ON THE SPACES WITH NORMAL CONFORMAL
CONNEXIONS AND SOME IMBEDDING
PROBLEM OF RIEMANNIAN SPACES, L.®

By

Tominosuke Otsuki

An z-dimensional space with normal conformal connexion whose group
of holonomy fixes a hypersphere S,_; is conformal with an Einstein space
with constant scalar curvature which is negative, 0 or positive according as
the sphere is real, point or imaginary. If S,_, is real, the group of holonomy
induces a group of Mgbius' transformations on it. Therefore its image in
the space, a hypersurface F,_;, is an (#—1)-dimensional space with normal
conformal connexion. The Riemannian metric induced in F,_, seems to us
to be most general.

On the other hand, in J.E. Campbell's book? we find a theorem that any
Riemannian space V,_, can be imbedded in some Einstein space A4, as a
hypersurface. Is the first conjecture true ? What relations are there between
above stated facts ?

In the following paper we shall study these problems,

Article 1(1—4)deals with such a space with normal conformal connexion
whose group of holonomy fixes a hypersphere, and the image of the
hypershere. In article 2(5—12) attention is turned to solve the problem
whether a given Riemannian space can be imbedded as the hypersurface of
the image in a restricted sense or not. Finally article 3(13—14) deals with
the spaces whose groups of holonomy fix two hyperspheres.
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§ 1.
1 According to Mr. E. Cartan,® let R: (A,, A:, A.) be frames of an
n-dimensional space with conformal connexion satisfying the conditions
¢)) A=Al=A)Ai=AiA.=0, AyA. =1, AiA; =8 (i, =1, 2,--m).
We call these frames composed of n + 2 hyperspheres as normal. Then the
connexion is given by the following equations :
( dA, = o)A, + o4y,
(2)  dA; = Ay + 0t Ay — 0'Ae, o) + 0¥ = 0.
? dAs = — 0lA; — )4,
where (o), o', o), ®}) are Pfaffians.
If the space has no torsion and Q) = 0, the equations of structure are
(@) = [0 w{],
f (") = [w) '] + [o" w]],
(0)) = [’ of] — [0’ 0?1 + [o¥ 0]l — O,
Y (@) = [l o] + [0t o] — QO
Suppose the group of holonomy of this space fixes a hypersphere Sn—;.
Let us now represent S,_, by
) X =24+ x A: + x~A..,
then by virtue of (2), we get

Il

3)

dX = (dx' + P o) + 4 o)) Ay + (@4 + 1" o' + 2w — 2 w)A;
+ (dx” — X 0" — x° w)) A..
Accordingly the system of Pfaff’'s equations
5) d;x”+3f0/33>+ Faop _ di' + 2’ o + Fol — 1) _ dx” — 2" o' — 1w
%0 xt x°

must be integrable,

Let us now assume that the poiht A, does not lie on S;,_;, then x~ =+ 0.
If we put

xDO )
(5) becomes * .

Y ; x!
0 . i
(6) .y - y xua )

Ay’ + 3w+ ¥ el + 3 (e’ + wp) =0,
Ay +3 o + Yo, — o+ @ e+ o) =0.
Hence, for a change of secondary parameters, integrals 3° 3' have the

@ {

3) E.Cartan, Les espaces a connexion conforme. Ann. Soc. Pol. Math., 2 (1923)
pp.171—221., Les groupes dholonomie des espaces généralisés. Acta Math., 48
(1926) pp.1—42.
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variations

&0+ 200 el + yel =0,

Sy +yel — e+ 3y el =0, &) = ) (3), €] = & (8), & = wj,(5).
The last equation shows that y’ are transformed by the n-dimensional group
of similarity. Accordingly we can choose, at’each point, frames such that

® y = 0.

Then we have by (7)

€©)) dy’ + 2y° o) = 0,

(10> ! =y '

Consequently our spaces are classified into the following two cases I and II:
I 0 =0.

In this case S,_, degenerates into the point-sphere A.., and by (10) and (3)
we have
1) ) =0,
3 [ @ =0 @ = o] + [t ol
(o0}) = [0 0i] — Q.
Therefore if we put
(12) Ol=@l= e =0t = — @),
(o', }) is a system of Pfaffians of the Weyl space in terms of normal
frames.
1L =0
In this case,we can choose by (9), frames so that y° =1 or — 1, hence
Su-1 isrepresented analytically by A4, + A..(real hypersphere) or by — Ay+ A
(imaginary hypersphere). By virtue of (10) and (3) we have

13) ol=Ee (E=10r —1) )=0,
3) { (") = [o* )],
(o)) =280 0] + [0t 0] — Q.

Therefore (o, w}) is a system of Pfaffians which defines a Riemannian space
in terms of normal frames.

Now let us suppose that our space is normal, that is, it satisfies conformal
conditions
(14) Ain = A¥m = 0,
where A is defined by '
(15) Qj" = '% Al [o" o

In the case I we shall have a quantity ¢ such that o) =d®, therefore
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we may put @ = constant. Then, making use of the relations
(16 — (@l + [k of] = 5 R [P 0¥,

Rij = R*»m, R = Ru,
where Rk, Ri; and R are the components of Riemann tensor, Ricci tensor
and Riemann scalar curvature respectively. As is well known, we shall have
in both cases the following relation :

B 1 o . 1 ;
an o} = = R " + 5Ty = 25 Ro"

Accordingly,in the case I, we have by (11) and (17)

Ry = RSy, R:—z—n——R.

Wl——l) (n—1
As we are considering only the case #n > 2, we have R =0 from the latter
and consequently we get
18) Ri; = 0.
Accordingly, the Riemannian space with line element ds’ = o'’ is an
Einstein space with scalar curvature 0. '

In the second case, we have by (13) and (17)

A 1 3 1 {1
fot= =35 Ruo'+ 50155, =2y R

hence we get

Re'j:{—z(nlﬁlf——(n—Z)E}&j,
R = é@”_—l)R—n(n—%E,
that is
a9 ‘ R=—2&n(n—1),
20) Ri; = —2&8(n —1) 6.

The last equation shows that the Riemannian space with line element ds* =
' @' is an Einstein space with scalar curvature —2n(# — 1) or 2n ( — 1).

Thus we know that a space with normal conformal connexion whose
group of holonomy fixes a hypersphere S..; is conformal with an Einstein
space whose Riemann scalar curvature is <0, 0 or >0 according as the
hypersphere S.-, is real, point or imaginary. The converse is evidently
true.

2. In the following lines we shall investigate the space with normal con-
formal connexion whose group of holonomy fixes [a real S,., and the
hypersurface F,_, which is the image of S,_, in the underlying manifold.
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As the connexion is normal, we have by (2) and (3)
1
D= R
(w', w}) is a system of Pfaffians which defines the connexion of a Riemannian

1 o
@b wp =0, o= —%-___ZRIL(I)‘ + 20

space, and R;’%:’s are components of its Riemann tensor.

Let us now restrict our consideration to a neighborhoocd of F,_,. Then
as Si_; is real,we shall have x> =0 and x'x >0 on F,_,. Therefore we
may assume x" += 0 in that neighborhooed. If we put

x’,‘l,

x°
_ 0 . T oo
(22) ya - X" y YU = Xt ’ y

x>
xn

(d:l, 2} s ey n—l).

(5) becomes
ay’ + o) + ¥ o) — 3 0o" + 3’ o) — ¥~ ) =0,
(23) J Ay + g+ 3 0" + 3 0] = ¥ 0y — 3" (00 0" + ¥ @l — 3" wp) =0,
L@y =" =3 =y~ (" +) o) =y~ w) =0,
which are integrable on account of our hypothesis. For a change of secon-
dary parameters, we have by (21)
' —y'ye; =0, &~ —y=ye; =0,
Sy* + e+ ye; — vy el = 0.
Accordingly we can choose frames so that
(24) y* = 0.
Then (23) turns into
: B+ o) =3 " —y e =0,
(25) dy” —o" —y° (" =y~ w)) =0,
o + P o —y° o) =0.

Thus our consideration is divided into two cases 3° = 0 or = 0, that is the
cases where A. lies on S,_; or not. Of course 3’ and y= are invariants. In
this paper we shall treat with the case y° = 0. Accordingly in the following, we
shall always mean by immersion of a given Riemannian space in an Einstein space
immersion of the former as the hypersurface of the image of the hypersphere
Sr-; under the condition 3’ = 0.

3. Let us put y~ =y, then in our space (5) turns into the following
system of Pfaffian equations:

(26) o* = dy,

2 yl _1_ % 1 a
@7y m,b-—y\ n— Ry, 0" + 2(”_1)(”_2) Ra)),
28) R 0" L Ray.

= 2(n—1)
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Let us suppose that &%, #%,-.-. , x*~! be integrals of the system of Pfaffian
equations
o' =@ = - -r.. =" 1 =0,
then from (28) we shall obtain
29 Ru = 0,
(30) Run = 2-(71:? R.

Let us now again write the relations (26)—(30) by means of natural
frames (repéres naturelles). Putting
31 o = flda,
and denoting natural - frames by R* (A AX A AY) (W=1,2, ...., n—1),
we may assume that the connexion of our space is given by

i dAj = dx Ay + dy A}
(32) { dA; = o Aj + oF A5 + ;= AL,
dA. = ol A
Then from dA, = ' A = f{ d0*Aq -+ dyA., = de A, + dy A’ we shall obtain
. A,\ = f;'\ A, A;L = Au.
By virtue of (2) we get
dA; =df] Ao+ ) (o) Ay + 0, Ai — 0" A..)

= Ay + o} | Aa + o An + 0" A
and hence we obtain

o0y

(33) afy + fr o} —w,\f’, ol = @)l fro) = 0.

Putting A% = — A., we get also

34 fle® = o*y

As Ry, = f} S} Ran, (29) and (30) become

(29' R(Ln = Oy

30 R, = L R*

Therefore making use of new quantities pr such that f;pr = 32, we obtain

from (33)

Vo o pA kR
w, = W, = bl o™

Thus (27) turns by (29) into

N _. 1 B2 1
— ot = — Ly Rafide + gy REL ).

Now, if we put
(35) I‘*l dx? + I dy,

Jn
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it is evident that I'}"’s are Christoffel’s symbols given by the following funda-
mental tensor g; :

(36) ouw=fif, &n=0, gn=1L

Therefore we obtain from the above equations

R y 1 w
~05 = 2o~ Ruflt g =15 RS-

Multiplying f¢ and contracting we have

, Cqen_ Y e 1
@7y Ty = -2 (= Ry + 55— 2 =R 2. )
However, as
. 1 2
@7 Tf =Tty = —5 52,

we know that for our space the following relations hold good with respect
to natural frames:
D= (X.Y), Qu= 0, G =1,
1 )

% ¥ %
R} = O; R, 2(n — 1) R )
and
agm _Jy 1 %
(38) B~ 2o~ 2Rh + 1R ).

(27") can also be obtained from (w?) — [w” @*] — [dy 0] = 0 taking account
of the coefficient of the term [dy dx\].

4. Let Vyu_, (») be the Riemannian space induced on the hypersurface
Fuo1(y) : y = const. from the Riemannian space V, defined by the metric
ds* = gpdx®dx® + dydy, and hg (x , y) be the second fundamental tensor
of F,_,(y). Then making use of the well known “D-Symbolik ” we obtain

(39) ho = — BB Disn, = — Dam, = I = — 250
&y
where (#;) = (0,0, ....,0,1) mean components of the nosrmal unit vector
and (B)=(0, 0, 5,1,0,....,0)(@=1,2, ...., n — 1) mean those of tangent
\——w

a
vectors of Fj,_; ().

In the following, let Ru.; be the components of Riemann tensor of Vi,-,,
then by means of the formulas of Gauss-Codazzi we have
(40) Risoq = Ravea — Pac Bva + Raa Boe,

(41) R‘tx;wc = Dc hab —-Dy hac = hab; c hac, v.
On the other hand, we get by (36) and (34)
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PZ% = szc’ FZ@ = Rap,
) I = gl = & g 280 = _gop, = 1y,

ay
Iy =17 = I =0,

hence we obtain

[ Ram= 22— S8 4 Ty~ AT = 20 4
43)
| R = Ry = 205 — O T T T T = 2 - B
where we have put % = k!, Accordingly, making use of
(44) Ruc = g% Rlia + Rl
= Ruo — Tt Ttag -+ 1 Tupe + aa’;“ R T
= a—a’;— + Rue + 21hoe — 1 B
and the relation
39 %87 _ oy
oy ’

which is deduced by (39),we obtain
R*:g"c v -+ Rin

. - V@_hac Lt . B2 oh 1L
= Rt g 0 20y — I Sk —
’()h a b 1y 9 ah %
:R+ a—y-—‘thhag"l"Zh‘,,’ho'_“h‘ -+ gj“—'hghb‘
that is,
, oh
K — — hE — b e "
45) RE= R~ I — B+ 25

By (41) we have

= R% = 2% (Rey, 0 — Peay )
or
(46) Rin=h,6— R, ,
where comma denotes covariant differentiation.

Making use of the above relations we will now write (29'), (30’) and
(38) by means of the quantities of V,_,, First (29') turns by -(46) into
“7n hyo —Rha=0,
and (30') turns, by (43) and (45), into

_a_}a_ 0 It — 1 — 230 m ah
2 huh,,————,z(n~1)(R h /bahb+2—a;),

that is
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oh _ 1 e _ .

(38) turns by (39), (44) and (45) also into

— 2, = { — 2 i s+ Rug + 205 e — B T )

y
n—2
+ nl_lgm(zah +R— h-—h)h@)}
y

=n_2[—2< s + o+ 20 T — I o)

1 \ . .
+ n_lgm{n_z(l?-—ir—l-(2n—3)hgh7,)+R—h‘—h;h,,}]
=2 f—2% Ting — 2 (Row + 2 W — T B

1 ‘ .
+ g G (R— B+ D),

that is
(49) ,C%hw =2 2 oy — Ray — 21 Tty + 1T,
1 , o
+ mgm (R—n*+ n hY).
However (48) must follow from (49), hence by virtue of (39') we obtain
oh )t -2 - )
y = oy (g ) = 2h) 1t + —--y “h—R-—2n R — h*
+ 2—(72—-5 (R— N+ h' h},),
that is
4 ah-—,niz _;,_gl j — 2y — _ ) It
gy =" —5 {1 =R =1~ (n R, i}
The last equation must be equivalent to (48), hence we get
n—2 1 ) b 1
(50) Ty h= o (R—n*+ h)n).

Consequently we see that the first and second fundamental tensors g,
(x,y) and 7, (x,y) of F._,(y) aresolutions of the differential equations
(39) and (49) where the Riemann tensor of V,_, (y) appears as known ter-

ms:
2
39 oy = 8= 2 h}m
(49) g;— Taw =" "2 Iy, — Ry — 21 1o+ T, + Z—(i—— (R— 1+ W B,

provided that they satlsfy the auxiliary conditions
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47 B,y —a=0
and

— Yy — R " Py — .
(50) h= gy —ay (R— 1+ B 1) = 0.

Conversely, if we consider a Riemannian space V, with the fundame-
ntal tensor g ; such that the components g\.’s are solutions of the last equa-
tions and g, = 0, g = 1, then in the space with normal conformal connexion
associated with V,, the hypersurface F,-, (0) will obviously be the image
of the fixed hypersphere Sn_; (= An + yA.).

§2

5. The result of the last section yields the following problem: is it
possible to imbed any Riemannian space V,., in a suitable Riemannian
space V, as the image of S,_, ? Otherwise in what conditions is it possible ?
We now pass to study these problems, .

As we knew in § 1, the Riemannian space V,, in consideration 1is confor-
mal with some Einstein space whose scalar curvature is < 0. On the other
hand, J.E. Campbell provel that “any Riemannian space V,_, can always be
imbedded as a hypersurface in some Einstein space”.  However, the latter
is of scalar curvature.(, as this will be shown in a following section.
Consequently this hypersurface will'not be the image of S._, because in this
case S,-; becomes a point sphere.

By means of (39"), (49) reduces to
2 m = ”;Zh;—RH nh+ ml_—z)sx(ze—hwh;;hg). |
From now on let us replace # — 1 by # in order to simplify our calculation
and consider the problem of imbedding a Riemannian space V, in an Einstein

(49"

space Ansq as the image of S,. Then our system of equations will be
2

€2 )) Ty S = — 2 Ry
a v._n_l | v v '1 _— D v
B2 =TS R I gy SR = B B,
(53) h;:)b—hjl\:())
_— Yy — 2 U Y —
(54) b= gy (R = 1+ BB = 0
sy o5 a, b, =12 -0 m) (n>1).

In order to study conditions (53) and (54), let us consider the quantities of
the left sides of (53) and (54) in which g, and %, are a set of solutions
of (51) and (52). Then we have )
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a vV ,a,.‘ o v ¥ Yy 2
Dyt iy = ax#(ay ) + -2 o - IM =
,) v a v v Yy
— hA, — h)\ ry, + ha o I,
hence we get from (52)
a A v h A 5 b i1
(55) "é’y‘ A G = h 1 ab Ilt’], Oy I‘Ab h\,q — RA,a
+hmh-+hhvw+2(1 (R =21 Ry + 2T B ).
On the other hand we have by (39) and (39)
9 1w _ 719_’ 2w O __ 08w }
oy P"f* T2 oy {gw ( Ers oxh o0x° )
— SR Al o ?_ll)\a aha}y, a h)\p.
=21 D, — g ( o T oxh T Bae )
=2 hl‘l, ]-ﬁ)t,,, —g"° {hm: Py Tva P + e P‘;I’v
+ hﬂ[u At hbl_:, ]‘.'37\ + hub I‘:}L)\
— o — 1, I, — B P,’ﬂ,},
that is
’j 4 4 14
(56) B%F:\,ngwah'\ﬂ:a_hl\yﬂ‘_hmh
and further we get ’
2 v
(57) @PIW: —'h,)\.
If we make use of (56) and (57), (55) takes the form
h;“\,a = =R R 6 — Ry (8% vy e — By — tn)\) + hl;a
G, v, 1 VI
— R}f,a. + h,ah)\' =+ hh)\',a'—l— m(ﬁ’,)\ —2’2]1,,\ + 2hz hb’ ,\),

hence we get
2 . _n—l

(58) -aj—,h)ua"— y I\;a—Rg;{l—l_hh(ya
1 [ /%]
2 = (R, AT 2h h, At 2]1“ h(i), )\).

Now from (51) and (52) we get

9 , n—1, 1 . T,
@) Zr=Tn 2@#1){@ 2)(R — ) nhh,}
accordingly
2 - (°r
(60) = ()
n—1 1

Y h’A_Z(n—l){(

—2)(R,\—2hh,,) —2n k), I}, \}
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hence we get from (58) and (60)

1

9 n
= a— M) = >

Ma—h’)\)_l'_Rﬁ;a—— R"\

+Fh (B e—h).
As it is easily seen from the Bianchi’s identity, R = —; R,,, we have the
relation

(61) (IM h,A)_(—_Jrh)( L= T).

In the next plaCe let us consider the quantity of the left hand side of
(54). Making use of geodesic normal coordinate systems, we see, by virtue
of (56) and (57), that

9 — A a ()P)f ()I‘)\a A a2 VR V1
R 21 Ry, + g™ c)y(axa“ Sgr + I Iia l)\alw)

= ZhﬁR,); + g (g® Peng, o — 12, w h:’ MVsa
- g}"‘(g“b k)\a,b - h;’:,a - hr )‘)’I"
that is
62) 2 R=2R+ ghw — K a).
Hence, by means of (52), (59) and (61) we o])tain
9 [, 1 b Ty
e (h 2( )(R W+ Wk )}
. n— 1 ] — 2\ — 03
= y h"‘m{(”“z)(le h) nh&h,,}

_ E—(;}:TS(R — B — R R — b { l(tho; 4 g% By — B, )

y 1 . 1 — _ 2y — b I
+n_1h[ = Z(n—l){(n 2) (R — I nhah,,}}

__J_A____l
h{ 5 n — R+hh+2(n

_2 8 (R — I + W Ig}

™
that is, an analogcus equation to (61)

6]

(63) 3y—{ h— Z—(T— (R—T+ 1 h“)}

n — P4 ]
=( 5 L n){n— ST (R — I+ DY
+ 218" Uyo = I0)sa.

Thus we get the necessary equations (61) and (63), but these equations
show that the differential equations of our prcblem do not beleng to the

familiar type in differential geometries in which solutions g, and k,, are
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asked for under the initial conditions such that (x,0) = 0, and %, 4«(x,0) =0
In the next section we shall change these apparently irregular equations
into another ones which are easy to deal with.
6. First we get by virtue of (52) the relation % (0)=0. Noticing that
the solutions of the differential equation
2 —1

="

(n>2)

are of the form @ = y*-1 F(x) — n%.a(x), let us put

ol 1 (o R ” }
(6 h"_y(f'\+n —2(R" 2(n ——1)8)‘> :
Then (52) turns into the differential equation with respect to f% i.e.
a V o v / v v -— ,—1___ V@
2y B=7+ 2\R 8>+y ayf)‘+m' Z(GyR: 2(n—~1)8"'ay -

Let us now calculate a— Ry in the right hand side of the last equation.
Making use of the equatlons which appear in the calculation of -a%g in (62),

we get

o) ) ; ,
oy R)\p. = g% h)\m ba h,(; e h:;.; ra T h’r A

or
(65) ——R" = 2R+ Al — BV — B g+ BN
where A, means the second differential parameter of Beltrami. By (64) we
have
(66) k:y<f+ —2—(51?—_1“)) =
hence we get ,
a V o— a 14 v 1 { R v
oy hA—yayfA+]:\+n~2<R" 2(n~1)8")
r L f Vv a, v R v ]
T [ 1Rf (R R = Z(n—l)s")}

+{Ausy + ;i—(AzRK - ml—_—lsa._.les;»

2
(R

e n‘l_ R~ 3 =1 R}

1 R?

(R’ R=—3m-D

(n——l)(n 2) /\[Rofb )‘I‘Azf
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1 w1 A: R
+——2(n_1)AzR_‘fb,a') n‘*_“__zRa,ab“*‘ 2(%‘—1)(71—2)}

On the other hand, we have from the right hand side of (52)
1 R
m= o= Dl (R = gy )t - ke

dy A )
+5(r + Z(nR~ 1>>'{ ;+~-%—2(RK-— 2(n = —1H% )}+ Zﬁ(nﬂ—”SA

v? . R 9?2 ) _
_ K 1 Jow oo R nR*
2(n—1) + (n —2)? (R’”R" n + 4(%“—1)3}}
hence we obtain
9 4 _n—2, 3y 1 g R ) -
=022 n—Z[n——Z{ZR Ry — lRA+A,RA
AR . 1
~ o1y X RVt g R 3 R }
2RI DS =S — T +m]
Y 1 )] Lo RZ l — 1)
+(n—1)(n~2)81[n—2{R“R" 2(n_1)+2A2R R“,ab}

RS A — S, }

R ., R o\ R
+y{{2(n—1)('n—~2)(R* 2<n—1>8A) §n— 1y %

t 5 -I-elf(nai— 2y 8 43%3&(: 2)-}"'38 } IR 2(n )’(A
+n£2<R7 2(nR— >SK) - 2<nfl 1>51 B 2(7{51)25;
+ A i+ R - s )} -
If we make use of A, R — 2R?, 5 = 0, the last equation reduces to
67 %f{ =2 2= o tes [2R;R; o RR AR+
t =T Rt g R — R — R
T 1 — 5 3RIR; TG:’—R +A,R}]

-2 1 |
+yL — R+ gy R g R T

1
o (W C RS AR A0
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1 1 o 1o
+ A a LR - RO+ S (A1 +

n
+ ﬁ%é (Azf—fab,ab)}}.

Thus we have an analogous equation to (52) yvith respect to f¥, Itis
—2 while that of & in (52)is 21,
Applying the same method successively this coefficient may be reduced to

noted that the coefficient of /¥ is nowZ

Let us discuss it generally in the next section,

7. By the last section we may set % (x,y) in the form

n-1
(68) =29 H, OF= )
i=1
where H" (x:y) (¢=1,2, ...., n—2) are polynomials of gy, R’ and their

covarlant derivatives.
Indeed, substituting (68) in (52), we get

n=-2

@ v . 2% —1 ’) { — v v

(69 oy h/\ =¥ Y - 1))‘ . ;y G+ D L[l) + C/y (I£ (I_Il)-
= (71~1)§ny”—R”+—i—8’
Py Gt AT 2(n—1) A

: 1 )
+ Zy > {Ir{g 2(n—1) & CHy Hy —~ cl)o))}'

bor  irie MW
Hence our object will be to define H‘ (=12, ...... , n— 2) suitably so
that they satisfy (69) and the equatxons of H ¥ as unknown take forms as

(-1
simple as possible. First let us put -

70 ‘ = H' = IK
( ) ay (L) 2 C J)

Then the terms apparently constant with respect to y on both sides of
(69) cancel out when we define H! by the relation
’ .

| — — v V R

== D = R+ 50735

or
[ 1 _ (- _R —OY

(71) Hi=— o (R = 5cn = 1)5A>'
From the last equation we gain at once

) _ R
(72) {,{ = H 2(n—1)°

Next, from the ccefficients of y we shall define HY by
)
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2Hy+ K?=(n—1)H,
(’) Q1,0) @

that is,

In the last eguation we assume that K v has already been determined. In
order to determine K ¥ we notice, by means of (71), (62) and (65), that

o . 1

v

9y T n—

S 2RI+ M I e — B, Ry

— LSRR A — T, )

Substituting (63) into the last ejuation and comparing with (70) (7 =1)we
see that we may put
= 0.

a, 0)
Consequently we get

73 H =
@t
whence we get (K v = by virtue of (70) (i = 2), .

Comparing coeﬂ‘ic1ents of y? in both sides of (69) we ses that we may
put

3H" Ky= -1 H +HH

@ ant @)" ay o
57— <O (HtH: — H H
+ 2( — 1) "(0) ®» ® (13)
or
1 1
v = K —HH + 5ot 8§ (HH— H Hpl.
{3{ ”—‘4{0 N <z>(x)"+ 2(n— ((1) a oW (1))
In the last equation we assume that K ' has already been defined . However

from the coefficients of y in ———-H“ we know that we may define

Kr=-1 S (PRUH: + A Hy — Hiy'a— H o+ H, Y
anr n—2| ot oV 1 ad

—_ —1 )\(HbRa"'l—AH I;Ia,b ab)}

- 1 s 1 AR,
T (n 2){2\RR 2(n— )RR)+A‘R 2(n— I)Sf\
vy va 1
~ Ry — R + )(R,A+R,A)}

1 1 R?
+2(n-1)(n—2)R (n—1)(n—2) *{ (RR 2(%—‘1))

gk 2R = 5= 1yMR)}
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or

G 1_2) {2Ri R~

lI

> =

v 1 14
a,n RR AR 2(n— R”‘
+§R1/\ R7 ¢

A G - R{‘;r .\"}
1 1 ) ’
— =T =2y X{RIR — g —y R R+ AR}
By substitution we obtain H" of the form

1 L v o n 2 v - 1
T H = g {ZRARG T TR MR gy R
1 v v v a
+ R) - ?\,0»_ a’)\}
1

. 3nR
2(n — 1)(n — 2)*(n — 4) A{BR Ry

In the following suppose inductlvely that we have obtained
HV = Hv(o.'ﬂ/ R/I,,R;:,pl" .. -Rg’ ot e ..pj_l),
O G
(SJ_S);\' = (Sggs)x(gwi';Rg; ;,m; e ;Rg’pl....‘,j)’
(=12, ....,p=zn—3;57=1,2,.....p—1;5s=12,---., D,
which are polynomials of g», R’ and their covariant derivatives, so that
the coefficients of yi-! in (69) are zero

Then we shall define H ?, taking
+
account of the cofficients of y? in (69), by

(p+1)HV 2 K

p=1
@+

‘s, p—s)v e 1)(1{?1) + 2‘ {H i+

hw-t
+~——1-—8 CH; H §—H )
2(n— " - W w-nH
or
1 P p-i
75 vt N R
e wt n—p—2 [%clpf o 2 f{(lfl +
1
bt S(H'HY—HH }]
2(n—1) A((:) W= 0 - z))
In the last equation we assume that K

v has been defined, H’s have
0= (s
already been defined by our assumption,since 1 £ s<p. Now we get

9_ pa
’a—y‘gv = g(a I{”/a £%) 2hv + Z(C' V/O R[)’ p1° Pk)aqu‘:;" PLT P
k= oi -1
while for kx1

) . -
;}TRSL! A (h R}y o "PL-—,): et R, b “Pr-1 ay 106?5:
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"3 a AN
—_ R",;, P ‘pr—1 ,\ DPk ER;,'y p1° tpyp—1C ppt1ttt .Pk‘l—é; 1 PrP
On the other hand, we already knew in (56) and (65) that the following
relations hold good :

]
2 TY = v —
ay PM* h’r\,u h)\, * h}l’ Ar

a 1 v a v
oy RC= 2RV A = T vy — By, B

A a
Y e--c-p, are linear forms of
BY B ey, -y Blw oy ane, Whose coefficients are polynomials of R}, R}, ay, -+ +»

et -ay.  Consequently, comparing the above equations with (70), we

may define, by means of the known quantities, K ! as follows:
(s,p-9)

(76) v= 220 H:/og") H "

(‘1’ ot = -%

+Z (OHV/ORI;:N Pk)f pL-

@,

k= Ols 1
where 17 ¢ ' are linear forms of H¢ HSpyooon-- H f,,,,“n.,,.ﬂ whose
w-9" @5 sy
coefficients are polynomials of R -..... ,R;, a1 -, accordingly K v are
,p-5)
polynomials of g™ Ry, ----, R}, pp.--p,. Hence we see that H ! can be

(p+l)
defined by (75) without any ambiguity. Thus we can define successively
(};{)‘\, g)\’ x “’(n——}{);‘/ so that the apparent coefficients of y, y?, ...., y*= in (69)
are all zero.

We see that the apparent coefficients of y%-* on both sides of (69) are

n-

(n—1) HY +Z K v

- 1) s,n-2- s)

and .
—_— 1 V I ] 'r —_ ]
(n ) H - 2 (mw - 2(72 1)8" ((e) (,,I{ 5" g)(n—z—s))j’

then, let us define a tensor

n-3
v ‘_f — v v
(77) L)‘ % l (.x‘,n‘-[-{z—-s))‘ }— g(n—l'z{—s))‘ +
1 v :': _
- 2(n—1) A ((“) & I?-S)" (Ig 02[{—8))}

which depends on R, .- R}, - -p, . Although K visout of the obove

_9_5)

extent, it is evident that (76) is also applicable 1n this case.
From (76) and (72) we see that(lg v=0 (i=1). Moreover, there hold
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generally the following relations -

(78) =0, Ky=0, K*=0,
(€3] Qt, J) {,28)

which are easily proved by induction by virtue of (76) and (75). Accor-
dingly, it follows the relation Ly=0 for n» = odd.

Making use of the auxiliary quantities g; =12, -..., n—2), letus
rewrite (52). We get by virtue of (69

)\

g -
9 ¥ — Ky+ HH +
e y (on) T 2 z+1?‘s+n-1{ it T B o
1
e KRB

where the quantltles in { } are quadratic forms of H ? and its covariant
@~
derivatives.
8. In this section let us consider the condition (53). Although we

get from (68) the relation

hAzzyi(gA,p ))\)7

i=1

we shall prove that factors of the right hand side H —H,,=0(@G=1,2,

NP
. ,n—2),
First from (71) we see that
1 S n _ 1
B = Ho= (B~ 5= B) 2 —1)
-1 1 _
= m(k;,,, -5 R A) =0.
Now we suppose that the relations
Hf\,p_Hr)\:O (i:3x4: Tttty Pap<”’_2)
@ m
hold good, and we shall prove H ,o — H ,»=0. From (75) it follows
@+1)
p-1
— 2 _ —
n—p- ) H phV P g[ (aIp{—s) P gw]{) (Ig P(z;Hs)
1 b a —_—
-1 ({s{“ (zzH—sf” A <{){w{{> ’ A)]
and i
-1 1
—2 b a —_ 2 ]
(n—2 )(PIJD 2[(3 oo 2(m— 1){11{51; (zﬁ pat )c{){czs]i)}

hence we get.

»-1

1
<n—p—2)(pg),k=§=;[ K=o iglnil H o+ i—2 H HA}]

| G,2-5) n— 11" &% ) B9
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Accordingly we obtain
y g

—_fh — —_ K ) -
n—p =2 H e~ H .= 21[(9“) D

s,0-9

~{H H¢,—H H,\—H, H} , +Ha H A}J .
W~ 83 () (-5 (8) (-8 ¢ @-9

or by our assumptions

(80) (n—p—2(H,— Ho=
@+1
»-1
P _— ) a , H a].
2[@,5@""’ (s,pK—w’ {s{ (pli)””‘ c{{ Yo-nt

§=1
However, if we take account of the fact that the following relation holds
good in general

(S—y TK): = "37 TK: ®

ST ot Tirar

| B
we have

_8_ o — ,_@_. = _f)_ (- i >
and further by virtue of (56), (67) and the assumptions, we get
G )
Ny ) R = v .
Thus, making use of (68) and (70), we get

K p — K ""HL ;a"l‘HP( H p) - A,p— H ’:))\)
s,p- - Gsp=s)’ -5 @'\ p-s) -3 @-3)

= Hp - H;: H g’, Ao
- 8) ) -5
Then substituting these into (80), we get

n—p—2) (H? H ,»)=0
@+ ( +1D

but, as # — p — 2+0 we have
H,)‘=0.

[ J—
Ar P +1)

@+1y
Thus we have proved that

(81) He, —H,\=0 (=12 ,n—2)
' ) @

Consequently the condition (53) reduces to
(82) H e — H sA = 0

M-MP Gy
In comiection with the last ejuation we shall consider the condition <61),
We see from (63) and (81), that the following relation holds good :

— -2 p 'n—l_a_ P —_—
=Dy (Hn“p (»—I{n”‘>+y oy ((nI:Il)"’P (nI—il)”‘>



214 ' TOMINOSUKE OTSUKI

= (_;_ + Zyi g) " 1(051)?’” - ({{13}\)'

i=1
that is,
92 o i e, — H
(83) oy ((ﬁx)"’ (- 1) ) %‘y {11)<fn}1;))\, (n— 1)”‘)
9. In this section we shall consider the condition (54). From (68) and
(72) we get

h——Tl_——)(R—h" N )

-1 27 -2

27 - TH=D 2 2(55\,%“‘5{({{”)

We shall prove that (H{ satisfy the relations
b

2

1l

i-1
—HH) (i=1,2, -, m—3).

(&L (u{{) 2(n ——I)Z(m G-" -

When i is odd, owing to the fact HY =0, these are evidently true. If
@)
7 = 2, it follows from (75) that

—_ = -——-———~—,{ 4 —_
=D H = K =g [n B+ 0= 2) HHL

On the other hand, we get

— U]
K g ).
and by (71) and (72)
(85) RK:(;'z~2)(I;)lx+81;H
Hence, by means of (81), we get '
K= mr=""2mpm. 1 gpn

ap n—13 H n—10%0" " n 1 O

Substituting this in the above equation we see that

n—4 (g HH)

—4 H—
(n ) 21 (71 - 1)((1) RIS

1
2([2—'1)((1) (I;{ \}I{\Ig)
Now let us suppose 1nduct1vely that for 7 =2,4,....,2p —2@2p <n—2)

the relations (84) are true. Then we see from (75) that

2p—-1
—2p—2)H = K —_ " mHi- "2 g gl
(86) (n b ?:22»1) : E{(s,ﬁp—s) 2n—1D - 2(nm—1D® (211-5)}

By virtue of the assumptions we get for s >3
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3 . 1 2 & "
3375{'"2(11—1) ayz<5€ \sf{nh 7 H )

@y s-t-1)/

s—2 :
= n—-l—l§{<_§f gg_)@.{{ng - (%clg>(s-{{l)}’

hence we have

§—-2

K=_1_ { Kt Hi— K HI

s,20-8) N — 1 @,2p-" Gt Y ep-n G-t-1

and for s = 1, making use of (72), (62) and (81), we have

- {<n—2) H'H'+ H H
a,2p-1) n— r-1" Y @r-i >(1>f
Accordingly we see that
2p-1 _2p-ls=2
S K = ¢ Ho— K H |
o1 (8,2p-8> - (r )p s) s=-t- 1) (£,25-5) (s=t=1)

+(n—2) H!H'+ H H}
-0’ en-n
2p-3 2p-1

{ "Hi— K H|
- 1[[21 Q% Les-1-1, 11—.;) [ R I ) (r)f
+(n—2 H!H + H HJ
@p-1 @y @p-b W
But, we have by (75)
q—1
> Knr=Mm—qg—2)H¢
($,4-8) G+
q-1
1
HH+5——=-MH H{—H H
+ §{<s> -t T2 1) <<v> a-9"  ©® @ —s>>}
q-1 q-1
1
K =(n—q—2H 4+ __ - __ H"H, —-2)H H
g QUED) (n—q )cq+x>+ 2(n —1>§{" O, y+ ) o - }

Substituting these in the above equations we get
2p-1 2p-3 - 2p—={-1

1
K = . —_ 2 l -_ 1 H H H H Iﬁ Hﬂ
2K, =02 ((n=2p+1-1) + 3 { ,,

Gp- 1) kl) Gy Gp=l-1- S) (€5}

1

1 ul
R RS DR - I R ey DRk I
—(n—2 ] — —_n_ i a
(n—2p+ lu)-zpl—qnﬁl) 2(n—1) {,{{ZI) p {{1 -"

n—2 1
_ =2 A w2y H 1mr+ HH
2(n—1) {gg@pﬁ—x—nﬂ ta= 1{(% )cm—l) 'Y et (1)}

1 2p-3
_ oy 1—1 "H— H H) —
n— 1; [(n Pt ){czn o' - w.
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- Hn,
Hz ((5) @p- z 1- s) + ved vl } 2(Is{) @p- {{1—3) w ]

) @p-1-1-8

+L{m—-2 Bim+ B OH

n— - A’ @p-n @
2p-3

:Lz[mdp“—l){ HUHi— H H}

< B O T

1 2p-1-2

wlos oA am- # Al
2w = e-i-1- 5% @p-ic1-0 @

S=

+~~—~f(n—2)H vH:+ H H.

l Q@p- 1) @ p-1) (1)

By induction, replacing the quantities in the second term in [ J,we see

@-n” (’) @p=-1) @

2p-3
1 — 21— 2
S PICRE AL D{ HIH —~ H H}+

2p-3
+(n-1>2HH t(m—2)HH'+ H H]

)y @p-0 2p-1" (1) @p-1) (O

Making use of this, we have

zp-1

z:[(zvi{z)~ ! {(n—p—l) H'Hi+p H H}]

n—1 =1y QY @p-1 O

2p-1
[2<z~« HH — H H}-
(ch Y @p-1 @

~<n—2>fH VHY— H H}—(n—l)H H

(’P—D a’ Cp-1) () Cp-1) ()

L (n—2) H'H' + H H}zO,

@p- 1) (l) @p-1 M

that is,
2p-1 1 2p-1
87 K = —p—1 b HY H H!.
87 gcs,w-n n—1 g{(n » gzpl—is)“ 5% + p(zp—s) (s)}
Substituting this in (86) we see that
2p-1
'—~2—2,H= —p—1)H°H!+2p H H—
(n » )<zp+1> Dg [2(n )zp sy + pmz—s) )

—n HH!'—(n—2)H H
@5 “° @r—8) (8)

=n—2b— 2&1{ HH— H H,

2(n—1) =" Gy -9 O

hence noticing that # —2p — 2 %= 0 by hybothesis, we get
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2p-1

1 b T }
(zﬁu Z(n—-l) {-v—s) g czl){n gf

thus (84) is generally true.
Accordingly we see that

__L_ — N2 Ul %3
h 2(n_1)(R B+ B Ry

n+j- 3

| - Z(n——l)zy X {m H A

() (M+j-2-8) (s) (u4j-2-8)) '

Thus the condition (54) reduces to

[ n+j-1
(88) F=H ~ 2(12—1)2y Z{Hb H (—H H }:0,

ey (s=2) (n+j-$) -2 (n+J-5)

and the equagion (63) may be replaced by an analcgous equaticn as (83):

]
¢D) —5)7 (2 » 5 )) ( rL—l)c ve — (nlil)’ b>, a

i=1
10. In the above sections 5-9 we have seen, for n > 2, by virtue of (79),
(82) and (88), that the system of equations (51)—(54) are replaced by

n-2

(90) C?}’ gl\p. = {2,’}’ H}\ +y" 1 H )\p.}
i=1 -
(79) 2 v—lL”+2ys > {—K + HH!
oY = L= Lt wot
1 5
—_— H!— HH
+ 2(n—1) ((Iz{ S RD) (J)>}
(82) (n{{))‘;\, p ()E), A 0,
1 n n+J-1 ]
= —_— J /] m o
(88 ~oﬁn 2(n— 1)23’ 2 {csg)“ (ng—s)b (sl—{o (ns{—JI—s)f ’

Jj=0 §=3
and the general solutions g. (¥ , ¥), Hy. (x , ¥) of (90), and (79) satisfy the
equations

CoY %’((nﬁ)ﬁ”’_(ﬁ ) (;yifg ((an ——(ﬁl), '\>’
(89) G (Sy B P e (H e By

As we have already seen in the section?7,
Ly=0 for n=2m+1 (m=2),
we can solve (90) and (79) under the initial conditi ns
Cgaw (X5 9)dy=0 = gan (%),
CHYx;9)y=0= HZK.
(n-1) =1
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Accordingly, if we can determine the initial functions (Hl )}; (x) so that they
e

satisfy the conditions

(91) H p - H s A= O
-n™ -1
and
1 n-1 b
Hi— H =
o2 chHn 2(n— 1)2{0 n'alsy’ Gen (ﬁ\»)}

then the solutions ga. (x,%), (H])A (x,y) will satisfy (82) and (88).
However,as n = 2m + 1, (92) becomes

92) H =0,

-1
hence it will be sufficient to set (nl!] )K (x) =0. Thus we obtain a result
that any Riemannian space V. of #=2m + 1 (s = 2) dimensions can be
imbedded in some Riemannijan space Vax.; conformal with an Einstein
space as a hypersurface which is the image of S, invariant under the group
of holonomy of the conformal connexion associated with V,.,,.

In the case of #=3 the equations (92), etc. lose their meaning, but from
(67) it is evident that LY = 0. Accordingly the above result remains true.

But in the case of # = 1, we must consider it in a different way from
sections 1 — 2. .

11. Next let us consider the case » = 2m (m =>1). Owing to the form
of (79) it is necessary for the tensor LY (R s Ry oo s Ryer e, n0)
(93) Ly (x;0) =
Accordingly for the space which satisfy this condition, if we can give HY
(%,0) = HY (x) such that (91) and (92) are satisfied, then the solutions of
(90) and (79) obeying the initial conditions (91) and (92) will satisfy our
system of equations. But there exists always such H ¥ for any V,. Thus
we obtain a result that any Riemannian space V, ofn_n) 2m dimensions for
which L} =0 can be imbedded in some Riemannian space V.., conformal
with an Einstein space as a hypersurface which is the image of S..

Lastly let us consider the case » = 2. Since the Gaussian curvature is
K = R,/ g it follows, as is well known, that

R = Kgy. or RV = K&
and R = 2K, hence we get
Ry — —;— R& =

Accordingly our system of equations is replaced by
]

@D By

g = — 2h4\,h.,,
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’ a 1 v 14 \4
(52) 55 M= B R = &I,
(53) hﬁ,p - h, A= 0,
(54" h+ kR —yK=0, h=h.
General solutions of (51) and (52) will sutisfy

\
61 o B = Ty) = (5 + ) o = B,
©3) o3I —5K) = (5 + ) {h+ 1] — K}
9y v y i

+yg"” (hg,c —n,2),a.

If we substitute &} by

the above system of equations will reduce to
" o '
(517 *@gm = — 29 fam
(52" o L=y U= &y
(53") e —fia=0,
(547) S+ ¥yl —K=0
and
(61") g Tao =100 =3 Fp = F30),

(63" aay {7+ 310 — K}y = 97 + »* 110l — K} +y8°(fs,c —fr0)sa

Hence if we can give a tensor f¥ so that f=f:=K (x) and f, —f,a= 0
for a given fundamental tensor g\. (x), we shall obtain our solution of
(51")-(54") when we solve (51') and (52”) under the initial conditions
Zu(x,0) = g.(%), f%(x,0) =/7(x). But it is obvious that we can find
such f¥ as stated above.

Thus we have proved the following theorem.

Theorem. For n =2m+1 (m=1) and 2 any Riemannian spacz V.,
and for n = 2m (m = 2) any W, satisfying the condition L% = 0 can be imbedded
in a Riemannian space Vi, ‘conformal with some Einstein spacec as a hyper-
surface which is the image of a hypersphere invariant under thz group of
holonomy of the space with normal can/or‘mal connzciion associated with this
Vn+1.

Further the above proof shows that, as h.(x,0) =0, this hypersurface
is a minimal surface. For # =2,V; is conformally flat as it is evident
from the result of E. Cartan.
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12. In this section we shall show that, similarly as in above sections,
we can treat the problem of imkedding any Riemannian space V, in some
Einstein space An.:. According to Camptkell’s work, using our notations,
this problem reduces to the one to solve the following equations

5}
(51%) ng = — 2w ¢,
R o
(52*) 5 h:( = ¢ (h hx - RX) -+ ¢)l:7 d),{’ = gw’ ¢’ Ap
under addijtional conditions
(53) hﬁ,p - h,)\ = 0,
(54*) R—nm+mh=0.

If g, and &Y satisfy only (51%) and (52%), then for the quantities of the left
hand sides of (53) and (54*), we get

(61%) DBy = Iy = b, (R — I+ Ty I

+dhh,— k) + %MR— B+ by 1),
and
(63%) %A(R — B RHD =2 k(R — -+ h R

— 4g &, o(hE, o — I, ) — 2 g, p — By0),a
Hence it is sufficient that there exists at y =0 a tensor A} satisfying (53)
and (54*%). But this is always pessible, hence there will exist our solution
. (x,y) for any g (x). Thus we obtain a Vu,; with a line element

ds* = g (x,y) dxNdx* =+ ¢ (x,y) dy dy,
where ¢ (x,y) is an arbitrary function of x* and y, and it will be easily
shown that this space is an Einstein space with vanishing scalar curvature.

§ 3

In the following section we shall consider spaces with normal conformal
connexions whose groups of holoncmy fix a hypersphere S;_; and ancther
real one S, _,,.and investigate properties of the hypersurface of image of S,,.
S.Sasaki® and K.Yano® already studied stch sbaces by ancther way.

13. According to the section 1, if a space with conformal cennexicen
has the group of holonomy which fixes a hypersphere S’»-;, the connexion
is represented with respect to normal frames by a system of Pfaffians o,

!, 0}, w! satisfying the conditions

4),5) Cf.loc.cit,1).
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(95) { @ =0,

a)%::&(,ﬂ (t1=1,2,-----., 1)
and §',-; is represented by
96) EA,+ A

where & is 0, 1 or — 1, according as S'»-, is point, real or imaginary.
Moreover if the connexion is normal, that is, if

o 1 e R : 5
an @i = gkt oG @
the Riemannian space V, defined by the line element ds’ = w'w’ is,as it was

shown in section 1,an Einstein space such that
96) Rijj=—28n—1)8;5, R=—2En(n—1).

Using only such frames,let us consider ancther fixed real hypersphere
S"n-1 Tepresented by
“4) X =104+ x* As + v~ A,
then (5) must be integrable. As we consider only a neighborhocd of the
image F”n_, of this hypersphere, we may consider that x" =0 since S"»-1
is real. Accordingly, as (22), if we put

X% xY x>

y’—‘*:—xT, yO:F, yw:? (CZ:].,Z,"",n_I)

(5) turns into (23). If we further chccee frames suéh that y* = 0, we get
Yy’ + w; — 3 (Y " — y= @p) =0,

(25) dy” — " — y=()° 0" — y> wy) =0,
wF + 5 @ — y= o} = 0.

Substituting (95) in these, we have
dy’ +{EA+3y°) — 'y} =0,

7 l dy> — {1+ )"y — ey y}o* =0,
of + (O° — Ey*) w* = 0.

From the last equations we get also

A+ — Eyy=)dy’ + {EA +3°y=) — 3"y} dy~™ =0,

or
(14+25y=)d (P +Ey) — P+ Ey)d(¥y=) =0,
viz.
W+ Ey =cy/1+ 24y, ¢ = Constant,
or
(98) WP=(EF =8y +e/ (E—28)yy° +1 .

Using the relation
145y — €y~ =1+ (=283~ + &y /1 + (& —28&)y~y~
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[N

which follows by substitution of (98) in (97), we have
_ dy> .
T+ (¢ =28)y~y" +cy ' /IT+ (—26) y~y'
(100) b= — (9 — EyT) 0"
=—{(@—=28y" +c/1+4 (¢—28 y~y~}@"
Putting y~ = y, we have
(") = [0 w!]|+ [o" w,;]
R (€ —=28y +¢c/1+(F—28yy
S @ 2 sy t a1 (P =28y
hence we can define a function f(y) such that
(10D (f") =[fw o]
Comparing this with the last equation we get
=28y +cy/T+ (5= 28"
14+ (=28 +cyv/1T+ (P —28)y*
=dlog{/1+ (¢ —28)y* + ¢y}

(99) ™

[dy 0™],

dlogf =

or
(102> FO) =1+ (*—-28&y*+oy.

Next we denote by «%, 4%, -...,x""!, the integrals of the following system
of Pfaff equations
(103) @ == e =l =0,
then it is evident from (99) that we may take (x",¥) as a coordinate system
in V.. If we consider in (101) only variations with respect to y, we obtain

: — 8 (fo' (d) = 0} (8)fw" (d),
accordingly we get
St ) = — ;) w (d)o(d) =0,
and hence we have
w0 = g (&, - -, x"71) dxv dx.

Thus we see that we can choose a coordinate system such that the line-

element takes the form

(104) ds* = 1 dydy

(VI+ (@ =287 +cyp 1+ (¢ —28) 39"

The image of S”,-. is given by y = 0, because the condition that A4, lies
on this hypersphere 3" A, + A. + vy~ A.. is equivalent to y~ = y = 0. Denoting
the fundamental tensor of V, by g;(x,y), we have

_ Yan (x)
(105) G0 = T G20y ey =0
B 1
Lan {1 T (CZ -9 (S)y_'} {\/1”:;’(657__*2763 y2 -+ Cy}; .

{')’ab () dx'dx” +
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14. Let us consider F” _ as an (n — 1)-dimensional Riemannian space

n—-1
V.-: and designate its quantities by *. In order to simplify the calculation
we transform the coordinates (x*,y) into (x% x*) so that

y dy
106 T S S—
(1065 * fvu(c‘«za)y
o
and put
1

Vit @—26)y oy

(107) = @ (x").

Then it follows
(104 ds* = ¢ {oyw, dx® dx” + dx" dx"},
hence we have

o = P yw, G = 0, gun = P4
Accordingly we can find that

. d
Ve == 2 Do, Dae = — gn. Wl()g P = — m,

Al A B Al d
e = iar = U; 1 nien = San Wlf)g 9,

or

A ‘ d
e, =17 = — 'y"'"d,%% log ¢, 1", = 67— log @,
v, =1y =0, 1y = Logy,

are the Christoffel's symbols with respect to g; and %% y,..

De:

where 17, and 1%
Thus we obtain. in terms of natural frames,
' = 0¥+ 8 do,
0! = — ¢ ypdx’, w! = dx", o =da,
o (x*) = log (x").
On account of the relations
) = — (@) + [w,eV] = — (0F) + [0¥: + §do, w’ + & do]—
— (') e [dx dx'} = OX, — (07)? oyac Ldx" d 2],
— (@) + [0 @}] = [d (¢’ yw) dx’] — o [0 oy, d”]

i

Qi
R raaxmf) Cdxt dx] — o Ty dx,
Qf = — (o) + [0 o] =
we get the following relations between the components of the Riemann cur-
vature tensors:
Ra'ca = R¥eq — (07 ) {yu 8! — 900 8},
(108) { e = — 0 Yae,
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Accordingly we get for the Ricci tensor
{ Rsc = R + R = R*4 — {(n —2) (0',)2 + 0'”}')’@;

109 Ran =0, Run = Ria = — (n — Do”".
From (96) and (104’) we have

(110 g’ =2¢&9?

and

Roe = R¥ye — {(n—2)(¢')* + 0"} yae = — 26 (n — 1) P* yq,
hence we get
(11D Rty ={(n—2)(@ )+ " —-2&n—1) P} .
Making use of (110), we have
n—=2)([@)P+c"—-28m—1)P=(n—2){(c")t—2& P},
moreover from (106) and (107) we get

oo = (‘j?‘og ‘7’)% = “(leogf)Jl F (T —26))

e (E=28)y+ T+ (F=28)y*
NI+ (E=28)y +cy ’

therefore we obtain

(o —2egr= A =209+ e/ TF (F—28)y}*—2¢
Wi+ @—-283 +cyy

=% — 2¢€.
Accordingly (111) reduces to
111) R¥ge = (n— 2) (¢ — 28) yac,
whence we get '
(112) *=m—1)(n—2)(*—28&).

Thus we see that the hypersurfaces F,-; (y) defined by y = const. are
totally umbilical and Einstein spaces and that the orthogonal trajectories of
these F;-, (y) are conformal circles. For, as x* =const, (¢ =1,2,.-..,2—1)
yields

0w =0, o =0, o) =Ew?
and
dAy=w"A,, d*A=¢Ew"w"A)+ do" An — 0" 0" A,
the developement of any orthogonal trajectory, is the.intersections of the
- hyperspheres A;, A,, ----, An_,.

In conclusion, I wish to express my thanks to Professor H. Hombu and
Professor S. Sasaki of Tohoku University for their kind assistance during
the preparation of the manuscript.

Kyutsht University





