NOTES ON FOURIER ANALYSIS (XXVI):
SOME NEGATIVE EXAMPLES IN THE THEOREY
OF FOURIER SERIES®

By

SHiN-1cHI [zuMi

Introduction. W.Randels” has proved the following Theorem.
TueoREM A. There is a function f(t)e L2 such that

10, g: e ()| du % 0(2), @x(t) = f o+ ) + fx — #) — 2f (),

20  the series
(0.1) Zz (@n cos nx + bn sin 1) [v/ log n
=~

converges, where

(0.2) f(£) ~ %’— + Zl(ancos nt + ba sin ne).
=

R.E. A.C. Paley” has proved
TueoreM B. There is an integrable function f(¢) such that

1°. 5; Px (l{) du * o(l‘))
2. the Fonricr series (0.2) of f(2) converges at t = x.
As a generalization of Theorem A we prove that

TuroreM 1. There is a bounded function f(t) such that

10, S: | @ (4) | du =+ 0,
2. the Fourier series (0.2) of f(2) converges at t = x.

We prove also the following theorem containing Theorem A and B.
That is,

*) Received Oct. 1, 1949,
1) W, Randels, Bull. Am. Math. Soc., 46 (1940).
2) R.E.A.C, Paley, Proc. Cambridge Phil. Soc., 26 (1930).



NEGATIVE EXAMPLES 5

Tueorem 2. Let o > p=1. Then there is a function f(t)e Lt such that

10, S: @z (#) du = 0(2),
2°. the Foarier series (0.2) of f(2) converges at t = x.
It is known that®
Tueorem C. [f
1% an=0(1/nd), 0" =0 (1/n*) (n=1,2,-)
where 8 > 0 and an, bn are Fourier coefficients of f(2),
2" sn (%) = f () = o (1/logn),
where su denotes the partial sum of the Fourier series (1.2) of f(¢), then
S: @x () dn = 0(¢).
In this thcorem the condition 2" is the best possible, that is, ¢ cannot be
replaced by O. In fact we prove
TusoreM 3. There is an integrable function f(t) e 1. such that
1% a=0/n), ba=0(/n®) (n=1,2,-")
where 8 2> 0 and an, bn are Fourier coefficients of f(2),
2% su () — f () #= o (Ldog #), su(x) - f(x) = O (1/log n),
30, S; @z (#) du = 0 (2).
This is a generalization of Theorem 2.
On the other hand L.R. Bosanguet? and R.E.A.C. Paley praoved that

Tueorem D. Ler a=C. If the Fourier series (0.2) of f(¢) is (C,Q)-sumn-
mable to f(x) at t = x, then

(0.3) Dy 142 (2) =0(1) (r > 0),
where D (¢) is the B-th mean of @x (u). that is,

1 t
D ()= b5 S (¢ — #)P~' s (w) du.

0
Conversely, if
De (1) = 0(1) (>0

3) G.H,Hardy and J.E.Littlewood, Annali di Pisa, 3 (1932).
4) L.S. Bosanquet, Proc. London Math. Soc., 31 (19303,
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then the Fourier series of f(¢) at t =x is (C, 2+ €)-summable.

It is said that the Theorem is not true for ¢ = 0. But Paley has proved
the case o = 0 and Hahn® has proved the case « =1 of the converse part.
Bosanquent® states that Wiener’s general Tauberian Theorem implies that the
converse part of the theorem is not true for ¢ =0 and any a = 0. Therefore
there is no concrete example for general . We prove the following
theotrems.

ThEOREM 4. Let 1=<p <o a=0. Then there is an integrable fanction
feL? such that

10, g: | @a (#) | du =+ 0 (#).

2. The Fourier series (0,2) of f(2) is summable (C, @) at t = x.
The case a = 0 is contained in Theorem 1.
TaeorEM 5. [ef 1<p< ® and a =0. Then there is f(t)e Lt such that

1% Do (w) = o (2),
2. the Fourier series (0.2) of f(2) is not summable (C,a) at + = x.

TusoreM €. Let a 20 and 1<p <. There is an integrable function
F(2)eL? such that

% o (x) - f(x) =+ o(Llogn), o7 (x) — f(x) = O (L logn),
where o2 (¢) denotes the a-th Cesaro mean of the. Fogrier series (2.2) of f(#)s
2. Gu1 (£) * 0 (1).

The case « = 0 is contained in Theorem 3. This containes Theorem 4 as
a special case. In spite of this we prove Theorem 4, for its proof is simpler
than that of Theorem g, and suggests the method of proof of Theorem 6.

§1. Before going to the proof of theorems we explain the type of
examples used. We take a sequence of disjoint intervals

— [4 7w 7w — e
(1.1) Ak:(—ﬂ;, z +%> (k=1,2,-)

and define an even periodic function f(¢) such that
(1.2) (2} = e sin Myz (€ 0%)

for £=1,2,- and f(#)=0 in (0, #) — U As. Here (m), (mx) and (Mz) are
increasing sequences of integers and (cx) is a sequence of positive numbers.

5) H.Hahn, Jahrbte, Deutschen Math. Ver., 25 (1916).
6) L.S.Bosanquet, Proc, London Math. Soc., 37 (1934).
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They are suitably determined in each problem and (1.1) is sometimes repléced

by

=( = 4 =
m=(g ) k=12,

and further (1.2) may be changed to

f(2)= crcos Mt (2 € Aw),-
or

f(#) = &t sin Mt (7 & Aw),
and so on.

This is a function-analogy of the Fejér example defined by series in a
sense. Many problems which solved by the Fejér's example, are also proved
by this type of examples, and we can go more in some cases.

As an illustration we will prove some classical theorems by our example.

Tueorem D. There is a continuous function f(t) with Fourier series di-
vergent at a point x.

Proor. Whithout loss of generality we can suppose that x = 0. Let s (=)
be the 7-th partial sum of Fourier series of f(#), f(#) being defined by (1.2).
Then , ‘ '

(1.3) o, (0) = —= Mgy 4 o (1)
. i 0
:%2“& s1nM¢tskat it + 0 (1)
=1

2 k-1 )

=—‘7‘r—|:’ ]“S ,-+ ”eSA,,_’_"gHﬁSM-}_*— 0(1)
2

=—[L+L+1]+0w),

say. First we have

(1.4) L=a k S gy = - 'SM—‘I’-’— + —’é’—S <os 20y
A

Wk ) Ch 52\“ mpte/mg My cos # &

me) 2

2 My ¢

1§g(1+—)+o<”}\£")

ENI I
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concerning I,,

(1.5) 2,, { .ﬂn_ﬁ_f-,;lﬁ__.-_kt_ s
t=1 . i
k-1

=1

i ry"" g COQ(MI: -- M)f

x[n; T m; CQS(MkjLMi)f k1 [ iR
“Lm SRS =20 =ik

Similarly we have

kL1

o - Folsit%n)

gl

If we take cr=1/1/% ", then f(¢) is continuous at  =0. When
(1.7) . k| Mr, mr! Mr (£=1,2,-),
f(#) is continuous everywhere. Let us take

mh =0k OF gk =08y My DT,

Then nx'mn =% and cams /Mr » 0. Thus by (1.4) 1, >0 as &> x. As easily
may be seen I, + I; > 0 by (1.5) and (1.6), and also the mtervals (1.1) are
disjoint mutually. Thus the theorem is proved.

TueoreMm E. There is a continuons fanction f(2) such that the Fonrier series
of 1(2) diverges at t = x and the continuity modulus o (8) of f () satisfies

(1.8) (8) =0 (1// log %_)
Proor. In stead of (1.2), we take
f(#) = (— 1)* cx sin Mt (e
for (=12, ), and put
=R, m=2F, =28, My=2%,

Then, using the notation in the proof of Theorem D,
L= (=10 -G log (1+ %) + o)

= (— P g log2¥ +0(1) = (-~ 1) log2+ o ()
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and ¢+ log m =0 (1). Thus sy, does not converge and (1.7) is satisfied.
Turorem F. There is a continuous function f(t) such that its Fourier series
converges everywhere but does not converge uniformly at a point.

Proor. Let us take the function f(#) defined by (1.2). We will take
m=mr. Then if we denote by I, the term in s, (xx) corresponding to I,

putting x& =27z mx — =/’
I = t'kS sin Mt sin Ma (x — #) dt
Ap x—1
= ¢k SAk {— cos Mrx + cos (Mrx -- 2Mrt)) —x‘{—f;

VA
==Ji+ ]
say, where integrals are taken in the Cauchy sense. First,
1 s
Ji= —é* ck cos Mrx S Ha?‘{{—t = —5— ¢k cos Max log (nx -- 2).

Ap

If we suppose 7| Mk, then

cos (Mrx — 2Mrt) = -+ cos2Mr (x — 2),
and then J, = O (cx/Mz). Let us take ‘

=1k m=m= *, My=2F.

Then I, does not converge. As easily may be seen from the proof of

Theorem D, the Fourier series of f(#) converges everywhere, but does not
converge uniformly at # = 0.

We are now easy to construct a continuous function which satisfies the
condition in Theorem F and (1.8).

§2. Proor or TuEorEM 1. Let us consider a sequence of intervals

(2-1) An= (’_;“, —}I— + ;2 ) (n= 2, 3" )

which are mutually disjoint. Let us define the even periodic function f(#) by
(2.2) f(t) =sin Mnt (#¢ An)

for #=2,3, and f(#)=0 in (0, #) — U An, where (M) is an increasing seq-
uence of integers determined later.

For the proof of Theorem 1 we can suppose x = 0 without any loss of
generality. Since £(0) =0, £ (#) = ¢, (#)/2. Evidently f(#) is bounded and
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1 -« 1 ?
S Tedez o B oy

ce.

Thus the condition 1 of the theorem is satisfied. Let us prove that the
condition 2 is also satisfied. For this purpose it is sufficient to prove that

©.3) ES 10 S 4~ 0(1) (m > »).
Substituting (2.2) we get

I= Zg sin Mwr S22

7= }‘
o, -1 n+1/n?
= Z‘\ sin Mat s_1_n (ay
n=dem
d 1ns1/n’ 1841/ .
= [\ OS(]V ——m)t ——S cos(Mn+ m) ¢ d J
nemdloy 1/n ’ .

For any m there is a u such as M, < m < Mut:. Thus 4 »w as w—>w. Let
us devide [ into two parts.

(2.4) 1=i_=2+ > =1+

say. The term # = in I, is

dt

1/pt1,u?
S e cos (m + M) ¢+ s

/1
cos (m — My) ¢ ’fff - S

Y 1/p
S(”‘—M“) QA/ut1/6?) cost d S(M+M'L) Q/ut1/u) cos t it
- (m-‘M“_)l/p. ¢ MM 1

:O(log<1+ % ) =0

as w—>o. The term # = p+ 1 in I, is similarly o (1) as w— .
In order to estimate the remaining terms of I,, we suppose # < u. If (Mn)
is convex, then

(2.5) w— Mn > Mp. — M ; (u. - ﬂ) (M!H-l - Mn)-
If we take Mn =7 then Maiy1 — Mu = #°, whence

(m — Mn)/n = (n— n)n.
by (2.5). Hence the #-th term of 1, is



NEGATIVE EXAMPLES 81

S(’""’Wn) Q nt1/n?) CQS Fs dr S("H'Mn)\ ’(1/”+1 "?)_(E)_S__f_ s
(m~Mp)jn (mEMp'n, H
. n _ 1
—O<”1— Mn>-o< (u—n) n )
Thus
p—1 p~1
(2.6) L= +0()= O(Z = ”)”>+o(l)
—n(logu —
‘O<7F> +o(1)=0(1).
Similarly we have
1 < ”
@7 L=o()+ 3 —o()+0 (».%1 W )
< 1
= 0(1) + 0 (n'=2p+1 m—n ) = a(])-

By (2.4), (2.6) and (2.7) we get I =0(1). Thus we get, (2.3), which is the
required.

§3. Proor or Turorem 2. Let (m#) and (m) be increasing sequences of
integers, which will be determined later and let us take a sequence of in-

tervals

(3.1) ar=( Z X4 ,ﬁ) (E=1,2. )

which are taken disjoint mutually. Let us define an even function such that
1 . -
(3.2) f@)=cr [t cos Mt + a5 Sin MktJ (2 € Ar)

for £=1,2,- and f(#)=0 in (0, #) — U Az, where (c) is a sequence of
positive numbers and (M) is an increasing sequence of positive integers, which
will be determined later. We shall first suppose that

(3.3) me | Mr, mn)| My (k=1,2,).
Then

_ t=%nptx my _
(3.4) = Sah f@®)dr = [ My ?Sim Mktl_‘ N =0,

By
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S Fora=S fneaes a1
k=1. Ak o T k=1 ”g mk’
in order that f(¢) belongs to L? it is sufficient that
>
k=1

[P
(3'5) 7;:_ —— < 0,

By (3.4)
fi (t)—S f(u)da~— ~“ #sin Mat

for teAx, and f () = 0 outside Az If we take

(3.6) Ck = Mk (lé = 1! 2, "')’

then the condition 1° is satisfied. In this case (3.5) becomes
d ]Mf 1

2 —r

(3.7) . kgi T < .

Let us now consider the Fourier series (1.2) of f(#) and by s« we denote
the #-th partial sum of (0.2) at # =0. The condition 2° is satisfied when

(3.8) S f(5) SB 2 gr=0(1).
We will begin by the case # = M. Dividing I into three parts, we put

=3 -3 _-ZI,+1k+ S I =]t Jot Js
Af $=k41

$=1 1=t

say. We have by '(3.6),

(3.9) Je= SA» sin® M # -2~ d’ + M»S sin Mat cos Mat dt
= _%— S (1 — cos2Ms #) + == SA» sin 2M? d#

= —log(1+ )+ 0 M»>
If we take
(3.10) mlme >0 (k> x),
then J, =0 (1).
(3.11) Ji=2 {S sin Mt sin Mat 4 + M; SA' cos Mt sin Myt dt

2
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) =0 3 )

(’ZNk—- >+ O(Z

Similarly
< M
(3.12) ]_=o( ZIM_—-M* Mk’%] i )
Let us take
(3.13) a=M=R%, m=kF*¥ mn=2*

Then the conditions (3.3), (3.6), (3.7) and (3.10) are satisfied, and the sequence
of intervals (3.1) is disjoint. By (3.11) and (3.12), J, = o(1), J. =0 (1).

Thus the condition 2° is satisfied for #= Mk (k=1,2,.). We have to
show it for all #. For this purpose we take & such as M < # < Mz41, and put

£ k-1 *
= gli = iz=1]i -+ (Ix + Ik+1) + i—%ﬂ—gl E]ll + Jg' + _]3/;
J+ can be estimated similarly as J., except that thc second term of (3.9) does
not vanish but is sufficiently small. J/ and J,’ are similarly estimated as J,
and J,. respectively. Thus Theorem 2 is completely proved.

§4. Proor or Tueorem 3. Let us take the sequence of intervals (3.1) and
define f(#) by (3.2).- 'If the condition (3.3), (3.6) and (3.7) are satisfied, thén
(3.4) holds, f¢L? and the condition 3° is satisfied. The condition 2° is sa-
tisfied when

(@.1) 1—5 oN SR 4= 0 (55 )
Putting n= M and I =], + J.+ J; as in §3, we get, by (3.9),
(4.2) Jo =5 —(1+ 0 (1))

when (3.10) is satisfied. If we take

(a.3) % log Mt + a + 0,

then J, = O (1/log M»).
Let us put
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(4.4) =M=k my=R, =2k,

Then the condition (3.3), (3.6), (3.7), (3.10) and (4.3) are satisfied and J; + Jy =

O (1/log Mr). Thus we get (4.1). For general # we get also (4.1) as in §3.
Concerning the condition 1°,

L4

ay, = —:;— S J (#) cos Mt d#

=]

_ _%__ ’§1 M; jm. [t cos MM; + -—]‘14; sin Mn‘] cos Mt d¢
1 Mk . = -
T mmk (140 (1) = O (A7)

for 0 < 8 < 1. For general n, an becomes also O (1/%). Thus the theorem is
completely proved.

§5. Proor or TueEorEM 4. The case ¢ =1. Let us consider the sequence
of intervals (3.1) and let f(#) be an even function such that

Mz
nx

(5.1) f@)= cos Mt (# & Ax)

for £=1,2, and f(#)=0in (0, 7) — U As. If we suppose (3.3), then

sin Mxt ‘]"" nytx/my,

(5:2) S” fyde=["2

By

$=n ",

[ irorsZ (28| b =ngtitm,

In order that feL?, it is sufficient to take

(5.3) g M [k < .

For 7 ¢ A,
¢ $

54) [ fodu={, fode==200
. |

by (5.1) and (5.2). If we suppose (3.10), then, by (5.2) and (5.4), ®(#) =
{ f(@)du=(1+ 0(1)) sin Maz (€ Ds) for £=1,2,- and @(#) =0in (0, n)
~ Ak And then, for ¢ Ag,

N
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t 1 hed < 1
(5.5) So (@) du= T,-_%, SM. dwz X
If we suppose
® 1 1
(5.6) 2 T
then

which implies the condition 1°
Let us consider the Fourier series (1.2) of f(¢), and by o denote its (C, 1)
mean at # =0. Then

69) oSO =on = iy [, SO SR ar
() sin? m‘/z dt+ 0(1)

__‘LS
n
=Z [Tao S“;”’ di+ B ("0 (S 4y 4 o)
2
r

say. By the definition

ffowdu=00 [ 0@l du=00),
which implies J = 0(1) by a well known theorem. We have also
(= sin n#
1={" o) B2 4

= ZS (1+ 0(1)) sin Maz iir;lLa’t
k .

b=1JA

x

= ;HA, (14 o () M=)ty i A+ o) cos (M + n)# it o

1

For any # there is a u such as My < # < Mut+, Let

I=2=2+ Z 511+Ig'

A=1 k=1 k=pt1

As ['s in §3, the last term in I, and the first term of I, are

o) <l'og <1‘+ yfmy >> =0 ( oy ) =0(1)
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by (3.10). If (M) is taken as convex and

(5.9) M1 - My > kne L (k=1.2,.),

then, for &£ < u.

(7 — Mw)'n> (My— M), 5x > (u— &) (Mrrr — Mr) ne > (u - &) A
Thus ‘ ;

p—1 =1

=& o=0(Z 5 %) £

=1

1 \
- O<I§ (= Rk T oM =0()
Let @ be an integer >2p + 1 and put

(5.10) Mr=kat?,  gp=4kerl,  m=ke
Then the conditions (3.3), (5.3). (3.10), (5.7) and (5.9) are satisfied. Moreover

' I,:0(1)+ 2 O\mf*‘“>-—0(1)
Thus I == o(1). where ou =0 (1) by (5.8). Thus Theorem 4 is proved for a = 1.

§6. Proor or TuroreM 4. The general case. We may restrict to the case
0 < a < 1 only. For, the cases ¢ =0 and o =1 were proved and the general
case a > 1 is obtained by the combination of two methods in §5 and §6.
We need a lemma®.

LEMMA. Jf0<a <1 and
(6-1) [0 @@ du=o(r) (£ 0),

then the Foarier series (1.2) of f(2) is summable (C,a) at t = x
For the proof of Theorem 4, we may suppose that x=0. Taking a
sequence of disjoint intervals (3.1) and put

@

(6.3) f@)= r—%— cos M ¢ (2 & &%)

for £=1,2,... and f(#)=0in (0,z) — Uls, f()=f(—4) in (- =,0). If we
suppose (3.3), then (5.2) holds. If

4) Cf, Izumi and :,Sunouchi, Notes on Fouwrier Analysis (XXXI): Theorems concerning
Cesiiro summability.
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< M?
(6.4) > —ab < o,
k=1 Pk Kk

then feL? for p > 1. By fu (#) we denote the a-th integral of f(4), then

fo (®) =j§1 [, fe - werdut ) ¢~ e e

M Mi

87

=X a SA, cos Mt (t — a)*du+ —= St.” cos Mat (¢ — 4)*~1du

j nh 3

for # in A If we put

‘)"m (f) = P P
3

cos Mru(t — u)*~1du (£ew)

?

2 “k
for £=1,2,... and Wa (#)=0 in (0.7) — UAs, and put
O (1) = ;Z M’.,, SA cos Miu(t — #)*—1 du
]

j=k+1 % pj

in the interval A} :—=‘( LA S S l—) (£'=12,...), then we have
Pk+1 Mk+1 13 ¥//1.] )

Do (£) = Vo (£) + Oa (2).
Since
( : a 1 v 7 \e-1
ot 3 (o 5
for i = &+ 1. we have

-l

1 S
1@« (1) | = 7 '.51 M

t ® ©
S @) dus2 X log L 3 —
j=k+1 #j

, L —w .
0 i=j+1 ni M

Hence, if

(6.5) i log £ i 1 =o<—L>,

i ik

jmkt1 nj iZit1 ﬂ:'b M;'ﬂﬁ

then we have

(5.6) [ 100 @)1 du= 0 s).
On the other hand, for # e As,
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t "
1 S M cos Mu (t —#)*—1da
. ik

M S cos Muu (t —u)*~' du
k
S

cos Mita (L —#)*-1 du.
g

As easily may be seen by elementary estimation, we have
SAk |, (t)ldfzwc—"mijl.

Thus, if the condition (5.7) is satisfied, we get
S; |Wa (#)du + o (2).

whence, by (6.6), .
|, 1@ (4)idu =+ 0(2).

This is nothing but the condition 1°.
Concerning the condition 2°, it is sufficient to prove (6.1).® We have

S:, S (@) dn= Simk f(n)dn= —%:;— Si s M dn = O( ;:*1]‘7[;—.7)

for # in As, which is o (#2*) when

Ll-l
(6.7) ns% | M =0()).
Let us take
(6.8) M=k, m=Fketl, m=4ks,

a and ) being positive integers. (3.3) and (3.10) are evident when > e+ 1.
(6.4) and (6.7) are satisfied when

(6.9) a(a +1) > ab.
(6.5) is satisfied for sufficiently large p.

Hence the theorem is proved.
For the general @ we remark that, for integral @ we use «a times the

integration by parts to the a-th Cesiro mean o of the Fourier series and use

5) Cordition 2° can, of course, be proved directly, without use of Lemma. Direct
estimation leads also to (6.7).
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the method of §5, and for non-integral a we use [a] times integration' by
parts to o and the above method. In these case @ (#) does not vanish in
(0, 7)—U Ar for a = 2. Estimation of terms rising from such part is easy.®

§7. Proor or TuEorEM 5. We can prove the theorem modifying the
example of theorem 4. We will now show the method of modification for
the case @ =1.. In the example of Theqrém 4 #x/mn + 0, but in this case
mx[m + 0, that is, the length of As is taken longer in this case. Therefore
we denote the sequence of intervals by

(7.1) Ak =( I, %) (k=1,2,).

We define an even function by
(7.2) fla)y= —A,;{: ¢k cOS My (weDw)

for £=1,2, - and f(s)=0 in (0, 7) —UAr When (3.3) is satisfied, (5.2)
holds. When ‘

> mt

(7.3) | E ' <,
feL?t. Moreover
¢(t)—~— S f @) du=cx (1 + o(1)) sin Mz (2e0w)

for £=1,2,- and ®(#) =0 in (0, 7) —UYAs. Thus @ () = o(l) as # - 0, when
(7.4) ¢+ 0 (£ > o).

Hence the condition 1° is satisfied.
In order to verify the condition 2°, we consider (5.8). Evidently J = o (1).
Hence it is sufficient to show that I >~ . Now

7 o, _(* sin M.t
= P IR
=20k S (1 + o(1))-sin Myt —5— sm Capr
k=1 A

for # = Mu.(u=1,2,-). Here we can omit the term o(l) by its structure.
Hence

6) Cf. §8. In the case a@>1, insted of (6.1) use \: Px (u) du= 0O (2—- 1/¢), See Izumi

and Sunouchi; loc, cit.
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FE?“’X _SEMJ;

¢
p—1 P @
=Z+m§ *ﬂ}w—db}» >
k=1 AIL k=p+1

= Il’ + Ig’ + I;;,,
say, where

e sin? Mt s

& z”‘.\,,.# 7
= L (Im“ﬁ . Lw g' " cos2Mut dt
2 v ”,“' i 2 vﬂ"“ i
-

which tends to oo when ¢, tends to zero sufficiently showly and
(7.5) ol >0, ! MNe>0 (£ » o0).

Now, concerning [, ,

-1 I m
I/ = S c:[ "k cos (Mu Mk)f \ cos (M, +_ M) ¢ d/l
k=1 ey, VRN
p—1 (M Mk),’mk =M -r‘lk‘ "y
=310 " SO g — S O3 4],
k=1 ’»M;:."Mk " yt‘M“-i-Mk Iny, Jd
and so
g 'Szgﬁ M
Let (M) be a convex sequence and
(7‘6) M = k*ni (k = T) 2’ );
then My — My = (u— k) k#x and then 1 =0 (1). Similarly I’ =0(1). Thus we
get I -+ oo,
If we take

My=R2F, m=kF* m==2Ik c=1/loglogk,

then the conditions (3.3), (7.3), (7.4), (7.5) and (7.6) are safisﬁed. And (M) is
convex and (Ax) is a system of disjoint intervals.

§8. Proor or TueorEm 6. The case o =0 is proved. in Theorﬁn 2
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Let us first consider the case a = 1. Taking the sequence. of intervals (3.1),
we define an function f(7) by

(8.1) f= ']‘\;/_’;; sin Myt + 3¢t cos Myt — M £2sin M ¢
in Ak (f=1,2,-) and f(#)=0in (U, 7) - YAs If we put
()= Z—(}; £ sin M#.

then f(#) = (¢ (#))’ in As, dash denoting differentiation with respect to z. We

have
1, kg oS oM
2 SAk = 500 T ok

If we suppose (3.3), then

g: @) /ltzgg f()1dr <o

Ak
when
(8.2) S8 e, XM
* HE 7k ’ P
Further, if
(8.3) Mz 7vy, Mr/m are even,
then
="+ "
Tk . My ™
g f(l) dt = [.]\/Ik- tsin M £ cpt? COS'M)J] §
J Ik = nk<
= _h‘_<27r + 7 )
7ih \ Bk e
Since
¢ . %=1
S f @) du= [ﬂ; #sin My + ¢ o* cos Mm]
= ny U= nk
= 7{—2‘; #sin Mat + car? cos Ma# — ¢k (—’11:—):
we have

fu ()= |, f (u)
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= L ssin Mpt + cat?cos Mt
M

T PN M & ) -e(Z),

ey il me \ nk ”r

for ¢z & As, and

L <
7 [ 2n L3 a1
f’(t)=;,§,1” i <Mt_17+_r)17)~“< m)

T

z z <L —e Let us put

for .
i1 M1

& ()=} #sin Mt + cns? cos Myt (€ )

for £=1,2, and g(#)=0in (0, 7) — Uds;

L SEUNNE SYAE A 1
bdﬁ:.-,%f’ i ( m T m-’)

in the interval A;E( n::q + —,”T”H—, —,%4- —%) (f=1,2,-);

ki (8) = — cx (m/n2) X))
for £=1,2, and £;(#)=0 in (0, ) — UAs. Then we have

fl () =& (f) + hi(e) + A (t)
for all # in (0, #), and

=y (2) + 2, (2) + 0:(2),

say.
Let us consider the Fourier series of f(#) and o» be its Cesiro mean of
order 1. In order to get o» = O (1/logn), it is sufficient to prove that

fi

’
on

‘-}T S:f(t) Sinnt’:_t@ dt = O (1/log n).

Now

, [ 4 i 2 [ in2 .
an =50 Q)(f)_sl%ﬁd; - TSO q)(f)ill'},—’l{df=_]1+]20

say. Substituting (8.4) into J,,
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J= (0SB 4 (72 S0 gt (7 6, (1) SEB gy = K+ Ko+ K,

say. Similarly we put J,=K; + K.’ + K5

Ki={ v B2 gy =3[ &) snm

0
=3[ {5 sin bt + et cos Mis} B2 gy,

4;

Putting first # = Ms, and dividing K, into three parts, we put

® k-1 hed
K1=ZS ==,ZS +S +ZS =L;+ Lo+ Ls,
$=0J,,  $=0J, ap TR,
where
ch sin? Mw? 5
L=+ S% R ar + cx &k cos Mat sin Mat dt
€k _1__ cos2 M, \
= —mk SAk ( F3 - I3 »/ dt
TR A
__Ck o\ ok " ™R cos ¢
= 20 108 (l + > 2Me Sf”k_ ¢ as.
”
3

If the condition (3.10) is supposed,
Lo= 54 (14 5(1)) + O (e, /M),
In order that L, = O (1log M), it is sufficient that
Ch Bk .
(8.5) m log Mz 0.

Similarly estimating as (3.11) and (3.12),

5 M
(6.6 L= 0(Z w15 )
8.7) L‘,=O(§‘Wm > M )
) - i=kt1 Mi— Lk iky1 M B

Before going to the estimation of K,, K; and J;, we will consider the
condition 2°. We put
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fo0y={ o@ydr = () du+ [; 2 () du + ); 01 (4) du
=g (#) + b () + ka(2).

Since

L (1) = —M— #sin Myt,
we have

Yo (t) =go(2)/ £ =0(1), and = o (1),

when
(8.8) =M (k=1,2,)..
Then (8.5) becomes 1
(8.9) —7‘ log Mz » a =+ 0.

Let us take

(8.10) v =DMr=(QRP2¥, m=CkP*¥, = r
Then the conditions (8.2), (8.3), (8.8), and (8.9) are satisfied. By (3.6) and (8.7,,
L1 + L-: = O (1/10g sz).

Thus we get K, = O (1,log Mx). Similarly K = O (1 log Mx).
Concering K,

il

=S 2, () S0 Mt skat dr

=]

I
1M s

S Skat dt E ¢i “(—2” + —”—)
A

i ; i #j mj
k

|
-

© -
+ 2 =K/ + K/,

i=k

=

say. We have
- o(Z i) - oty
K’ O<¢=» ]ﬁf+1z%::1) O(TO_gI—M;)'

Thus we have K, = O (1/log M). K, is also of order O (1/log Mn); " For- general
n we can estimate similarly as in the last part of §3. Thus we -have proved
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Theorem 6 for a =1. For the case a =2, it is sufficient to use
SB =0y 0)Y,

and so on. For fractional & such as 1 < @ < 2, we have

S@) =@y ()Y
where %¢® denotes a sort of the 8-th derivative (0 < 8 < 1) such that

(£7)@-D = pgn--D_ (sin nt)e=D = pe=igin n#, (cos nf)@ = p9-1 cos nt
and
(z2)P = g Pw 4 g®,

For general «, it is easy to write the form of function. Estimation is quite
similar,

Téhoku University, Sendai.








