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Introduction. W. Randels1* has proved the following Theorem.

THEOREM A. There is a function f(t) e L2 such that

*θ(t), φx(t)=f(*+ t) + f (x - t) ~- 2f(x),

2°. the series

(0.1) Σ (*» cos nx -f bn sin nx) /VΊog n

converge Si where

cr.

(0.2) f(ή - -%- -f Σ (tncos nt + bn sin nt).

R. E. A. C. Paley^ has proved

THEOREM B. There is an integrable function f{t) such that

1°. \[ φχ(u)duΦθ(t)^

2°. />&<? Fourier series (0.2) off(t) converges at t = x-

As a generalization of Theorem A we prove that

THEOREM 1. There is a bounded function fit) such that

i° $1 1 Φ* W I A * o,
2°. /A* Fourier series (0.2) off(t) converges at t^x.

We prove also the following theorem containing Theorem A and B.

That is,

*) Received Oct. 1, 1949.
1) W.Randels, Bull. Am. Math. Soc., 46 (1940).
2) R.E A.C.Paley, Proc. Cambridge Phil. Soc, 26 (1930).
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THEOREM 2. Let oo >/>>l . Then there is a function fit) εL* such that

1°. jj φ*(u)du*o(t),

2°. //fo Fourier series (0.'̂ ) of f(t) converges kit t = x.

It is known that3)

THEOREM C. ^

io. , M = 0 (1/Λ«), *» - O (l//*δ) (Λ - 1,2, .)

where δ > 0 ##*/ an, bn are Fourier coefficients of fit),

2°. ΛI;(*)-/(*) ==^(l/log«),

where s* denotes the parti aLsum oj the Fourier series (1.2) of fit), then

o φxiu)du=>oit).

In this theorem the condition 2° is the best possible, that is, o cannot be

replaced by 0 . In fact we prove

THEOREM 3. There is an i ntegrab le function fit) ε IJ such that

V\ c« = 0 (l/tfδ), bn-=O (1/Λ») in - 1,2,. )

where δ > 0 #/^/ ̂ «, Z?H are Fourier coefficients of fit)>

V. Sn (X) - / ( x ) Φ 0 (1/lθg »), Jn (x) ~ / ( χ ) - O (1/lθg »),

30. Ĵ  φx{u)du*θ(t).

This is a g e^er^lization of Theorem 2.

On the other hand L R. Bosanquet4) and R.E.A.C. Paley proved that

THEOREM D. Let a ;> 0. If the Fourier series (0.2) of fit) is iCa\

mable to fix) at t = x, /&»

(0.3) φ - + 1 + t (/) = «(!) (/->0),

Φ/Ϊ (/) is the β*th mean of Φ% in), that is,

j
Conversely\ if

3) G.H Hardy and J E.Littlewood, Annali di Pisa, 3 (1932).
4) L S Bosanquet, Proc. London Math. Soc, 31
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then the Fourier series off(t) at t = x is (C, cc -f ε)*summable.
It is said that the Theorem is not true for ε = 0. But Paley has proved

the case a = 0 and Hahn5) has proved the case a = 1 of the converse part.

Bosanquent6) states that Wiener's general Tauberian Theorem implies tjiat the

converse part of the theorem is not true for ε = 0 and any a > 0. Therefore

there is no concrete example for general a. We prove the following

theorems.

THEOREM 4. Let 1 ^ / > < ° O α > 0 . Then there is an integrable function

f U such that

1°. \[ lΦΛ(u)\du*o(ή.

2°. The Fourier series (0.2) off(t) is summable (C, a) at t = x»

The case a = 0 is contained in Theorem 1.

THEOREM 5. Let 1 ̂ p < oo and a > 0. T^« //^r^ is f(t) e Lp su h that

1»; Φa(u)^o{f).

2°. / ^ Fourier series (0.2) oj f(t) is not' summable (C,a) at *^-=χ.

THEOREM 6. L^/ # > 0 ^//i l g ρ < o o . There is an integrable function
f(t)*U su:h that

1°. < (ΛΓ) -/(ΛΓ) 4= o (I/log;/), σ£ (x) - / ( x ) = O (1 log «),

where σΛ

n (t) denotes the a-th Cesaro mean_ of the- Fourier series (J*2) off(t)*

2°. Φ +i (/)**(]) .

The case <x = 0 is contained in Theorem 3. This container Theorem 4 as

a special case. . In spite of this we prove Theorem 4, for its proof is simpler

than that of Theorem 6> and suggests the method of proof of Theorem 6.

§1. Before going to the proof of theorems we explain the type of
examples used. We take a sequence of disjoint intervals

(1.1) Δk

and define an even periodic function/(/) such that

(1.2) f(t) = ck sin Mkt (teAk)

for £ = 1,2, ••• and/(/)=s0 jn (0, n) - U Δ*. Here (»*), (///*) and (Mk) are
increasing sequences of integers and (ck) is a sequence of positive numbers.

5) H. Hahn, Jahrbte. Deutschen Math. Ver., 25 (1916).
6) L.S. Bosanquet, Proc. London Math. Soc., 37C1934),
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T h e y are suitably determined in each p r o b l e m and (1.1) is sometimes replaced

by

and further (1.2) may be changed to

/(/) ΞΞΞ ck cos Mht (t ε ΔA), -
or

/(/) ΞΞ cht sin Mht (t ε ΛΛ),

and so on.
This is a function-analogy of the Fejer example defined by scries in a

sense. Many problems which solved fey the' FejέVs example, are also proved
by this type of examples, and we can go more in some cases.

As an illustration we will prove some classical theorems by our example.

THEOREM D. There is a continuous function /(/) with Fourier series di-

vergent at a point x*

PROOF. Whithout loss of generality we can suppose that x = 0. Let sn (x)

be the n~th partial sum of Fourier series of /(/),/(/) being defined by (1.2).'

Then

sin M«/sin
2«

( ( + Σ «

say. First we have

dt , ck f cos 2Mht
(1.4) /2 = α ] j dt=~2~) ~Γ + "T"J / **

Ck , Λ , β t \ Λfc f ^ nk+«l™kMk COS / ,
= —9— log 1 + — — — —9 - \ - — 7 — dt

l b V tnk) £ J 2 * M Λ nk t
Λ nk
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concerning /„

0.5) J, = Σ

i-1 ώ LJ*^. /

. i tϊ / am \

Similarly we have

If we take r*=n/-/"£"• then/(/) is continuous at / = 0. \K hen

(1.7) - ΛΛIΛΛ, mk^Mk (Λ = l,?, ).

/"(/) is continuous everywhere. Let us take

/» β 2*. 2**, ^ * ss 2 ^ ΛA ΞΞ : (*+J>*.

Then « * k = /* and cktihlMk •> 0. Thus by (i.4) J.,>0 as /fe>co. As easily

may be seen /, + J 3 ^ 0 by (1.5) and (1.6), and also the intervals (1.1) are

disjoint mutually. Thus the theorem is proved.

THEOREM E. There is a continuous function fit) such that the Fourier series

of J(f) diverges at t ~x and the continuity modulus ω(δ) of fit) satisfies

(1.8) ω(δ)=

PROOF. In stead of (1.2), we take

/(/) ss ( - l)k ck sin Mht (t β Δk)

for (k = 1, 2, —), and put

Then* using the notation in the proof of Theorem D

22 = (-l)*,-f log



NEGATIVE EXAMPLES 79

and ck log nk ~ 0 (1). Thus SMH does not converge and (1.7) is satisfied.

THEOREM F. There is a continuous function f (t) surh that its Fourier series

converges everywhere but does not converge uniformly at a point.

PROOF. Let US take the function/(/) defined by (1.2). We will take

nk = mh Then if we denote by I2' the term in sMft (xk) corresponding to L2>

putting xk ΞΞ 2π nk — 7t'nyy

sin Mkt
X — t

= -yh \ ί - c o s M** + c o s (Mue - 2Mkt) I —
6 J&k X

X—T

say, where integrals are taken in the Cauchy sense. First,

J1 = ~2~ Ck c o s λhx \ ~χ^T ^ ~~2~ Ck c o s ^ k x l o g ^ Λ ~̂  2 ^

If we suppose » A 2 | M ^ then

cos (Mkx - 2Mkt) = + cos 2MΛ (AT - /),

and then J2 = 0 {ck/Mh). Let us take

α s 1/̂ fe, ^;A ss ** Ξ£ 2*\ Af* s 2ί *\

Then /;>' does not converge. As easily may be seen from the proof of

Theorem D, the Fourier series of f(t) converges everywhere, but does not

converge uniformly at / = 0.

We are now easy to construct a continuous function which satisfies the

condition in Theorem F and (1.8).

§ 2. PROOF OF THEOREM 1. Let us consider a sequence of intervals

(2.1) Δ.-(JL 4- + -J-) (.-2,3,...)

which are mutually disjoint. Let us define the even periodic function/(/) by

(2.2) / (/) aa sin Mnt (t e An)

for n = 2,3, ••• and/(/) s 0 in (0, π) — U Δ*, where (Mn) is an increasing seq*

uence of integers determined latet.

For the proof of Theorem 1 we can suppose x = 0 without any loss of

generality. Since/(0) = 0, / ( / ) « φ0 (/)/2. Evidently /{/) is bounded
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$' \fUι)\du^-~- έ i+i-^r>-/-

Thus the condition 1 of the theorem is satisfied. Let us prove that the

condition 2 is also satisfied. For this purpose it is sufficient to prove that

(2.3) J Ξ \ f{t) *Yf- if = o(1) (*, - x).

Substituting (2.2) we get

/ - i f sta ^

= ΣΓ\ cos{M»-m)t - - cos(iW«+w)ί 7 I

For any m there is a ^ such as Mμ ̂  m < Mμ+i. Thus μ -> co as m~* oo. Let

us devide 7 into two parts.

x μ ao

(8.4) 2 = Σ = Σ+ > Σ + i «J,+ /s.

say. The term n — n in J2 is

S
l/μ+l>'2 ^ Λl/μ+1'μ- ^

COS(Λ7— Mμ)/ -f — \ cos(///-f Mμ)/ .
Λl ^ J 1 / . , *

S
l/μ

M^) l/μ

= θ(log(l+

COS/ , Km+MJ Q/μ+lIμ*j c o s /

/ \

as m -> oo. The term # == ̂  + 1 in i 2 is similarly o (1) as ̂  -> oo.

In order to estimate the remaining terms of /„ we suppose n < ιχ. If (Mn)

is convex, then

(2.5) m- Mn> Mμ - Mn S (/* - n)

If we take Mn sε «3, then Mn+i ~ Mn > //-, whence

(m - Mn)/n ^ (μ - ») //•

by (2.5). Hence the /*-th term of ij is
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r{m-Mn) (1 n-f l/n2) c o s ^ f(«+Λί«) (1/Λ+I rΓ) c o s

±Mn/n t

Thus

(2.6)

Similarly we have

By (2.4)t (2.6) and (2.7) we get / = o (1). Thus we get (2.3), which Is the

required.

§ 3. PROOF OF THEOREM 2. Let (m) and {m) be increasing sequences of

integers, which will be determined later and let us take a sequence of in-

tervals

(3.1) Δ * Ξ ( i- * + JL) (A = 1,2.-11 # V nk > tin mk) v

which are taken disjoint mutually. Let us define an even function such that

(3.2) f(t) = ch [/ cos Mkt + ηβj- sin Aft/] (* « Δ*)

for £ = 1,2, ••• and/(/) = 0 in ( 0 , ^ ) - U Δ*, where (CH) is a sequence of

positive numbers and (Mk) is an increasing sequence of positive integers, which

will be determined later. We shall first suppose that

(3.3) oklAfc, mk\Mk (£ = 1,2, •••)•

Then

(3-4) Λ

By
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in order that/(/) belongs to U it is sufficient that

(3 5) S"|-ΊSΓ<<β

By (3.4)

for / ε Δ*, and /(/) = 0 outside |JΔ*. If we take

(3.6) Ck = Mk (A = 1,2,-),

then the condition 1° is satisfied. In this case (3.5) becomes

i Mt i
(3 7) S^-sr < β β

Let us now consider the Fourier series (1.2) of /(/) and by Λ we denote
the /Kh partial sum of (0,2) at / = 0. The condition 2° is satisfied when

(3.8) ί =

We will begin by the case n = Λ4*. Dividing 7 into three parts, we put

J-,Σ( -£Γι =ΣΛ+'ή+ . 2 IHSJI+JI+JB,

say. We have by (3.6),

(3.Θ) J2 = J Δ Λ sin<? M*t-£-+ Mh [H sin MΛ/ COS Mkt dt

2

If we take

(3 10)

then Jo = o (1).

(3 11) Ji = Σ {f sin Mit sin Λ6/ - / - + Mi [ cos Afrf sin Mkt dt
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Similarly

Let us take

(3.13) ^ = Mk = & 2*\ m s #Σ* 2, ** s 2*?.

Then the conditions (3.3), (3.6), (3.7) and (3.10) are satisfied, and the sequence

of intervals (3.1) is disjoint. By (3.11) and (3.12), J1 = 0(l), J2 = o{\).

Thus the condition 2° is satisfied for tr— Mk (k = 1,2, ...).- We have to

show it for all n* For this purpose we take k such as Mk < n < Λf*+i> and put

I^-itli^Σ, It -r- (Ik + Λ+i) + Σ i - 7 / + Js' + Js,

JV can be estimated similarly as J 2 , except that the second term of (3.9) does

not vanish but is sufficiently small. J / and Js' are similarly estimated as J ,

and Jo, respectively. Thus Theorem 2 is completely proved.

§4. PROOF OF THEOREM 3. Let us take the sequence of intervals (3.1) and

define/(/) by (3.2). If the condition (3.3), (3.β) and (3.7) are satisfied, vth§n

(3 4) holds, fεLp and the condition 3° is satisfied. The condition 2° is sa*

tisfied when

Putting n^Mk and / ^ J i + J o + Λ a s in §3, we get, by (3.9),

(4.2) J 2 = -

when (3.10) is satisfied. If we take

(4-3) - ^

then J2 = 0(1/ log Aft).

J-et us put
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Then the condition (3.3), (3.6), (3.7), (3.10) and (4.3) are satisfied

O (I/log Mk). Thus we get (4.1). For general n we get also (4Λ) as in § 3,

Concerning the condition 1°,

? r*
J (t) cos Mkt dt

= - | ~ Σ Mi J [/ cos M*/ + -fir- sin ΛA/] cos Mkt dt

( ( ) ) O ( M r )

for 0 < S < 1. For general n> an becomes also O(l/»δ). Thus the theorem is

completely proved.

§5. PROOF OF THEOREM 4. The case a = l Let us consider the sequence

of intervals (3.1) and let/(/) be an even function such that

(5Λ) /*(/) s ~ ^ - cos Mkt (/« ΔΛ)

for k = 1,2, ••• and /(/) = 0 in (0, πr) - U ΔΛ. If we suppose (3-3), then

By

A - l

In order that/elA it is sufficient to take

00

(5.3) Σ M%\np

hmk < oo.

For / β ΔA,
t t

(5.4) ( J(u)du=\ f(u)du^~

by (5.1) and (5.2). If we suppose (3.10), then, by (5.2) and (5.4), Φ(/)2s

* \ f(u) du = {\+ o (1)) sin Mkt (t ε ΔA) for k = 1,2, ••• and Φ (/) = 0 m (0, n)

— ζj ΔA. And thent for / e Δ ?̂
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(5.5)

If we suppose

then

(5.7)

which implies the condition 1°.

Let us consider the Fourier series (1.2) of/(/), and by σn denote its (C»l)

mean at / = 0. Then

- 2 ["

say By the definition

2 f-
Jo

2

φ{u)du = o{t), \[ \Φ(u)\du = O(ή,

which implies J = o (1) by a well known theorem. We have also

= ΣΓ(

For any # there is a u such as Mμ. < n ^ Mμ+r Let

/ = Σ = Σ+ Σ ^ ^ + 7,-

As /'2 in §3, the last term in Ix and the first term of I2 are

o (log ( r + //Λ/^)) = o
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by (3J0). If (Ah) is taken as convex and

(5.9) Mkv-Mk>km ( £ = 1 , 2 , . .),

then, for k < μ,

(n ~ Mk) n > (Mμ - Mk) / m > (μ - k) (M*+i - Λf*) /

Thus

Let a be an integer > 2p 4- 1 and put

(5.10) Λf*ΞΞ/έΛ+2, mk = k«r\ nk^k*.

Then the conditions (3 3), (5.3), (3.10), (5.7) and (5.9) are satisfied. Moreover

Thus / ~ o(l), where σn = o (1) by (5.S). Thus Theorem 4 is proved for a = 1.

§6. PROOF OF THEOREM 4. The general case. We may restrict to the case

0 < a < 1 only. For, the cases a — 0 and α: = 1 were proved and the general

case a > 1 is obtained by the combination of two methods in § 5 and § 6.

We need a lemma4).

LEMMA. If 0 < a < 1

(6.1)

/έtf Fourier series (1.2) of f{t) is summable (da) at t = *-.

For the proof of Theorem 4, we may suppose that x = 0. Taking a

sequence of disjoint intervals (3.1) and put

(6.3) / (/) == ^ - cos Mk t (/ ε Δk)

for A = 1, 2,... a n d / ( / ) = 0 in (0fίr) - UΔ*, / (/) s / ( - /) in ( - TΓ, 0). If we

suppose (3.3), then (5.2) holds. If

4) Cf Izumi and Sunouchi, Notes on Fourier Analysis (XXXI): Theorems concerning
Ccsaro i
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(6.4) Σ τi]r— <».

then feU for /> > 1. By/* (#) we denote the <z-th integral of /(«)» then

= Σ —^~~ ( cos,

for / in Δ*. If we put

for k = 1,2,... and Ψ* (/) Ξ 0 in (O.τr) — UΔ*, and put

in the interval Δ1* Ξ ( ~ ^ — + - ^ — - ^ - + -^-) ( ^ ^ 1 ?2,...), then we have

Φ* (/) = ψ* (ή + ΘΛ (/)•

Since

for / > k + 1» we have

W|Λ^2 Σ

log

Hence, if

(6.5)
i

then we have

(θ.6)

Oh the other hand, for /ιA*.

n% Mj
-a = o
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Ψ» (/) = - I - ( ~ ? - cos Mm (/-«)-»

c o s M*« (/ - a)""1 Λ

( c o s

^ * J « tnh

As easily may be seen by elementary estimation, we have

Thus, if the condition (5.7) is satisfied, we get

whence, by (6.6),

Γ iΦ« (U)\du* o(/).

This is nothing but the condition 1Λ
Concerning the condition 2°, it is sufficient to prove (6.1)-δ) We have

==Jlξ_Γ cos

for / in ΔA, which is 0 (/zA *) when

!+*
(6.7) V /Afc

Let us take

(6 8) MfcΞ^, mh

^ and ^ being posit ive integers. (3.3) and (3.10) are evident w h e n b> e+l

(6.4) and (6.7) are satisfied w h e n

(6.9) a (a + 1) > ab.

(6J5) is satisfied for sufficiently large p.

Hence the theorem is proved.

For the general a we remark that, for integral a we use a times the

integration by parts to the α*th Cesaro mean σ» of the Fourier series and use

5> Cordition 2° can, of course, be proved directly, without use of Lemma. , Direct
estimation leads also to (6.7).
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the method of §5, and for non*integral a we use [ α ] times integration by

parts to σ% and the above method. In these case Φ<* (/) does not vanish in

(0, ?r)— U ΔΛ for a > 2 Estimation of terms rising from such part is easy.6)

§ 7, PROOF OP THEOREM 5. We can prove the theorem modifying the

example of theorem 4. We will now show the method of modification for

the; case a = 1. In the example of Theφ&jni 4 m / mn -* 0, but in this case

mkjnk -*0, that is, the length of Δ* is tajkeii Jonger in this case. Therefore

we denote the sequence of intervals by

(7.1) Δk=( —, —

We define an even function by

(7.2) / (u) B MK ck cos Mku (u e Δk)

for k = 1,2, •• and/(«)=sO in (0, π)—\jΔk. When (3.3) is satisfied, (5.2)

holds. When

(7-3) Σ

f ε L,P. Moreover

Φ W = -y- \[/M du = ck{l+o (1)) sin Mkt (t * Δk)

for k =* 1,2, •;• and Φ (/) = 0 in (0, n) - UΔ*. Thus Φ (/) = (? (1) as / -* 0, when

(7.4) ck+0 (A-^oo).

Hence the condition 1° is satisfied.

In order to verify the condition 2°, we consider (5.8). Evidently J =2 o (1).

Hence it is sufficient to show that I -> oo. Now

( l + o (1)) em Mkt sinfμt dt

for « = Mμ.(u — 1,2, •••). Here w e can omit the term 0(1) b y its structure.

Hence

6) Cf. §8. In the case « ^ i , insted of (6.1) uje V p*(»)rf« = O(<a-i/ ) . See Izυmi
Jo

and Sunouchi; loc^ cit.
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dt

dt

say, where

which tends to oo when cμ tends to zero sufficiently showly and

(7.5) n%!mk -> oo, m /ΛΓ* -> 0 (k -> co)φ

Now, concerning 7j,

V ch Γf μ A A cos/ , r ^ Λ/ * cost jj

and so

i Γ ' I < 2 • V fίk

Let (M*) be a convex sequence and

(7.6) Mk^krnk (£ = ί, 2, •••),

then Mμ —- Λί* > (u — /fe) Λ n* and then i/ = ^ (1). Similarly Js' =̂ ? (1). Thus we

get 7 -> oo.

If we take

M* ΞH Λ2^Λ, /̂ Λ ̂  yfel*, #* Ξ 2Λ, α Ξ l/log log £,

then the conditions (3.3), (7.3), (7.4), (7.5) and (7.6) are satisfied. And (Mk) is

convex and. iΔk) is a system of disjoint intervals.

§ 8. PROOF OF THEOREM 6. The case a = 0 is proved in Theorem 3
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Let us first consider the case a = 1. Taking the sequence, of intervals (3.1),

we define an function/(/) by

(8.1) /(/) ΞS j*.- sin Mkt + 3<y cos Λf*/ - <* Af t2 sin M /

in Δ* (jfe= 1,2, •••) a n I / ( / ) ^ 0 in (0, TT) - UAΛ. If we put

sin

then/(/) = {ty (t))r in ΔΛ, dash denoting differentiation with respect to /. We

have

If we suppose (3.3), then

f ι/(/) dt^-Λ

when

(8-2) Σ τ ~ <oc> Σ f ^ <«•

Further, if

(8.3) Mk! mk, Mk I nu are even,

then

t— * A- *

j /{/) dt = ['-jjj- / sin M / f r*/• αwΛf*/]̂  ** "*

Since

( / (u) da = Γ-j^- ιy sin M** 4- ̂  »2 cos MΛ»]

== -jg- / sin Λί*/ + α/a cos Afc/ - Â \-^-

we have
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-jS- / sin Mht -f ckt2 cos Mkt

for / « Δ*, and

for-—^-- -f ^ < / < ~^-. Let us put

^j (/) s* -jg - / sin Af*/ + ^/ 3 cos Λf*/ (̂  € Δ*)

for Λ = 1,2, and gΛ{t) = 0 in (0, π ) - UΔ*

in the interval Δ; = ( - ^ - + ^ - i + -£) (A - 1,2, •••)

/feJ (/) 5 - ^ (τt/tlk) (t t ΔA)

for k = 1,2, .. and kx (ή = 0 in (0, ̂ r) - UΔ*. Then we have

for all / in (0, ?r), and

say.
Let us consider the Fourier series of /(/) and σn be its Cesaro mean of

order 1. In order to get σn = 0 (l/log«), it is sufficient to prove that

σn

Now

say. Substituting (8 4) into Jj,
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say. Similarly we put J2 == Ki + K2' + JSΓs'

Putting first n = Λft, and dividing Kt into three parts, we put

where

L t - jS f S 5 ^ : rfz+ί*^ cosMktsmMkt dt

^ ^ Λ ί Γ l o g V

If the condition (3.10) iβ supposed,

« t \ r̂  Γ * fc cos /1 + ~m) ~ ~W ) —r

In order that L2 =̂ O (I/log M*), it is sufficient that

(8.5)

Similarly estimating as (3Λ1) and (3 12),

(8.7)

Before going to the estimation of ίΓ2> K? and /2, we will consider the
ioji 2° We put
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/* (/)• = jj Φ<t) dt = Γ *, (a) <fe +\'oXί (a) </«

Since

we have

^2 (/) s ^ (/) / / = O (1), and Φ o (1),

when

(8.8) r * - M * Ofe-1,2,")..

Then (8.5) becomes

(8.9) JJ

Let u$? take

(8.10) «sΛί*s

Then the conditions (8.2), (8.3), (8.8), and (8.9) are satisfied. By (8.6) and (8.77,

Lo+ L 2 = O (I/log Λ&).

Thus we get Kλ^O (I/logΛfc). Similarly K{ - O (1

Concering ίC2,

/c,-.(*,</) ίsf

say. We have

logM*/

Thus we have K2 = O (I/log Λf*). ίC3 is also of order 0 (I/log Λfc). For general
n we can estimate similarly as in the last part of §3. Thu§ we have proved
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Theorem 6 for a = 1. For the case a •= 2, it is sufficient t o use

and so on. F o r fractional a such as 1 < a < 2, we have

where jζ(P> denotes a sort of the β-th derivative (0 < β < 1) such that

(/»)<*-i> = ^/n-c*-.])̂  ( S ί n tf/jCrt-D — 0*-isin »/, (cos »/)̂ *> = n«~Λ cos

and

For general aΛ it is easy to write the form of function. Estimation is quite

similar.

Tόhoku University, Sendai.






