1.2) holds and that u is a solution of
(1.1) which blows up in a finite time T and satisfies u(0, t) = maxΩu(·, t) for all t close to
T . Then there exists a constantK < ∞ such that

(1.3) log(T − t)+ ‖u(·, t)‖L∞(Ω) ≤ K for all t ∈ [0, T ) .
The blow-up rate (1.3) for solutions of (1.1) with f (u) = eu was only known before

under the assumption that ut ≥ 0, see [16]. In this paper, we are interested mainly in solutions
which can be continued beyond blow-up as L1-solutions (see the definition below), and such
solutions cannot be nondecreasing in time, since ut ≥ 0 implies complete blow-up, see [1].

To formulate our next result we introduce the definition ofL1-solutions of Problem (1.1).
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DEFINITION 1.1. By an L1-solution of (1.1) on [0,T ] we mean a function u ∈
C([0,T ]; L1(Ω)) such that f (u) ∈ L1(QT ), QT := Ω × (0,T ) and the equality∫

Ω

[uΨ ]t2t1dx −
∫ t2

t1

∫
Ω

uΨtdxdt =
∫ t2

t1

∫
Ω

(u�Ψ + f (u)Ψ )dxdt

holds for any 0 ≤ t1 < t2 ≤ T and Ψ ∈ C2(Q̄T ), Ψ = 0 on ∂Ω × [0,T ]. By a global
L1-solution we mean an L1-solution which exists on [0,T ] for every T > 0.

The existence of global unbounded L1-solutions of (1.1) with f (u) = λeu, n ≥ 3,
was shown in [23] for λ > 0 small enough. If 3 ≤ n ≤ 9, then these global unbounded
L1-solutions blow up in finite time, see [14].

THEOREM 1.2. Let f (u) = eu, n ∈ [3, 9], and assume that the initial function u0

is radially nonincreasing. Suppose u is an L1-solution of (1.1) on [0,T ] which blows up at
t = T < T . Then

lim
t→T

[log(T − t)+ u(y
√
T − t, t)] = ϕ(|y|) , y ∈ Rn ,

where ϕ satisfies

(1.4)


 ϕηη +

(
n− 1

η
− η

2

)
ϕη + eϕ − 1 = 0 , η > 0 ,

ϕ(0) = µ , ϕη(0) = 0 ,

and

(1.5) lim
η→∞[ϕ(η)+ 2 logη] = Cµ

for some µ > 0 and Cµ ∈ R.

In the case n = 1, 2, there is no solution of (1.4) satisfying

(1.6) lim
η→∞

(
1 + η

2
ϕη(η)

)
= 0 ,

see [9, 3]. On the other hand, for 3 ≤ n ≤ 9, there exists an increasing sequence {µi}∞i=0,
µi → ∞, such that the solution ϕi of (1.4) with µ = µi satisfies (1.6), see [10]. Lacey and
Tzanetis proved in [23] that for 3 ≤ n ≤ 9 the solution φ0 of (1.4) with µ = µ0 satisfies

(1.7) lim
η→∞

(
ϕ0(η)+ log

η2

2(n− 2)

)
= −c0 , c0 > 0 ,

and the equation

(1.8) ϕ0(η)+ log
η2

2(n− 2)
= 0

has two roots.
For some particular solutions u (the L1-connections from a stationary solution φ2 to

another stationary solution φ0, see Proposition 4.3) we show (see Theorem 4.4) that

lim
t→T

[log(T − t)+ u(y
√
T − t, t)] = ϕ0(|y|) , y ∈ Rn ,



NONCONSTANT SELFSIMILAR BLOW-UP PROFILE 305

where ϕ0 satisfies (1.4), (1.7) and (1.8) has two roots. As far as we know, this is the first
example of a solution of (1.1) with a precisely determined nonconstant selfsimilar blow-up
profile. The existence of a class of solutions of (1.1) with nonconstant selfsimilar blow-up
profiles was known before for f (u) = up and some p > (n + 2)/(n − 2), n > 2, see [24].
But no characterization of the limit selfsimilar profile for any such solution was given in [24].

The paper is organized as follows. In Sections 2 and 3 we prove Theorems 1.1 and 1.2.
Section 4 is devoted to determining the exact profile of some special solutions mentioned
above.

2. Blow-up rate. In this section we prove Theorem 1.1. We shall use the method
from [7] that has to be modified and combined with an estimate from [16] because the rescal-
ings employed here and in [7] are different. In particular, the present rescaling does not pre-
serve positivity. This fact is also a reason why the arguments from [24] do not seem to apply
easily to Problem (1.1) with a nonlinearity like f (u) = eu.

In the following lemma we will consider the equation

(2.1) vrr + n− 1

r
vr + f (v) = 0 , vr ≤ 0 < v , in (0, ε) ,

where n ≥ 3 and ε > 0 is small.

LEMMA 2.1. Assume that f ∈ C(R) and limu→∞ e−uf (u) = 1 and n ≥ 3. Then
there exists a singular solution v = v∗ of (2.1) satisfying

(2.2) lim
r→0

(v∗(r)+ log r2) = log(2(n− 2)) .

PROOF. The proof of the lemma is similar to the proof of an analogous lemma in [7]
and so further details can be found there. Set s = log r and W(s) = v(r) − φ∗(r), where
φ∗(r) = log(2(n− 2)r−2). Then v is a solution to (2.1) if and only if W satisfies

Wss + (n− 2)Ws + 2(n− 2)W + h = 0 in (−∞, log ε) ,

where the nonlinearity h = h(s,W) = h1(W) + h2(s,W) and

h1(W) = 2(n− 2)(eW − 1 −W) , h2(s,W) = e2sf (W + φ∗)− 2(n− 2)eW .

Moreover, v verifies the asymptotic behavior (2.2) if and only if W(s) → 0 as s → −∞. If
the solutionW exists, it can be written by the variation of constants as

W(s) =
∫ s

−∞
eλ1(s−τ ) − eλ2(s−τ )

λ1 − λ2
h(τ,W(τ))dτ ,

where λ1 and λ2 are the two roots to the characteristic equation λ2 + (n− 2)λ+ 2(n− 2)= 0.
The existence of a solution can now be proved using Schauder’s fixed point theorem.

Therefore, define

X = {φ ∈ C((−∞, log ε) ; ‖φ‖X = sup
s<log ε

|φ(s)| < ∞} .
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Let B(δ) be the closed ball of radius δ centered at 0 in X , and let

Tiφ(s) =
∫ s

−∞
eλ1(s−τ ) − eλ2(s−τ )

λ1 − λ2
hi(τ, φ(τ ))dτ

for i = 1, 2. We need to show that the operator (I − T1)
−1T2 is well defined and that it has a

fixed point.
Since, for every |W1|, |W2| ≤ δ and for some η ∈ (W1,W2), we have

|h1(W1)− h1(W2)|= 2(n− 2)|eW1 − eW2 +W2 −W1|
= 2(n− 2)(eη − 1)|W1 −W2| ≤ Cδ|W1 −W2| ,

we know that ‖T1φ‖ ≤ (1/2)‖φ‖, for δ small enough, and hence the operator (1 − T1)
−1 :

B(δ/2) → B(δ) exists with ‖(I − T1)
−1φ‖ ≤ 2‖φ‖.

Define then a nonnegative and nondecreasing function

ω(s) = sup
u≥−s

∣∣∣∣f (u)eu
− 1

∣∣∣∣ .
So for anyW ∈ B(δ), we have

|h2(s,W(s))| = 2(n− 2)eW(s)
(
f (W(s)− 2s + log(2(n− 2))

eW(s)−2s+log(2(n−2))
− 1

)
≤ 2(n− 2)eδω(s)

and also |T2W(s)| ≤ C1ω(s) and |dT2W(s)/ds| ≤ C2ω(s). It can easily be seen that T2

is continuous. Therefore, T2B(δ) ⊂ B̂ = {φ ∈ X ; |φ(s)| + |φ′(s)| ≤ (C1 + C2)ω(s) for
every s ≤ log ε}. Taking ε small enough, we get that B̂ is a compact subset of B(δ), and
so (I − T1)

−1T2 is continuous operator from B(δ) to itself, and by Schauder’s fixed point
theorem it has a fixed pointW ∈ B(δ). Showing that |W(s)| → 0 as s → −∞, we can finish
the proof. �

The following result is already known. For the proof we refer to [21].

PROPOSITION 2.2. Assume that 3 ≤ n ≤ 9. Then there is a unique solution φ to

φrr + n− 1

r
φr + eφ = 0 , r ∈ (0,∞) ,

φr (0) = 0 ,

φ(0) = 0 .

The solution satisfies φr < 0 in (0,∞) and for φ∗(r) = log(2(n− 2)r−2), there are infinitely
many roots of the equation φ − φ∗ = 0.

We will also need an estimate for the gradient of the solution u of (1.1). This lemma can
be found in [16].

LEMMA 2.3. Assume that f satisfies (1.2), and that the solution u of (1.1) blows up at
t = T . Then, for uM(t) = maxx∈Ω u(x, t) and t0 close to T , we have that

1

2
|∇u(x, t)|2 ≤

∫ uM(t0)

u(x,t)

f (u)du
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for every t < t0 and x ∈ Ω .

Now that we have the above preliminary results, we are ready to prove Theorem 1.1,
which gives the blow-up rate of the solution u. The proof is a modified version of that in [7].
Notice that by integrating the inequality ut (0, t) ≤ eu(0,t ) from t to T , we have

(2.3) log(T − t)+ u(0, t) ≥ 0 .

PROOF OF THEOREM 1.1. Let v∗ be as in Lemma 2.1, extended to its maximum exis-
tence interval (0, ε∗], and define R∗ = min{ε∗, R}. By the zero number diminishing property
(see [8]), it can be verified that both Z[0,R](ut (·, t)) and Z[0,R∗](u(·, t) − v∗(·)) are nonin-
creasing in t ∈ [0, T ) so that they are constant for all t ∈ [T1, T ) and for some T1 ∈ [0, T ).
Here we used the usual notation

(2.4) ZI (g) = #{r ∈ I ; g(r) = 0}
defined for an arbitrary interval I and a function g ∈ C(I). Let now Z[0,R∗](u(·, t) − v∗) =
N∗, for t ∈ [T1, T ).

We will set

M(t) = u(0, t) and δ = lim inf
t→T

ut (0, t)

eu(0,t )
= lim inf

t→T

M ′(t)
eM(t)

,

and claim that δ > 0.
By contradiction, assume that δ = 0. Then there exists a sequence ti → T as i → ∞

such that limi→∞M ′(ti)e−M(ti) = 0. Moreover, we may assume that

f (u(0, t))

eu(0,t )
∈ (1/2, 2)

for every t ≥ t0. Define

Ri = e−u(0,ti)/2 and wi(ρ, τ ) = u(Riρ,R
2
i τ + ti)+ 2 logRi .

Then wi satisfies

wiτ −�wi = R2
i f (wi − 2 logRi) in B(R/Ri)× (−tiR−2

i , 1/4) .

Moreover, we have that

wiτ (0, 0) = R2
i ut (0, ti ) = M ′(ti )

eM(ti)
→ 0 as i → ∞ .

By Lemma 2.3, we get that ur(r, t)2 ≤ 2f (u(0, ti))(u(0, ti) − u(r, t)) for every t < ti

and r ∈ [0, R), assuming that u(0, t0) is large enough. Therefore, by integrating the inequality

|ur(r, t)|(u(0, ti )− u(r, t))−1/2 ≤ √
2f (u(0, ti))

from 0 to r , we have

(2.5) u(0, ti)− u(r, t) ≤ 4f (u(0, ti))r
2 ≤ 8eu(0,ti)r2

for every t ≤ ti and r ∈ [0, R]. With the above estimate we can write

wi(ρ, τ ) = u(Riρ,R
2
i τ + ti )− u(0, ti) ≥ −8eu(0,ti)R2

i ρ
2 = −8ρ2 ≥ −8C ,
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whenever ρ ≤ √
C. Since clearly wi(ρ, τ ) ≤ 0 for every τ < 0 and r ∈ [0, R/Ri ], we know

that the family {wi}i is uniformly bounded in L∞([0,√C] × (−tiR−2
i , 0)).

Because of the assumption that u attains the maximum at the origin, we know that
ut (0, t) ≤ f (u(0, t)) ≤ 2eu(0,t ) for every t > t0. Integrating this inequality with respect
to t from ti to ti + τR2

i (where τ > 0), we obtain

−(e−u(0,ti+τR2
i ) − e−u(0,ti)) ≤ 2τR2

i = 2τe−u(0,ti) ,
which then yields

(2.6) u(0, ti + τR2
i ) ≤ u(0, ti)+ log

1

1 − 2τ
≤ u(0, ti)+ log 2 ,

for every τ ∈ [0, 1/4]. Hence we have that wi(0, τ ) = u(0, ti + τR2
i )− u(0, ti) ≤ log 2 for

every τ ∈ [0, 1/4].
By using the inequalities (2.5) and (2.6), we get that for τ ∈ [0, 1/4] and ρ ∈ [0,√C]:

wi(ρ, τ )= u(Riρ,R
2
i τ + ti)− u(0, ti)

= u(Riρ,R
2
i τ + ti)− u(0, R2

i τ + ti )+ u(0, R2
i τ + ti)− u(0, ti)

≥ u(Riρ,R
2
i τ + ti)− u(0, R2

i τ + ti ) ≥ −8eu(0,R
2
i τ+ti )R2

i ρ
2

= −8eu(0,R
2
i τ+ti )−u(0,ti)ρ2 ≥ −16ρ2 ≥ −16C .

Therefore we now know that wi(ρ, τ ) ≤ wi(0, τ ) ≤ log 2 and wi(ρ, τ ) ≥ −16C for
every ρ ∈ [0,√C] and τ ∈ [0, 1/4]. Altogether we have that {wi}i is uniformly bounded
in L∞([0,√C] × [−tiR−2

i , 1/4]).
It follows from the parabolic estimates that {wi}i is a uniformly bounded family in C2,1.

Therefore, along a subsequence, it converges uniformly in any compact subset of B(
√
C) ×

(−∞, 1/4) to a radially symmetric limit w. Because

lim
i→∞R

2
i f (wi − 2 logRi) = lim

i→∞ e−wi+2 logRi f (wi − 2 logRi)ewi = ew ,

we have that w satisfies{
wτ −�w = ew in B(

√
C)× (−∞, 1/4) ,

w(0, 0) = 0 , wτ (0, 0) = 0 .

Exactly the same arguments as in [7] show that actually wτ ≡ 0 and so w(·, τ ) = φ(·),
where φ is the unique solution to the problem in Proposition 2.2. Taking now ρ∗ large, we
can assume that Z[0,ρ∗](φ − φ∗) = N∗ + 1, where φ∗(r) = log[2(n− 2)r−2]. Taking then C
such that

√
C ≥ ρ∗, we can show, in the same manner as in [7], that Z[0,R∗](u(·, ti )−v∗(·)) ≥

N∗ + 1, which is a contradiction and therefore δ > 0.
Now we know that there exists T2 ∈ [T1, T ) such that

M ′(t)
eM(T )

≥ δ

2
for every t ∈ [T2, T ). By integrating this inequality over the interval (t, T ), we obtain the
claim. �
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Combining the techniques of the proofs of Theorem 1.1 above and Theorem 1 in [7], it
is straightforward to prove the following theorem.

THEOREM 2.4. Assume that (1.2) holds and n ∈ [3, 9]. If u is a global classical
solution of (1.1), then u is uniformly bounded.

3. Convergence to a backward selfsimilar solution. The aim of this section is to
prove Theorem 1.2. Most of the work is needed to show the following:

THEOREM 3.1. Let f (u) = eu and assume that the initial function u0 is radially
nonincreasing. If u is a solution of (1.1) that blows up at t = T , and

(3.1) lim
t→T

[log(T − t)+ u(y
√
T − t, t)] = 0

uniformly for y in compact sets, then

(3.2) u(x, T ) = −2 log |x| + log | log |x|| + log 8 as x → 0 .

It was shown in [2] that (3.2) holds for solutions of

(3.3)

{
ut = �u+ eu , x ∈ Rn , t > 0 ,

u(x, 0) = u0(x) ≥ 0 , x ∈ Rn ,

provided u is radially symmetric, ur ≤ 0, ut ≥ 0. In [20] it was proved that either (3.2) or

(3.4) u(x, T ) = −m log |x| + Cm as x → 0

holds for some integer m ≥ 4 and Cm ∈ R for solutions of (3.3) under the assumptions that
n = 1, u0 is continuous, bounded, it has a single maximum and x = 0 is the blow-up point.
The existence of solutions of (1.1) which blow up at x = 0 ∈ Ω , t = T , and have the profile
(3.2) was established in [4] when Ω is convex. The existence of initial data such that (3.4)
occurs withm = 4 was shown in [20] for Problem (3.3) with n = 1, for any integerm ≥ 4 see
[5]. In our case the profile (3.4) does not occur since we assume that u is radially decreasing.
This follows from [3], where it is shown that if ur ≤ 0, then

(3.5) u(x, t) ≤ −2 log |x| + log | log |x|| + C

for some constant C and for any t ∈ (0, T ) and x ∈ B(R).
As in [26], the first thing we will have to do, is to extend the solution u to the whole

space Rn in order to be able to use semigroup methods in appropriate weighted L2 spaces.
We will also derive some useful estimates for the new nonlinearity and discuss the functional
analytic framework.

Throughout this section we will adopt the assumptions of Theorem 3.1. Take ζ ∈
C∞(Rn) such that ζ(x) = 1 for |x| ≤ R1, ζ(x) ∈ (0, 1) for |x| ∈ (R1, R2) and ζ(x) = 0 for
|x| ≥ R2, where 0 < R1, R2 < R. Then define

(3.6) ũ(x, t) = ζ(x)u(x, t)− (log(T − t)+ 1)(1 − ζ(x))

for x ∈ Rn and t ∈ [0, T ). This gives us that the new extended function satisfies

ũt = �ũ+ f , x ∈ Rn, t ∈ (0, T ) ,
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where

f = f (x, t) = (T − t)−1(1 − ζ )− (1 + log(T − t)+ u)�ζ − 2∇ζ · ∇u+ ζ eu .

Notice that Theorem 1.1 and Lemma 2.3, now applied to f (u) = eu, imply that

(3.7) |(T − t)f (x, t)| ≤ C

for every (x, t) ∈ Rn×[0, T ) and for some constant depending only on the choice of ζ and the
constant appearing in Theorem 1.1. As above, we henceforth denote by C a generic constant
possibly changing from line to line and depending only on some fixed functions or parameters
like u0 or the dimension of the space.

Following the usual method, we use the similarity variables to define the rescaled func-
tion

w̃(y, s) = log(T − t)+ ũ(x, t) ,

where y = (T − t)−1/2x and s = − log(T − t). Then w̃ satisfies

(3.8) w̃t = �w̃ − 1

2
y · ∇w̃ + (T − t)f − 1 = Aw̃ + h , y ∈ Rn, s > − log T ,

where A = �− y/2 · ∇ + I and h(y, s) = (T − t)f (x, t)− 1 − w̃(y, s). Using Lemma 2.3
and Theorem 1.1, it is easy to verify that |∇w̃| ≤ C and hence (2.3) implies that

(3.9) |w̃| ≤ C(1 + |y|) .
In what follows, we will give some estimates for the function h. Assume first that |y| ≤

es/2R1. Then w̃ = log(T − t)+ u and h = ew̃ − 1 − w̃. Therefore

|h| ≤ e|w̃||w̃|2 ≤ eK |w̃|2 ,
where K is the constant appearing in Theorem 1.1. We can also argue that either −1 ≤ w̃ ≤
K , which implies that |h| ≤ eKK|w̃|, or w̃ ≤ −1, in which case |h| = |ew̃ − 1 − w̃| ≤
2 + |w̃| ≤ 3|w̃|.

Assume then that |y| ∈ (es/2R1, e
s/2R2). Because u(x, t) ≤ C for every |x| ∈ (R1, R2)

and t ∈ [0, T ), there exists s0 > 0 such that

w̃ = −1 + ζ(u+ log(T − t)+ 1) ≤ −1

for every s ≥ s0. Therefore we can estimate

|h| ≤ |(T − t)f | + 1 + |w̃| ≤ C + |w̃| ≤ (C + 1)|w̃| ≤ (C + 1)|w̃|2
in Rn × [s0,∞), where we used the estimate (3.7).

Since, for |y| > es/2R2, it holds that h = −w̃ and w̃ = −1, we can collect the above
estimates together to obtain that

(3.10) |h| ≤ C1|w̃| and |h| ≤ C2|w̃|2 in Rn × [s0,∞)

for some constants C1 and C2. In a similar way we can also show that

(3.11)

∣∣∣∣h− 1

2
w̃2

∣∣∣∣ ≤ C3|w̃|3 in Rn × [s0,∞) .
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We will next discuss the operatorA. A convenient space to work in is the weighted space

L2
ρ(R

n) =
{
f ∈ L2

loc(R
n) ;

∫
Rn

|f (y)|2e−|y|2/4dy < ∞
}
.

It is well-known that A is a self-adjoint operator in L2
ρ(R

n) with domain H 2
ρ (R

n) and it has a
complete family of orthogonal eigenfunctions {Hα}α∈Nn with the corresponding eigenvalues
λα = 1 − |α|/2, where |α| = α1 + · · · + αn. The eigenfunctions can be written as Hα(y) =∏n
i=1Hαi (yi), whereHm is the standard Hermite polynomial of orderm ∈ N. We will denote

by {S(s)}s the semigroup generated by A.
Since u, and so also w̃, is assumed to be radially symmetric, we only need to consider

radially symmetric eigenfunctions. The first ones are h0(y) = 1 ∈ span{H0} corresponding to
the eigenvalue λ0 = 1 and h2(y) = |y|2 − 2n ∈ span{Hα ; |α| = 2, αi even} corresponding
to the eigenvalue λ2 = 0. Therefore we can decompose

(3.12) w̃ = π+w̃ + πcw̃ + π−w̃ = a(s)+ b(s)(|y|2 − 2n)+ θ(y, s) ,

where π+w̃ and πcw̃ are the projections to the eigenspaces spanned by h0 and h2, and π−w̃ =
w̃ − π+w̃ − πcw̃ ∈ span{Hα ; |α| > 2}.

A well-known fact is the regularizing property of the semigroup (see [30]), namely, for
every p, q ∈ (1,∞) there exists R = R(p, q) and C = C(R) such that

(3.13) ‖S(R)φ‖Lpρ ≤ C‖φ‖Lqρ for every φ ∈ Lpρ(Rn) ,
where the definition of Lpρ(Rn) is analogous to that of L2

ρ(R
n). Using the first inequality in

(3.10) and applying the above inequality to w̃, we obtain

(3.14) ‖w̃(·, s)‖Lpρ ≤ eC1R‖S(R)w̃(·, s − R)‖Lpρ ≤ eC1RC‖w̃(·, s − R)‖Lqρ .
Also, the reversed inequality is known in L2

ρ . Assuming that there exists a constant β > 0
such that a(s)2 + ‖θ(·, s)‖2 ≤ β b(s)2, we can use Lemma 3.1 in [19] to obtain that

(3.15) ‖w̃(·, s)‖ ≤ C(R, β)‖w̃(·, s + R)‖ ,
where we used the notation ‖ · ‖ = ‖ · ‖L2

ρ
.

The assumption (3.1) implies that

(3.16) lim
s→∞ w̃(y, s) = 0

uniformly for y in compact sets. In the following Lemma and two Propositions, we will
assume that the convergence (3.16) is not exponential in rate, that is, we assume that for every
C, ε > 0 we have

(3.17) ‖w̃(·, s)‖ > Ce−εs

for some s > − logT .
The following lemma is proved in the case of f (u) = up in [15] and it states that the

unstable and stable part of the solution w̃ are dominated by the center part of it. The proof
in our case is almost the same as in [15] and therefore we do not repeat it here. The only
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difference is that [15] assumes the boundedness of w̃, and we use the inequality |h| ≤ C1|w̃|
whenever the boundedness is needed.

LEMMA 3.2. Let w̃ satisfy (3.16) and (3.17). Then for every ε > 0 there exists s0 such
that

‖π−w̃‖L2
ρ

+ ‖π+w̃‖L2
ρ

≤ ε‖πcw̃‖L2
ρ

for any s ≥ s0.

In what follows, we will derive differential equations for the functions a and b appearing
in the expansion (3.12). Inserting (3.12) in Equation (3.8), and projecting to the unstable
subspace, we have

‖1‖2
L2
ρ
a′(s) = ‖1‖2

L2
ρ
a(s)+ P+h ,

where we use the notation (P+h)h0 = π+h. We can write h = (π+w̃ + πcw̃)
2/2 + g , where

g = (π+w̃ + πcw̃)π−w̃ + 1

2
(π−w̃)2 + h− 1

2
w̃2 .

Using Lemma 3.2 and inequalities (3.11), (3.14) and (3.15), we can estimate

|P+g|≤ (ε2 + ε)‖πcw̃‖2 + 1

2
ε2‖πcw̃‖2 + C3‖w̃3‖ ≤ 2ε ‖πcw̃‖2 + C‖w̃(·, s − R)‖3

≤ 2ε ‖πcw̃‖2 + C‖w̃(·, s)‖3 ≤ 2ε ‖πcw̃‖2 + C‖πcw̃‖3 = 2ε b2 + Cb3

for s large enough. Therefore, a satisfies

a′(s) = a(s)+
‖1‖−2

L2
ρ

2
P+(π+w + πcw)

2 + P+g .

Since we know that |w̃(y, s)| ≤ C(1 + |y|) and w̃(y, s) → 0 as s → ∞ pointwise for
every y, it follows from the Lebesgue dominated convergence theorem that w̃(·, s) → 0 as
s → ∞ also in L2

ρ(R
n). Hence a(s) → 0 and b(s) → 0 as s → ∞, and we can write for

s ≥ s0

a′(s) = a(s)+ 1

2
(a(s)2 + 8nb(s)2)+ εO(b(s)2) ,

where the second term on the right is easily obtained from P+(π+w + πcw)
2 by simple

integration. In the same way, we can prove that b satisfies

b′(s) = a(s)b(s)+ 4b(s)2 + εO(b(s)2)

for s ≥ s0.
Using now Lemma 3.2 and the above differential equations for the functions a and b, we

can repeat the arguments used in Theorem 2.6 in [2] and so we obtain the following result.

PROPOSITION 3.3. Let w̃ satisfy (3.16) and (3.17). Then

w̃(y, s) = − 1

4s
(|y|2 − 2n)+ o

(
1

s

)
in L2

ρ(R
n) .
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By the regularizing effect of the semigroup {S(s)}s , we can conclude that the above
convergence holds also uniformly on compact sets. However, we need to consider the conver-
gence in larger sets, namely, when |y| ≤ √

s R. This is done in the proposition below, which
follows [26, 30].

PROPOSITION 3.4. Let w̃ satisfy (3.16) and (3.17). Then it holds that

(3.18) lim
t→T

[log(T − t)+ ũ(ξ(T − t)1/2| log(T − t)|1/2, t)] = − log

(
1 + |ξ |2

4

)
uniformly for |ξ | ≤ R.

PROOF. To get started, define

G(ξ) = − log

(
1 + |ξ |2

4

)
and

φ̄(y, s) = G

(
y√
s

)
+ n

2s
.

ThenG(ξ) = −|ξ |2/4 + R(ξ), where |R(ξ)| ≤ C|ξ |4. Therefore we have that

‖w̃(·, s)− φ̄(·, s)‖L2
ρ

≤ o

(
1

s

)
+

{ ∫
Rn

∣∣∣ − 1

4s
(|y|2 − 2n)+ |y|2

4s
− R

(
y√
s

)
− n

2s

∣∣∣2
e−|y|2/4dy

}1/2

≤ o

(
1

s

)
+ C

{ ∫
Rn

|y|8
s4
e−|y|2/4dy

}1/2 = o

(
1

s

)
.

DefiningW = w̃ − φ̄ and using the equations

φ̄s (y, s) = − ξ

2s
· ∇G(ξ)− n

2s2

and

−ξ
2

· ∇G(ξ) = 1 − eG ,

we get that W satisfies

(3.19) Ws = AW + g + ξ

2s
· ∇G+ n

2s2 + L ,

where

g = h+ 1 + φ̄ − eφ̄ and L = �G

s
+ eφ̄ − eG ,

and h is as in (3.8). Multiplying the above equation (3.19) by sgn(W), defining Z = |W | and
using Kato’s inequality, we get that

(3.20)
Zs≤ AZ + sgn(W)g + sgn(W)

(
ξ

2s
· ∇G+ n

2s2

)
+ sgn(W)L

≤ AZ + sgn(W)g + C

( |ξ |2
s

+ 1

s2

)
+ sgn(W)L .
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Next, we want to get estimates for the terms in the right hand side of (3.20). Because
|�G(ξ)−�G(0)| ≤ C|ξ |2, we get that

|L(y, s)| =
∣∣∣�G(ξ)−�G(0)

s
+ eG+n/2s − eG − n

2s

∣∣∣
≤ C

|ξ |2
s

+ 1

1 + |ξ |2/4
(
n

2s
+O(s−2)− n

2s
(1 + |ξ |2/4)

)
≤ C

|ξ |2
s

+O

(
1

s2

)
.

To estimate the function g , consider first the subset |y| ≤ es/2R1. Then (T − t)f = ew̃

and we have by the mean value theorem that for some Θ ∈ (0,W)
sgn(W)g= sgn(W)(eφ̄+W −W − eφ̄) = sgn(W)

(
eφ̄ + (eφ̄ − 1)W + 1

2
eφ̄+ΘW 2 − eφ̄

)

=
(

− |ξ |2/4
1 + |ξ |2/4 + en/2s − 1

1 + |ξ |2/4
)
Z + 1

2
eφ̄+ΘZ2 ≤ n

2s
Z + CZ2 ,

since clearly eφ̄+Θ ≤ eK . Notice that we also have

|g| = |eφ̄ + (eφ̄+Θ − 1)W − eφ̄| ≤ CZ .

Assume then that |y| ∈ (es/2R1, e
s/2R2). Because (T − t)f (x, t) and eφ̄ are uniformly

bounded, we have that

sgn(W)g = sgn(W)(T − t)f (x, t)− Z + sgn(W)eφ̄ ≤ C ≤ C(Z2 + 1) .

Clearly, we also have that sgn(W)g ≤ C(Z + 1).
Finally, for |y| ≥ es/2R2, we have that (T − t)f (x, t) = 1 and w̃ = −1. Therefore

W ≥ −1 + log(1 + esR2
2/4s)− n/2s > 1 for s large enough, and we get

sgn(W)g ≤ C ≤ CZ ≤ CZ2 .

Collecting the above results, we know that Z satisfies the differential inequalities

(3.21) Zs ≤ AZ + C

( |y|2 + 1

s2
+ Z2 + Z

s
+ χ

)
in [s0,∞)× Rn

and

(3.22) Zs ≤ AZ + C

( |y|2 + 1

s2 + Z + χ

)
in [s0,∞)× Rn ,

where χ = χ(y, s) = 1 if |y| ∈ (es/2R1, e
s/2R2) and χ = 0 otherwise, and s0 is large

enough.
The proof can now be finished by using the above inequalities and proceeding as in [30,

Proposition 2.3]. �

In what follows, we shall handle the case where the convergence (3.16) is exponential.
Therefore we shall assume that

(3.23) ‖w̃(·, s)‖ = o(e−εs)

for some ε > 0. The proof of the following proposition is the same as in [29].
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PROPOSITION 3.5. Assume that (3.23) holds. Then either there exists m ≥ 3 and
constants Cα , not all equal to zero, such that

w̃(y, s) = −e(1−m/2)s ∑
|α|=m

CαHα(y)+ o(e(1−m/2)s) in L2
ρ(R

n) ,

or w̃ is the trivial solution w̃(·, s) = 0.

Notice that the term
∑

|α|=m CαHα has to be radially symmetric, and so m is actually

even. Since Hα(y) = ∏n
i=1Hαi (yi) and Hαi (yi) = ∑αi/2

k=0 c2k(αi)y
2k
i for some constants

ck(αi) and αi even, we have that

(3.24) |Hα(y)− c̄αy
α| ≤ C(1 + |y|m−2) ,

where c̄α = ∑n
i=1 cαi (αi). Moreover, it has to hold that

∑
|α|=m CαHα → ∞ as |y| → ∞

and therefore
∑

|α|=m aαyα > 0 for every y �= 0, where aα = Cαc̄α .
Following [29], we shall next prove an analogue of Proposition 3.4 and extend the con-

vergence to larger sets.

PROPOSITION 3.6. Let w̃ and m ≥ 4 be as in Proposition 3.5. Then

(3.25) lim
t→T

[log(T − t)+ ũ(ξ(T − t)1/m, t)] = − log

(
1 +

∑
|α|=m

aαξ
α

)

uniformly for |ξ | ≤ R, where the constants aα = Cαc̄α are as above.

PROOF. Define

G(ξ) = − log

(
1 +

∑
|α|=m

aαξ
α

)
, ξ = e(1/m−1/2)sy ,

and

φ̄(y, s) = G(ξ)− e(1−m/2)s ∑
|α|=m

Cα[Hα(y)− c̄αy
α] = G− L .

Then it is easily seen that

‖w̃ − φ̄‖L2
ρ

= o(e(1−m/2)s) .
Since

ξ · ∇G
m

= eG − 1 ,

we get, by definingW = w̃ − φ̄, that

Ws= �W − y

2
∇W +W + h− φ̄s +�φ̄ − y

2
∇φ̄ + φ̄

= AW + h−
{(

1

m
− 1

2

)
ξ∇ξG−

(
1 − m

2

)
L

}

+
{
e(2/m−1)s�ξG−�L

}
−

{ ξ
2
∇ξG− y

2
∇L

}
+G− L

= AW + (T − t)f − w̃ − eG +G+ e(2/m−1)s�ξG−�L+ y

2
∇L− m

2
L .
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Using now the facts that �Hα − (y/2)∇Hα = −(|α|/2)Hα and (y/2)∇yα = (|α|/2)yα, we
get that

�L− y

2
∇L = −m

2
L− e(1−m/2)s ∑

|α|=m
aα�y

α .

Writing then Z = |W | and

�G = −
∑

|α|=m aα�ξξα

1 + ∑
|α|=m aαξα

+
(∑

|α|=m aααiξα−1i

1 + ∑
|α|=m aαξα

)2

= (�G)1 + (�G)2 ,

where we use the notation α − 1i = (α1, . . . , αi − 1, . . . , αn), we have that

Zs ≤ AZ + sgn(W)K1 + |K2| + |e(2/m−1)s(�G)2| ,
where

K1 = (T − t)f − w̃ − eG +G

and

K2 = e(2/m−1)s(�G)1 + e(1−m/2)s ∑
|α|=m

aα�y
α .

Clearly, it holds that

e(2/m−1)s(�G)2= e(2/m−1)s
(∑

|α|=m aααie(1/m−1/2)(m−1)syα−1i

1 + ∑
|α|=m aαξα

)2

≤ e2(1−m/2)s|y|2m−2 .

Estimating then K2 using the equality e(2/m−1)s�ξξ
α = e(1−m/2)s�yα, we obtain

|K2|= e(1−m/2)s
n∑
i=1

∣∣∣∣∣
(∑

|α|=m aαξα
)(∑

|α|=m aα�yα
)

1 + ∑
|α|=m aαξα

∣∣∣∣∣
= e2(1−m/2)s

n∑
i=1

∣∣∣∣∣
( ∑

|α|=m aαyα
)( ∑

|α|=m aααi(αi − 1)yα−2i
)

1 + ∑
|α|=m aαξα

∣∣∣∣∣
≤ Ce2(1−m/2)s(1 + |y|2m−2) .

To give some estimates forK1, defineΩ1(s) = {y ; |y|m−2e(1−m/2)s ≤ R1} andΩ2(s) =
{y ; |y|me(1−m/2)s ≤ R̃}, where R̃ is large enough such that

eCL(1+R1)

1 + ∑
|α|=m aαξα

< 1

for every |ξ |m = |y|me(1−m/2)s > R̃, and CL = C
∑

|α|=m Cα with C as in (3.24). Then
Ω2(s) ⊂ Ω1(s) for s large enough, and we have that

|L| ≤ CLe
(1−m/2)s(1 + |y|m−2) ≤ CL(1 + R1) for y ∈ Ω1(s) ,

and

|L| ≤ CLe
(2/m−1)s(1 + [e(1/m−1/2)s|y|]m−2) ≤ CLe

(2/m−1)s(1 + R̃(m−2)/m) ≤ C

s
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for y ∈ Ω2(s), and

eφ̄ = e−L

1 + ∑
|α|=m aαξα

< 1 for y ∈ Ω1(s) \Ω2(s) .

Consider y ∈ Ω1(s). In this domain, we have that

K1 = ew̃−w̃−eG+G = eW+φ̄−W−φ̄−eG+G = (eφ̄−1)W+ 1

2
eφ̄+ΘW 2+eG−L+L−eG

for some Θ ∈ (0,W). Now

sgn(W)(eφ̄ − 1)W = −
∑

|α|=m aαξα

1 + ∑
|α|=m aαξα

Z + e−L − 1

1 + ∑
|α|=m aαξα

Z <
C

s
Z

for y ∈ Ω2(s) and

sgn(W)(eφ̄ − 1)W ≤ 0 ≤ C

s
Z

for y ∈ Ω1(s) \Ω2(s).
For Θ ∈ (0, L) and y ∈ Ω1(s), we also have the estimate eG−Θ ≤ eG+|L| ≤ C, and so

|eG−L+L− eG| =
∣∣∣∣(1 − eG)L+ 1

2
eG−ΘL2

∣∣∣∣
≤

∑
|α|=m aαξα

1 + ∑
|α|=m aαξα

CLe
(1−m/2)s(1 + |y|m−2)+ Ce2(1−m/2)s(1 + |y|m−2)2

≤ Ce2(1−m/2)s(1 + |y|2m−2) .

Hence we have

sgn(W)K1 ≤ C

s
Z + CZ2 + Ce2(1−m/2)s(1 + |y|2m−2) for y ∈ Ω1(s) .

Consider then y ∈ {|y| ≤ es/2R2} \ Ω1(s). It yields that |ξ | ∈ (es/mR1/(m−2)
1 , es/mR2)

and we can easily estimate

|K1| =
∣∣∣(T − t)f + s − ũ(x, t)− s − log

(
e−s +

∑
|α|=m

aα(e
−s/mξ)α

)
− eG

∣∣∣ ≤ C .

Finally, let y ∈ Rn \ {|y| ≥ es/2R2}. In this domain we have that (T − t)f = 1 and
w̃ = −1 and therefore

|K1| = |2 − eG +G| ≤ 1 + |eG − 1 −G| ≤ 1 + 1

2
eΘG2

for some Θ ∈ (0,G). Since |L| ≤ CLe
(1−m/2)s(1 + |y|m−2) and G = w̃ + L−W , we get

G2 ≤ C(W 2 + (L− 1)2) ≤ C(W 2 + L2 + 1) ≤ C(W 2 + 1 + e2(1−m/2)s(1 + |y|2m−2)) .

Altogether we have obtained that

Zs ≤ AZ + C

s
Z + CZ2 + Ce2(1−m/2)s(1 + |y|2m−2)+ Cχ ,

where χ = χ(y, s) = 1, for |y| ≥ es/2R2 and χ = 0 otherwise. Now we can finish the proof
exactly as in [30]. �
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In what follows, our aim is to describe the asymptotic blow-up profile of u. In other
words, we want to show that either (3.2) or (3.4) holds. To that end, define for τ ∈ [0, T ]

ψτ (x, t) = log(T − τ )+ ũ(λ(τ )ξ + x
√
T − τ , τ + (T − τ )t) ,

where λ(τ) = √
T − τ | log(T − τ )|1/2 if the case as in Proposition 3.4 occurs and λ(τ) =

(T − τ )1/m if the convergence of u is as in Proposition 3.6. Here ξ is fixed, x ∈ Rn and
t ∈ [0, 1]. Moreover, let

φτ (y, s) = log(1 − t)+ ψτ (x, t) ,

where y = (1 − t)−1/2x and s = − log(1 − t). Then we have that

(ψτ )t = �ψτ + (T − τ )f , x ∈ Rn , t ∈ (0, 1)

and
(φτ )s = �φτ − y

2
· ∇φτ + hτ , y ∈ Rn , s > 0 ,

where hτ (y, s) = (T − τ )(1 − t)f (λ(τ )ξ + x
√
T − τ , τ + (T − τ )t) − 1. By the above

Propositions 3.4 and 3.6, we know that

φτ (y, 0)= ψτ (x, 0) = log(T − τ )+ ũ
(
λ(τ)ξ + x

√
T − τ , τ

)
= − log

(
1 +

∑
|α|=m

aα

(
ξ + x

√
T − τ

λ(τ )

)α)
+ γτ (x) ,

where m ≥ 2 and
∑

|α|=m aαξα = |ξ |2/4 if (3.18) holds, and otherwise m ≥ 3 and
the constants aα are as in Proposition 3.6. Above |γτ (x)| → 0 uniformly for |x| ≤
C(T − τ )−1/2λ(τ) as τ → T . Therefore

lim
τ→T

ψτ (x, 0) = − log

(
1 +

∑
|α|=m

aαξ
α

)
,

pointwise for every x ∈ Rn. Because of Propositions 3.4 and 3.6, we also know that |ψτ (0, 0)|
≤ C as τ → T and therefore Proposition 2.3 yields that ψτ (x, 0) ≤ C + |∇ψτ ||x| ≤
C(1 + |x|) ∈ L2

ρ(R
n). By the dominated convergence theorem we then obtain that

(3.26)
���ψτ (·, 0)+ log

(
1 +

∑
|α|=m

aαξ
α

)���
L2
ρ

≤ γτ → 0

as τ → T .
Define also

φ̃(s) = log(1 − t)− log

(
1 − t +

∑
|α|=m

aαξ
α

)
, Wτ = φτ − φ̃ and Zτ = |Wτ | ,

where m ≥ 2. ThenWτ verifies the equation

(3.27) (Wτ )s = �Wτ − y

2
· ∇Wτ + hτ + 1 − eφ̃ = ÃWτ + eφ̃Wτ + fτ ,

where Ã = �− (y/2) · ∇ and

fτ (y, s) = (T − τ )(1 − t)f (λ(τ )ξ + x
√
T − τ , τ + (T − τ ) t)− eφ̃Wτ − eφ̃ ,
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and so Zτ satisfies respectively the equation

(3.28) (Zτ )s ≤ ÃZτ + eφ̃Zτ + |fτ |
and by (3.26) also

(3.29) ‖Zτ (·, 0)‖L2
ρ

≤ γτ → 0 as τ → T .

Now, for |λ(τ)ξ + x
√
T − τ | ≤ R1, we have fτ = eφτ − eφ̃Wτ − eφ̃ and so we have for

some Θτ = Θτ (y, s) ∈ [0,Wτ (y, s)] that

(3.30) fτ = eφ̃(eWτ −Wτ − 1) = 1

2
eφ̃+ΘτW 2

τ .

Clearly, φ̃ +Θτ ≤ φ̃ + max{0,Wτ } ≤ max{φ̃, φτ } ≤ K and so the inequality

(3.31) |fτ | ≤ CZτ

holds as well.
For |λ(τ)ξ + x

√
T − τ | > R1, we have that Wτ ≤ −1, at least for τ close to T , and

therefore the uniform bound (3.7) gives us that |fτ | ≤ C ≤ CZτ ≤ CZ2
τ . Thus the inequality

(3.31) holds for every s > 0, y ∈ Rn and τ close to T with some constant C depending only
on the constant appearing in Theorem 1.1 and the choice of ζ .

In the forthcoming statements and proofs C denotes again a generic constant, possibly
changing from line to line, depending only on the solution u, our choice of ζ and ξ ∈ Rn and
the dimension n.

LEMMA 3.7. Let fτ be as above and assume that sups≤s̄ ‖Zτ (·, s)‖ ≤ ετ , where ετ →
0 as τ → T . Then there exist a constant C′ > 0 such that

‖fτ (·, s)‖L2
ρ

≤ C′e−sετ
for every s ≤ s̄.

PROOF. We will first estimate the part of the norm where |y| is large. Recall that, using
the regularizing effect of the semigroup together with the inequalities (3.28) and (3.31), we
know that there exists a constant R > 0 depending only on p ≥ 1 and the dimension of the
space such that

(3.32) ‖Zτ (·, s)‖Lpρ ≤ ‖eCRS̃(R)Zτ (·, s − R)‖Lpρ ≤ C‖Zτ (·, s − R)‖L2
ρ
.

Then defineΩ1(s, τ ) = {y ∈ Rn ; |y| > es/2λ(τ)|ξ |/2√
T − τ } and use the inequality (3.31)

together with Hölder’s inequality and the above inequality (3.32) to obtain∫
Ω1(s,τ )

|fτ (y, s)|2e−|y|2/4dy

≤
{∫

Ω1(s,τ )

|fτ (y, s)|4e−|y|2/4dy
}1/2 {∫

|y|≥es/2
e−|y|2/4dy

}1/2

≤ C‖Zτ (·, s)‖2
L4
ρ
e−es ≤ Ce−2s‖Zτ (·, s − R)‖2

L2
ρ

≤ Ce−2sε2
τ
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for s ≤ s̄ and τ close to T . Here we used the fact that∫
|y|≥R

e−|y|2dy ≤ Ce−R2
.

In what follows, we consider the part of the integral where y ∈ Ω2(s, τ ) = Rn \Ω1(s, τ )

and notice that then fτ = eφ̃(eWτ −1−Wτ) = eφ̃+Θτ Z2
τ /2 forΘτ ∈ (0,Wτ ) and τ sufficiently

close to T . By taking τ close to T and y in Ω2(s, τ ), we have that |λ(τ)ξ + √
T − τx| >

λ(τ)|ξ |/2 and (T − τ )| log(λ(τ ))|/λ(τ)2 ≤ 1. By using the estimate (3.5), we then get

Wτ (y, s)= log(T − τ )+ ũ
(
λ(τ)ξ + √

T − τx, τ + (T − τ )t
)

+ log
(
1 − t + ∑

|α|=m aαξα
)

≤ log

(
2(T − τ )| log(λ(τ )|ξ |)|

(λ(τ )|ξ |)2
)

+ C ≤ C .

Therefore fτ ≤ eφ̃+CZ2
τ and∫

Ω2(s,τ )

|fτ (y, s)|2e−|y|2/4dy ≤ e2(φ̃+C)
∫
Ω2(s,τ )

|Zτ(y, s)|4e−|y|2/4dy

≤ Ce−2s‖Z(·, s)2‖2 ≤ C(R)e−2s‖Z(·, s − R)‖4 ≤ Ce−2sε4
τ ,

which finishes the proof. �

Now we are ready to prove that the norm of Zτ stays small forever if it is initially small
enough, using an idea from [29]. This will then allow us to pass to the limit as s → ∞ and
complete the proof concerning the blow-up profile.

PROPOSITION 3.8. Let Zτ be as above. Then there exists a constant C > 0 indepen-
dent of s such that

‖Zτ (·, s)‖L2
ρ

≤ Cγτ

and

(3.33) sup
|y|≤R

Z(y, s) ≤ Cγτ .

PROOF. Let τ be close to T and s0 be large enough so that all the above estimates hold.
Let now {S̃(s)}s be the semigroup generated by Ã. It is clear that because of (3.28), (3.29)
and (3.31), we have that

(3.34) ‖Zτ (·, s0)‖L2
ρ

≤ eCs0‖S̃(s0)Zτ (·, 0)‖L2
ρ

≤ eCs0γτ

for some constant C > 0. Define

s̄ = sup{s ; ‖Zτ (·, s)‖L2
ρ

≤ 4eCs0γτ }
and assume that s̄ < ∞. Take then s0 large enough so that both

(3.35) 2C′e−s0 < 1

4
and

e−s0 + ∑
|α|=m aαξα∑

|α|=m aαξα
< 2 ,
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where C′ is the constant appearing in Lemma 3.7.
Using Lemma 3.7, the previous inequalities (3.34) and (3.35) together with the definition

of s̄ and the variation of constants formula, we obtain

‖Z(·, s̄)‖L2
ρ
≤

(
‖S̃(s̄ − s0)Zτ (·, s0)‖L2

ρ
+

∫ s̄

s0

‖S̃(s̄ − t)fτ (·, t)‖L2
ρ
dt

)
exp

( ∫ s

s0

eφ̃(t)dt

)

≤
(

‖Zτ (·, s0)‖L2
ρ

+ C′
∫ s̄

s0

e−t (4eCs0γτ )dt
)
e−s0 + ∑

|α|=m aαξα

e−s + ∑
|α|=m aαξα

≤ 2
(
eCs0γτ + C′(e−s0 − e−s̄ )4eCs0γτ

)
<

3

4
· 4eCs0γτ ,

which contradicts the choice of s̄. Therefore it has to hold that s̄ = ∞, which yields the first
part of the claim.

Because of the estimate (3.31), we obtain also the second part of the claim by

sup
|y|≤R

Zτ (y, s)≤ sup
|y|≤R

|eCLS̃(L)Zτ (y, s − L)|

≤ C sup
|y|≤R

eCL

(1 − e−L)n/2

∫
Rn

exp

(
− (ye−L/2 − λ)2

4(1 − e−L)

)
Zτ (λ, s − L)dλ

≤ C sup
|y|≤R

{∫
Rn

exp

(
− (ye−L/2 − λ)2

2(1 − e−L)

)
e|λ|2/4dλ

}1/2

·
{∫

Rn
Zτ (λ, s − L)2e−|λ|2/4

}1/2

≤ C‖Zτ (·, s − L)‖L2
ρ

≤ Cγτ ,

and the proof is complete. �

PROOF OF THEOREM 3.1. Passing to the limit as s → ∞ in (3.33), which corresponds
to taking t = 1 and x = 0, we have

log(T − τ )+ ũ(λ(τ ), T )+ log

( ∑
|α|=m

aαξ
α

)
≤ Cγτ → 0

as τ → ∞. Set x = λ(τ)ξ and follow the estimates in [2], for instance, to notice that the
above convergence implies that

lim|x|→0
[u(x, T )+ 2 log |x| − log | log |x|| − log 8] = 0

if (3.18) holds, and

lim|x|→0

[
u(x, T )+m log |x| + log

( ∑
|α|=m

aαξ̂
α

)]
= 0
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if (3.25) holds, where ξ̂ = x/|x|. However, the latter convergence is impossible because of
the estimate (3.5), so the claim follows. �

PROOF OF THEOREM 1.2. We shall first prove that if w̃(·, sn) → ϕ(·) uniformly on
compact sets for some sequence sn → ∞, then ϕ is a stationary solution of the corresponding
rescaled equation, that is, it satisfies (1.4) with 0 ≤ µ < ∞. The argument is similar to that
in [13] (see also [18]).

Because of the inequality (3.9) and parabolic regularization, we know that w̃ is contained
in a compact subset of C2,1(BM(0)×[s0,∞)) with uniformly Hölder continuous derivatives,
where M > 0 is arbitrary. Using then the inequality∫ s

s0

∫
B
R1e

t/2 (0)
|w̃s(y, t)|2e−|y|2/4dydt ≤ E[w](0)− E[w](s) ,

where

E[w](s) :=
∫ R1e

s/2

0

(
1

2
w2
y − ew +w

)
e−|y|2/4 dy

is the energy functional corresponding to the rescaled equation, and proving that E[w](s) is
bounded from below, we obtain that w̃s(y, s) converges to zero uniformly on compact sets
and hence ϕ is a stationary solution. Clearly ϕη(0) = 0 and since w̃(0, s) ≥ 0 by (2.3), we
also have that µ ≥ 0.

Following then [25], it is straightforward to show that such ϕ exists and w̃(·, s) → ϕ(·)
uniformly on compact sets for s → ∞. In the proof one first argues that the set of possible ϕ
can be written as

ω(w̃) =
⋂
s

⋃
σ≥s

{w̃(·, s)}

in a suitable topology. Then it is fairly simple to see that the above set is nonempty, compact
and connected. Taking then ϕ as above and using the zero number property, we can see that
w̃(0, s) − ϕ(0) never changes sign for s large enough. Assuming then that ω(w̃) contains
at least three solutions of (1.4), denoted by ψi , i ∈ {1, 2, 3}, it has to hold that w̃(0, s) ∈
(ψi(0), ψi+1(0)) for i equal to 1 or 2 and s large enough, which contradicts the fact that
w̃(·, s) → ψj (·), for j /∈ {i, i + 1}.

Theorem 3.1 enables us to conclude that µ > 0 by applying the following proposition
[28, Theorem 3.6].

PROPOSITION 3.9. There exists a constant C > 0 such that there is no nonnegative
L1-solution of (1.1) with f (u) = eu and

u0(|x|) ≥ −2 log |x| + log(2(n− 2))+ C

for |x| close to 0.

Namely, if ϕ ≡ 0, then u cannot be continued beyond t = T as an L1-solution.
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It is known, see [3], that if ϕ is a nontrivial solution of (1.4), then either ϕ(η) =
−2 logη + C + o(1) or ϕ(η) = −Cη−neη2/4 + o(1) as η → ∞. Since (3.9) holds, ϕ cannot
have the exponential decay at infinity and the claim is proved. �

4. Profile of L1-connections. In this section we consider the problem

(4.1)



ut = urr + n− 1

r
ur + λeu , r ∈ (0, 1) , t > 0 ,

ur (0, t) = u(1, t) = 0 , t > 0 ,

u(r, 0) = u0(r) ≥ 0 , r ∈ [0, 1] ,
where λ > 0 and n ∈ [3, 9].

We first recall some known properties of equilibria of (4.1). The stationary problem
corresponding to (4.1) is:

(4.2)


φrr + n− 1

r
φr + λeφ = 0 , r ∈ (0, 1) ,

φr(0) = 0 , φ(1) = 0 .

PROPOSITION 4.1 ([17, 21], see Figure 1). Denote by S the solution set of the param-
eterized problem (4.2):

S = {(φ, λ) ; λ ∈ R+ and φ is a solution of (4.2)} .
Then there exists a smooth curve

R+ → C([0, 1])× R+

∈ ∈

s �→ (φ(s), λ(s))

such that S = {(φ(s), λ(s)) ; s > 0} and that

sup
x∈B1(0)

φ(s)(x) = φ(s)(0) = s .

FIGURE 1.
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Moreover, the following holds:
(i) lims→0 λ(s) = 0, lims→∞ λ(s) = λ∞ := 2(n− 2).

(ii) The set of all zeros of λ′(·) is given by a sequence 0 < s1 < s2 < s3 < · · · → ∞
and the critical values λj = λ(sj ) , j = 1, 2, 3, . . . , satisfy

λ1 > λ3 > · · · > λ2j+1 ↘ λ∞, λ2 < λ4 < · · · < λ2j+2 ↗ λ∞ .

(iii) For each λ ≤ λ1 define

φλi = φ(s̃i ) , i = 0, 1, . . . ,

where s̃0 < s̃1 < · · · is the sequence of all points s with λ(s) = λ. This sequence is finite if
λ �= λ∞ and infinite if λ = λ∞. In the latter case we have

φλi (r) → φλ∞(r) := log r
2(n− 2)

λr2 in C1
loc((0, 1]) .

For the number of intersections of two equilibria and of equilibria with φλ∞ the following
holds.

PROPOSITION 4.2.
(i) If λ < λ1 and k > j are such that φλk and φλj are both defined, then φλk − φλj has

exactly j + 1 zeros in [0, 1], all of them simple.
(ii) If λ = λ∞ and j ≥ 0, then φλ∞ − φλj has j + 1 zeros in [0, 1].
(iii) If λ < λ∞ and j ≥ 0 are such that φλj is defined, then φλ∞ − φλj has j + 1 zeros in

[0, 1] when j is odd, and j zeros in [0, 1] when j is even.
(iv) If λ∞ < λ ≤ λ1 and j ≥ 0 are such that φλj is defined, then φλ∞ − φλj has j zeros

in [0, 1] when j is odd, and j + 1 zeros in [0, 1] when j is even.
All of the zeros of φλ∞ − φλj are simple.

PROOF. For the proof of (i) we refer to [14]. From (i) and Proposition 4.1 (iii) it follows
that (ii) holds. To prove (iii) and (iv) one can then use the bifurcation diagram (Figure 1), the
simplicity of zeros and continuation of φλj , taking into account that the zero of φλ∞ − φλj at
r = 1, λ = λ∞, either moves inside or disappears when λ �= λ∞ and λ is close to λ∞. �

Next we recall the existence of a special blow-up solution which can be continued glob-
ally as an L1-solution.

PROPOSITION 4.3. For any λ ∈ (λ2, λ3] and T > 0 there is u0 such that the solution
u(·, t) of (4.1) has the following properties:

(i) u(·, t) blows up at t = T .
(ii) u(·, t) is a global L1-solution.
(iii) u(·, t) is defined (as a classical solution of (4.1)) on the interval (−∞, T ) and

u(·, t) → φλ2 in C1([0, 1]) as t → −∞.
(iv) u(·, t) is a classical solution of (4.1) on the interval (T ,∞) and u(·, t) → φλ0 in

C1([0, 1]) as t → ∞.
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(v) There is a sequence {ui} of classical connections from φλ2 to φλ0 such that un(r, t) ↗
u(r, t) pointwise for (r, t) ∈ [0, 1]×R. Here a classical connection from φλ2 to φλ0 is a classical
solution of (4.1) on the interval (−∞,∞) such that u(·, t) → φλ2 in C1([0, 1]) as t → −∞,
and u(·, t) → φλ0 in C1([0, 1]) as t → ∞.

We call the solution u an L1-connection from φλ2 to φλ0 .
For the proofs see Theorem 3.4 in [14] and Section 6 in [13].

THEOREM 4.4. Let λ ∈ (λ2, λ3]. Suppose u is an L1-connection from φλ2 to φλ0 as in
Proposition 4.3. Then

lim
t→T

[log(T − t)+ u(η
√
T − t , t)] = ϕ0(η), η ∈ [0,∞) ,

where ϕ0 satisfies 
ϕηη +

(
n− 1

η
− η

2

)
ϕη + λeϕ − 1 = 0 , η > 0 ,

ϕ(0) = µ0 , ϕη(0) = 0

for some µ0 > 0 and

lim
η→∞(ϕ0(η)− φλ∞(η)) = −c0

for some c0 > 0. Moreover, the equation

ϕ0(η)− φλ∞(η) = 0

has two roots.

For the proof we shall need the following lemma.

LEMMA 4.5 ([27]). Let λ∞ < λ ≤ λ3. Denote the three zeros of φλ∞ − φλ2 by 0 <
r1 < r2 < r3 < 1. Let u be an L1-connection from φλ2 to φλ0 as in Proposition 4.3. Then
u(·, t)− φλ∞ has at most two zeros in (0, r1) for t < T .

PROOF. We use the notation (2.4). Since u(·, t) → φλ2 in C1 as t → −∞ and
Z(0,1)(φλ∞ − φλ2 ) = 3, it follows that there is t0 < 0 such that Z(0,1)(φλ∞ − u(·, t)) = 3
for t < t0. Therefore, Z(0,1)(φλ∞ − u(·, t)) ≤ 3 for t < T .

We now proceed by contradiction. Suppose there is t1 < T such that Z(0,r1)(φλ∞ −
u(·, t1)) = 3. Then there is a positive integer i and a classical connection ui from φλ2 to φλ0
(cf. Proposition 4.3 (v)) such that Z(0,r1)(φλ∞ − ui(·, t1)) = 3. This means that

(4.3) ui(r, t1) > φλ∞(r) , r ∈ [r1, 1] ,
because Z(0,1)(φλ∞ − ui(·, t)) ≤ 3 for all t ∈ R.

We claim that then

(4.4) Z(r3,1)(φλ2 − ui(·, t1)) = 1 .

Indeed, otherwise either

(4.5) Z[0,1](φλ2 − ui(·, t1)) > 2
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or

(4.6) Z[0,1)(φλ2 − ui(·, t1)) = 0 .

Since ui(·, t1) belongs to the unstable manifold of φλ2 , we must have (cf. Theorem 2.1 in [6])

(4.7) Z[0,1](φλ2 − ui(·, t)) ≤ 2 , t ∈ R .

(We remark here that Theorem 2.1 in [6] concerns the zero number on the unstable manifold
of an equilibrium of a semilinear parabolic equation in one space-dimension. But this result
can be extended in a straightforward way to radially symmetric solutions in higher space-
dimension using Theorem 2.1 from [8].) It follows from (4.7) that (4.5) cannot occur. On the
other hand, (4.6) would imply that ui blows up in a finite time (cf. [22]). Hence (4.4) holds.
Therefore, we obtain that

(4.8) ui(r, t1) > φλ2 (r) , r ∈ [0, r3] .
We next show that

(4.9) ui(r, t) > max{φλ2 (r), φλ∞(r)} , (r, t) ∈ [r1, r3] × [t1,∞) .

From (4.3) and (4.8) we have

ui(r, t1) > max{φλ2 (r), φλ∞(r)} , r ∈ [r1, r3] .
If (4.9) does not hold, then there is t2 > t1 such that

ui(r, t) > max{φλ2 (r), φλ∞(r)} , (r, t) ∈ [r1, r3] × [t1, t2) ,
and either

(4.10) ui(r1, t2) = φλ∞(r1)(= φλ2 (r1)) ,

or

(4.11) ui(r3, t2) = φλ∞(r3)(= φλ2 (r3)) .

Note that Z(r3,1)(φλ2 − ui(·, t)) = 1 for t ∈ [t1, t2], so (4.10) is impossible because then

Z[0,1](φλ2 − ui(·, t2)) = 3 .

On the other hand, for t ∈ [t1, t2] all intersections of φ∞ and ui(·, t) are contained in [0, r1].
Thus (4.11) cannot occur.

Since φλ2 > φλ0 in [r1, r3], (4.9) yields a contradiction with the convergence of ui(·, t) to
φλ0 as t → ∞. �

PROOF OF THEOREM 4.4. Consider first the case λ2 < λ ≤ λ∞. Then Z(0,1)(φλ∞ −
φλ2 ) = 2 and by the zero number diminishing property, it has to hold that Z[0,R](u(·, t) −
φλ∞) ≤ 2 for every t ∈ (−∞, T ). After rescaling, we then get that Z[0,es/2](w̃(·, s)−φλ∞) ≤ 2
for every s ∈ (−∞,∞). Theorem 1.2 now states that w̃(·, s) → ϕ uniformly on compact sets
in y, where ϕ has the decay (1.5) and intersects φλ∞ at most twice. It follows then from [3]
that ϕ has to intersect φλ∞ exactly twice.
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If λ∞ < λ ≤ λ3, then Z(0,1)(φλ∞ − φλ2 ) = 3, but Lemma 4.5 yields that Z(0,r1)(φλ∞ −
u(·, t)) ≤ 2 for t < T and we can proceed as before. �

The existence of L1-connections between two equilibria φλk and φλj was studied in [11,

12], and it was shown there that a singular L1-connection from φλk to φλj exists if and only if

k ≥ j + 2. By Theorem 1.1 any such L1-connection blows up with the selfsimilar rate and by
Theorem 1.2 it converges (after rescaling) to a nonconstant selfsimilar solution. It would be
interesting to determine how this limit selfsimilar solution depends on k and j . Theorem 4.4
answers this question only for k = 2 and j = 0. To prove a more general result one has to be
able to control the number of intersections with φλ∞ that disappear at the moment of blow-up.
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