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Let F be a closed or an open Riemann surface spread over the z-plane,
then by the Dirichlet principle, it is proved? that there exists a potential
function # (2, 2,), which has a polar singularity at 2z, and a potential func-
tion % (z; &, &,), which has logarithmic singularities at {;, .. In this paper,
I shall prove this theorem and a more general Osgood’s theorem simply by
means of the modified Green’s function defined in §1.

1. Modified Green’s function

1. Let F be an open Riemann surface, which contains z = 0. We appro-
ximate F by a sequence of compact Riemann surfaces F,c F; <---.CF,~>F,
where F, contains z = 0 and the boundary I', of F, consists of a finite num-
ber of analytic Jordan curves. Let g.(2, 0) be the Green's function of F,
with 2 = 0 as its pole and let at z = 0,

gn (2, 0) =log 1/|z] + s (0) + &x(2) (& (0) = 0), (1)
where v, (0) is the Robin’s constant.
Let
M, = N{ex gn (2, 0). (2)

then Heins? proved that
M, —ga(2 0)] SKA) (n=1,2--") (3)
in any compact domain A, which lies outside F,, where K(A) is a con-

stant, which depends on A only.
Hence on I'y,

|M, — 94(2, 0) —log 1/]2|] < K( = const.) n=12-.--), (4)
so that at 2= 0,

My, — . (0) | <K (n=12-.--). (5)
From (3), (4), (5), we have easily the following theorem.
THEOREM 1. [9a (2 0) — 44 (0) | < K(A) @m=12 )

1> H.WEYL, Die Idee der Riemannschen Fliche, Berlin (1923). HURWITZ-COURANT:
Funktionentheorie, Berlin (1929).

2) HEINS, The conformal mapping of simply connected Rxemann surfaces, Annals of
Math., 50 (1949).
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in any comcapt domain A, which does not contain z =0 and for any z in F,
lgn (2, 0) — log 1/]2] — v (0)] =< K|2| n=12...-) (K =const.).
Hence we can find a partial sequence 7, such that

lim (gy.,, (Zy 0) — Yny (0)) =9 (Z, 0) (6)

converges uniformly in any compact domain, which does not contain z = Q,

9 (2,0) is harmonic on F, except at z = 0, where ¢ (z,0) — logl/|z| is harmo-

nic and vanishes.

2. For a closed surface, the following theorem holds.

THEOREM 2. Let F be a closed Riemann surface and z, (+0) be a point of
F and F,=F —Aa where Ay: |2—2| S7n (11 >12> -+ >ry>0). Let
9n(2, 0) be the Green's function of F,, then

lim (9n (2, 0) —9a(0)) = g(z, 0)

and tim (ya (0) — log —}“—)

exist and ¢(2,0) + log 1/|z — 2,| is harmonic at z = z,.
Proor. Let

ltm (9n, (2, 0) — Yn, 0) =9k 0 (D

and in 0< |z— 2| <7, (2 — 2 = re?),

g(2, 0)=log 7 + ay+ X (@r* + a_r~*) cos ké

k=1
+ D (br* + b_yr~") sin k6, (2)
k=1
!
the coefficient of log » is 1, since f —a—g—rde =2r.Letinr, < |z — 2| S,
0

9n (2, 0) — yn(0) = log 7 + af® + X (a§¥7* + a%7r*) cos k@

k=1

+ 2 (57 + bRrt) sin k6. (3
k=1
Then by (1),

vy

lim af ) =
v

ay, lyim o' = @, lim a¥ = a;, lim b5 = by, lvim YR¥=b_y. (4)
Since ga(2, 0) = 0 on |z — 2z} =v Ty '

log 7+ af” = — 4, (0), ai® 7k + ars* =0, b7k + 687" = 0. (5)
Since by (4), af™, b (v = 1,2, ----) are bounded and r,, - 0, we have from

)

lim @™ =a., =0, lim % =b_, =0,
v v

so that
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g(z, 0)=log 7 + ap + E(ak cos k@ + b, sin k@) 7*. (6)
k=1
Hence ¢ (2,0) + log 1/|z — 2] is harmonic at 2, and

lirP(yn,(O) —log 1/7y) = — a,. (7)
Next we shall prove that lim (ga(2, 0) — 4 (0)) exists. For, suppose that

n
the limit does not exist, then we can find two partial sequences #,, m,,
such that

]ijn (g”v(zl 0) - 'y“'y(o)) = gl(z7 0): lim (gm,,(z; 0) - ')’m,,(O)) = 92(27 0)7

9:(z, 0)==g.(2, 0).
Since by (6), g.(2,0) — g«(z,0) is harmonic on F, it is a constant and since
it vanishes at z=0, ¢,(2,0) = g,(2,0), which contradicts the hypothesis.
Hence lim (94(2,0) — yn(0) and so lim (y.(0) — log 1/7,) exists.
3. The following theorem playg an important role in this paper.
THEOREM 3. Let F be an open Riemann surface, which contains z = 0 and
F, > F be its exhaustion, where F, contains z = 0 and T, be the boundary of
F,. Let gu(2, §)be the Green's function of F, with ¢ as its pole and «,(£) be
its Robin's constant.
Let a disc Ay: & — &o| < po be contained in F, (n = ny) and A be a com-
pact domain, which lies outside A, and is contained in F,. Then
(i) |a@) — 7a8o)] = KA)IE —Sol, £ € A (n=mny),
(i) 1gn(2. &) — 9a(2, E0)| = K(Ao, A)IE = Lol ,E € Ap, z€ A (n = n),
where K(Ao), K(Ao, A) are constants, which depend on A, or A, A only.
Proor, Let py < p; < py,

Ci:l€ = &ol=p1, A: 18—l =p1, Co: [ —&ol=ps A | =&l =ps (1)
such that A lies outside C,. Let g(z, {) (£ € Ay) be the Green’s function of
A;, such that

- pi—E =8 (z—&)
g(2, €)= log o = T) . (2)

We put for ¢ € A,

M,(§) = Max 25 D) =908, £0) (¢ € ) (n 2 )

=2l
_ 9z, £) —g(z, o) (3)
M (&) = Max == —¢]
and
ua(2) = Mu(©) — fg:g’u'(f' £ mzn),  (4)
— g(z’ g)'_g(z; g)
w(z) = M) — e

We may assume that M,(¢) =0, since, otherwise, we interchange ga(2, {),
9u(z, &o) and g(z, ), 9(z, o). Since un(2z) = M) =0 on ', and =0on &,
by the maximum principle,
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un(2) =0 in F, — A (5)
Since #(z) — ua(2) is harmonic in C; and at a point 2, on Ci, #a(2)) =0,
#(29) =0, w(2y) — un(2p) =0, by the maximum principle,
Max (u(2) — un(2)) 2 0.
2

Since u(z) = M(£) on C,,
Mcin un(2) < M(L). (6)

From (2), for any ¢ € Ag, |M(&)] = K(A), where K(A,) depends on A, only, so
that

Mpin #n(2) < K(Ao). (7)

In the following, we denote constants, which depend on Ay or A, A only
by the same letter K(Ay), K(Ao, A).
Since ux(z) = 0 in F,, — A,, we have by (7)

lun@)] = | M) — L5 L)=0oe 8 | < ka 0), £ zEA
(n = no). (8)
Hence for z on C,,
M, ©) — 2 (ae 0 — log ;2 —miatotlog | 2 )| S K@0).(9)
gy [T =G\ [ =21 TR 2 — 61| =

Since the left-hand side of (9) is harmonic in C,, (9) holds in C;, so that at
2= {y z2=¢, we have

l M) — & j:ﬂ ( gn(8o, &) — log I?‘E—fol - ')’n(é‘o))
, Mu(&) — l’g}’ﬁ[( (&) — 9a(€, Lo) + log IC:LE;O \ = K(Ay).

Hence adding and subtracting each other, we have

= K(Ao), (10)

= K(A),

_ &) — yal&o)
| M)~ 2=

YalE) = yn€o) —2'7"(50) - ( gu(&, £0) — log ¢, _1 7 ')’n(é'o)) ] = K(A)IE—El. (A1)
Since by Theorem 1,
= K(A)|E — &l (n 2 no),

9n(&, o) — log ]Z%Col — ¥a(&0)

we have
[yal€) — ya(8o)| < K(ADIE — &ol (n = ny), (12)
so that from (10), |M.(&)| < K(A,), hence from (8),

lgﬂ(zi g) - gﬂ(zy ;0)] g K(AO: A)I': - gol, g € AO: RE A (n 2 nﬂ)- (13)
Hence our theorem is proved.
4. Let Ay, A be two compact domains on F, which have no common
points and Ay < F,, AT Fy (5 = 1y).
By Theorem 3 and Borel’s covering theorem; we can prove easily that for
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any € >0, there exists 8 = 8(&, Ay, A), which depends on & A, A only,
such that for any 2 € A, |ga(z, §1) — galz, §2) | < &, if |81 — 84l < 8, Ti€A,
& € Ay (m=m,) and for any £ € A,,

lgn(z1, ) — gn(2s, OI <8 if |z, —2] <8, 2,€A, 2.€ A (n=ny),
so that

lgn(z1, €1) — gu(22, &) < 26, if |2, — 2, < 8, |1 —&:] < 8 (m=my).
Hence

Pu(z, §) = gnl(z, §) — va(0) (n = my) (1)

is equi-continuous for z € A, £ € Ay. Since by Theorem 1, g.(2, &o) — ¥a(&0)
is uniformly bounded in A, ya({o) — ¥a(0) and ga(z, &) — 9n(2, &) are bounded
by (1), Pu(z,{)(n =1, 2, --..)isuniformly bounded for z € A, & € A,. Hence
by Arzeld’s theorem, we can find a partial sequence #, such that

lim Pz, £) = lim(@nz £) = 7a0) (2)

uniformly in z € A, & € A;. From this, we can prove easily that we can find
a partial sequence, which we denote »,, such that for any fixed & on F, (2)
converges uniformly in z in any compact domain, which does not contain
¢ and for any fixed z on F, (2) converges uniformly in ¢ in any compact
domain, which does not contain z. Hence if we put

lim (92, &) — va,0)) = g(z, &), (3)

then for any fixed &, g(z, £) is a harmonic function of z at z (3= ) and for
any fixed 2z, g(z, ) is a harmonic function of ¢ at & (=%z).

Let U: |z2—8| Sp, V: | — &) <p be a neighbourhood of §, and we
put forze U, ¢ €V,

n(z, &) = log Tz—-l-ﬂ + 7a(0) + Vu(z, &), (4)

then vYr,(z, &) is a harmonic function with respect to each variable in z € U,
fe€V. Since on [z—&l =p, [§—&l =p ( >0p)

lim (2, £ =¥ ) = o(e, £) —log ;2 )

uniformly, (5) converges uniformly in z€ U, £ € V, so that Y(z, §) is a
harmonic function of z in U for a fixed { € V and is a harmonic function
of £ in V for a fixed z€ U. Since gn(2, &) — ¥1,(0) = 9n (L, 2) — ¥4 (0), we
have g(z, £) = 9(¢, z). Hence we have proved the following theorem.

THEOREM 4. Let F be an open Riemann surface and F, > F be its exhaus-
tion, where F, contains z = 0 and g.(z,{) be the Green's function of F, with {
as its pole. Then there exists a partial sequence n,, such that

lim (92, &) — ¥a(0)) = g(2, §) (9(z, &) = g(&, 2))
(for a fixed §) converges uniformly in z in any compact domain, which does not

contain & and (for a fixed 2z) converges uniformly in & in any compact domain,
which does not contain z. Hence for a fixed &, g(z, §) is a harmonic function
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of 2 at z (%) and for a fixed z, 9(z, §)is a harmonic function of  at & (%z2).
Let U: 1z—=&l <p, V: | — &l < p be a neighbourhood of £, and for 2z€ U,
teV, let

9(2,£) = log leﬁ + ¥z ),

then for a fixed & € V, Y(z,&) is a harmonic function of z in U and for a
fived z € U, Y(2,£) is a harmonic function of & in V.

We shall call g(z, {) the modified Green’s function of F with { as its
pole. In the following, ¢(z,¢) denotes always the modified Green’s function.

2. Potential functions with two logarithmiec singularities

We shall prove

THEOREM 5. Let F be an open Riemann surface and £,, &, be two inner
points and put
g(Z; Cl; gz) = _Q(Z, §17 ) - g(z7 gl)

Then g(z;8,, &) is harmonic on F, except at &, §,, where

9(z;81,80) — logIT__lZi is harmonic at &,,

9(z; 8, 8) + IOgTz——_lé‘TI is harmonic at &.,.

Let T' be an analytic Jordan curve, which contains §,, . in its inside and
I(F) be the part of F, which is contained in I". Then the Dirichlet integral
of g =9(z;&,, &) in F— I(F) is finite, such that

) 29
Di-rml9l = fg S ds,
s

where v is the inner normal of I" and ds is its arc element.

Proor. Since the first part is evident, we shall prove the second - part.
Let F,>F be the exhaustion of F, where F, contains the inside of I" and
I, be the boundary of F,,. We put

gn = 9a(Z; &1, §2) = (9n(2, §1) — ¥n(0)) — (gn(2, &2) — va(0)), ¢
then

lim gu, (2581 82 = 9(2,§0) — 9(2, &) = 9(z3 §1, £a). 2)
Since g, = 0 on I';, we have
9Yn
Dp,-rplgal = f In 79% ds,

I
so that

Drp-vnlg9nl1 < [9n %!Z,',” ds (m < n).
r
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-Hence if we make 7% = n,—»o0 and then m-»oo, we have

Dr-rpl91 s fg A q.e.d.

REMARK. If F is a closed surface, we take off a point 2z, (%&;, ®=&,) from
Fand put F' = F — (25) and for the open surface F', we construct g(z; §y, &),
then since the Dirichlet integral of g(z;{;,¢,) in the neighbourhood of z, is
finite, ¢(z; &1, &.) is harmonic at z,. Hence there exists a potential function
on F, which has logarithmic singularities at ¢, {..

In the following Theorem 6 and 7, we assume that F is open and though
we do not repeat the same remark, if F is closed we make the same
modification to establish the existence of a potential function with the
prescribed singularity. »

THEOREM 6. Lot F be an open Riemann surface and &, &, be two inner
points. We connect ¢,,¢, by an analytic Jordan arc C and put

hfz;{z,é‘z)=fag(z f)ds f ag(z,é’) ds,,

0
where v is the normal of C at &, which is obtamed from the direction of ds
by a rotation of an angle — n/2 then h (z;8:,¢,) s harmonic on F, but is
many valued, such that

h(z;¢&,,8,) — arg(z — &,) 1s harmonic at &,

h(z;&,8,) + arg(z — &) is harmonic at &..
Let T be an analytic Jordan curve, which contains §,, &, in its inside, then
the Dirichle! integral of h=n(z;¢,,&,) in F —X(F) is finite, such that

Drrah] < f noh ds

Proor. For a fixed z€ F—C, let k(z, {) be the conjugate harmonic
function of g(z, ), then

2 ]
e tto=[ ot ds= [ dhet)= ety — wa b M
5} s
Since by Theorem 4, 9y(z,&)/9v is a harmonic function of 2z, h(z;{,&,) isa
harmonic function of 2z, except at £,,{,.Let U:|z—&| Zp, VI —-Cl =Zp
be a neighbourhood of &, and for z€ U, £ € V, put

92, ) = log | L) + ¥z D)

then by Theorem 4, Y(2,¢) is a harmonic function in each variable. Let ¢,
be the first point of intersection of C with | — ;| = p, when we proceed
from &, to &, on C and let C, be the part of C, which is bounded by ¢, and
¢ and C, = C — C,, then
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h(zigl’ &)= faggj;’ Z dsf: fégg; z:) ds§+ f g(az;/g) dss'
[ C2

(41

~ arg(e—t)—arge—t) + [P0 aser [HED s, 2

C1 C2
Since the three terms other than arg(z — ;) on the right hand side of (2)
are harmonic at §;, h(z;&,, §.,) —arg(z —¢&,) is harmonic at ;. Similarly
hz; &, &) + arg(z — &,) is harmonic at ¢,. Now we divide C into N arcs of
equal length As and &, (=0,1,----,N) (§ =¢&,, Er =&, be the point of
division and ¢ be a unit vector at &, which is orthogonal to C and put

i0L) __
= ul(z,8) = 2 (2, & + e *) 9z E) As (5 >0), (&)
k=1
then
13‘133; }\i,gi ]éi;g u"yy = fQL(aZ:;gl dS{ = h(z 3 é‘h ;2) (4)

c
Since #Y =0 on I',, we have

N N ouy
De,-rerluy 1< | u, S ds (m < m),

so that if we make succesively §>0, N>co, # = n,>00, m—->o0, we have

Drrnlh]=< f /2 *g% ds, q.e.d.

3. 0sgood’s theorem
THEOREM 7. Let F be an open Riemann surface and a schlicht disc F,:|z] < R,
be contained in F and let F,:|z2| S R (0=R < R)). Let f(z) = 21:1 /2"
be regular for|z| > R, and

Uz) = R(F(2) = 2 a cosk(-?r:- by sinkd (2 = re'®),
Then .
S 1 o*g(z,0) 92,0\~ .. .

conver ges uniformly in any compact domain, which lies outside F,, hence u (z)
is harmonic in F — F, and u(z) can be continued harmonically in F,, such that
u(2) — U(2) = V(z) is harmonic in F;. Let I" be an analytic Jordan curve, which
contains F,, then the Dirichlet integral of u(z) in F — I'(F) is finite, such that

D

3kg(z, 0) _ a"gcz, [P) ] o%g(z, 0D [a"gcz O

ok otk -Iay ofk-Iaq ((=E+ind-
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ou
Drrmlul= f u 5, ds.

That such a potential function exists (except the finiteness of the Dirichlet
integral) was proved by Osgood. ¥
Proor. Let for z€ F,, £ € F;,

0@, 8) = log 72y + ¥z, 8),
then Y(z,¢{) is harmonic in z € F;, {€F,

Since
F 1 — (k—1)lcos ko
[ &8 72 o
=0
1 k—1)! k .
[y ons Ly | = =22 =i,
¢=0
if we put
s 1 d*g(2,0) 99(2,0) )
u(z) = 1:2=1 = 1)!(alc oE* + b OE"-15y (1)
w1 %Yz, 0) 2"z, 0)
Viz) = Z(k — l)l(ak’ oF* + b €10y ): 2)
then
u(z) = U(z) + V(2). (3)

We shall prove that V(z) converges in F; uniformly.
Let | ¥ (2, £)] <K in |z2| =R, |{| <R, then for |z| <R,

W0 _ RIM | DWz,0)| _ EIM
s |G| s R’ @

where M is a constant. SinceZ:Elk( las| + |b:])/RE < o0, V(z) converges

uniformly in F;, so that #(z) — U(z) = V(z)is harmonic in F;. Let A be a
compact domain in F — F;, then A lies outside a certain disc F: || <R
(Ry< R< R,) and

l9(z, )] = K(A), z€A, L€F'. )
Hence for z € A,

i 2%(2,0) I k'M '8’09(2,0) l k'M
op |= T

hence %(z) converges uniformly in A, so that is harrnomc in A, hence u(z)
is harmonic in F — F,. Let I"' be an analytic Jordan curve, which contains
F, in its inside. Let F,—>F be the exhaustion of F and g.(z,&) = 94(2,&,7)
(& = & + in) be the Green’s function of F,. We put for 3 >0,

4) W.F.0sGooD, Lehrbuch d. Funktionentheorie II,, Leipzig u. Berlin (1932).




EXISTENCE OF A POTENTIAL FUNCTION ETC. 63

Atgn = A*ga(2,0,0) = 9u(z, k3, 0) — ( & )outz, (& —1)3,0)

+ (5 )onte, k=28,0— - £002,0,0,  ©)
A¥ga = A¥Y(gn(2,0, 8) — gn(2,0,0)),
then )
AFgn _ O%gn(2,0) s Abgn _8"g,,(z, 0
gl)lgl 8" - afk 3 %Ll(')n Blm - afb— 18,'7 . (7)
We put
< 1 AFg A In
un = un(z, 8= E(T:m(ﬂk 8’““ + b Sl,c ) ®
k=1 *

Since #Y¥ =0 on I',, we have

Dsp-renuil < f uy

ouy
3 ds (m < n).
If we make successively §-50, # = m->o0, N->co, m-»co, we have

DF-I‘<F)|:u:|<fu—‘ ds, q.e.d.

4. Potential functions with polar singularities

1. Let F be an open Riemann surface. If we put

ue)= PUED wy= — BIED =gy,

oF oF* 1oy
then by Theorem 7, #(z) and ©(z) have singularities
_ 1 _ (k—=1)!cos kg
(B—1IR G—¢F = e R
~ 1 —(k—1) !sin k0 ;
k=13 ot = = ’),,c Sin , @—¢& = re)

at z =¢. Let 7'2(2) T, X(2) be the analytic functions of z, whose real parts are
w(z), v(z) respectwely, such that

@=L i), = - IEL) i), &

Let a be an analytic Jordan curve on F, which is not homotop null, then by

Theorem 6,
wa(2) = 51 f 2086 g, @

o
is harmonic on F, but is many valued, such that

f dog(?) = 1, 3)

r'y
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where &’ is an analytic Jordan curve, which connects a point of & on one
shore to the corresponding point on the opposite shore, the direction of v
being so chosen, that if we rotate it by an angle 7/2, it coincides with the
direction of ds;.

Let w.(z) be the analytic function, whose real part is w,(z), such that

wil®) = 5 [ X as i) R [aw@ =1 @

For a fixed 2, let V() be the analytic function of ¢, whsoe real part is
9(z,&), such that _

Yo(§) = g(2,§) + & ). )
Let 2z, be a fixed point of F and we connect z, to a point 2 by an analytic
Jordan arc C and let

ov

hit) = f 20D gs,  (Ez, = 2), )
where we integrate on C and » is the normal of C at #, such that if we
rotate it by an angle 7/2, it coincides with the direction of ds..
Let V&) be the analytic function of ¢, whose real part is k),
such that

v = [P asric ), @)
Then we can prove easily the following relations. »
THEOREM 8.
d7dz) \ _ of dTUE) \ of dTHR) \ _ o dTHE)
m( a2 )_m< ace ) “’( a2 )“ER(’ ac ) o
dri@ \ _ of ETHE) \ «f dT@) \ _ '+ ()
(L) = 5(5 ) (L) = 5(SE) )
f dr8) = 2mi R d‘";’;fZ) , f dr;k(t)———znis(#%zl : I
% (r3(2)) = m(%) RCri@) = S -‘Lkd"f’g%f? ) (D)
3 [ @) = Serge) ~ et = D), l
” | av)
3( i dr®) ) = @) — e = (L), s

5> WEYL,lc. DD p. 112-113.
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Proor. By (1),

d' l l+7r Ol+k
ﬂt( (;-245(2) >= - xfggé) ’ (d;é(‘;))“ Ez(aaIZ) (2= x+ 1y, {=E+in).
Since ¢(z,&) = g(&,2), we the

aiT(§) )
5’*(‘ dz’ - a )
Similarly we can prove other relations of (I).
From (4) and ¢(z, &) = g(£,2), we have

[2 (P20 [2(T0 oo £320). o

9%E.2)
ox®

Since

+i( ) = 7L,

the left-hand side of (8) is equal to *i f dr(¢), hence
&

f dr¥(¢) = 2mi% -d—k’é’;f"')—).

Another relation of (II) and relaticns of (III), (IV) can be proved similarly.

5. Riemann-Roch’s theorem

By means of Theorem 8, we can prove easily 'the following Riemann-
Roch’s theorem.
THEOREM 9. Let F be a closed Riemann surface of genus p=1 and

»11 pm

r s
(m, >0,m,>0) be adivisor, m= > m,— >mn, being ils

D = n L
Gt 0% s¢ v=1 r=1

total order. Let B bde the number of (in the complex sense) linearly

independent differentials on F, which are multiple of d and A be the number

of (in the complex sense) linearly independent one-valued analytic functions

on F, which are multiple of 1/d, then
A=B+ (m+1-—Dp).

Proor. Let p, lie on z={, and g,lieon z=2,. If {, or z, be abranch
point of F, the differentiation in the following means that with respect to
the local parameter. Let z, be a point of F, which is different from ¢,,
z,. Wetake off 2, from F and for the open Riemann surface F’= F— (z,),
we consider the modified Green’s function g(z, ¢) and other potential functions.

Then by Theorem 1, 9(z,¢{) has a logarithmic singularity at z, and by
the remark of §2, 7(2), 7/(z) are regular at z, Let f(z) be a one-valued
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analytic function on F, which is multiple of 1/9, then f(z) can be expressed
in the form:

F@=lar} @)+ Brt@ + - + Al @) 4 BarP(@I+ (@), (1)

where a¥, B¢ a, barereal constants. Let a,, -- - -, @, be a set of canonical

ring cuts of F, which makes F into a simply connected surface. We put
wi(2) = wa,(2), where w, (2) is defined by (4) of §4.

Since f(2) is one-valued, we have f df(z) = 0, so that by Theorem 8 (II),

an
S oo (€D ) | goo( Gwa&) AYELTA(9)
gi“**( 260 )+ (D)o e, (L)

ra3( ) <0 m=12.2). @
Since f(z) is a multiple of ¢f*---- q¥,
Srery (2) + BREE @) + - + an Repa) +8;, R+ a =0, |
v=1 ’(3)

[
ZEa Ny (@) + B (@) + - + @y, Jr(z)) + By PRI+ 6 =0, }
r d'rl (24) a"’T’l(z ) diT(2u)
v g" * v { ® v { _
Slan(—gi ) e( g )+ v )
v 'mv(zu) 5
+ B )| =0,
yre
ST e [ [
E[ald (7;‘;—)—'_ ) (- dz’° ) '+al"””‘j<~d—zﬁ_—)
dk"r;mv(z#)
+ BN = 0.
“5( dz" ”

(u = 1’2, ce eS8 k= 1}2....”} —_— 1).
By Theorem 8 (I), (III), (IV), (3),(4) can be written in the following forms
(3), (@), where we normalize, such that

ns('rg(zu) = 0, ,\5('7' (z(,) =0 wv=12----,7: k =.1, 2, -, m,).
v dWh(gv) v dwh(gv) d wh(;v)
VZI[MR( )+/3o o )+ +ar R - aem )

+ B 3(- ) N 0. @
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S ) g g(ﬂ‘dgﬁ) 4o ta §R< szgx(c»)

=~ a,
AT

. 3)
awr (gy) dvr m ary, (§V) ‘
dm""l’z v)
+ ,8,”,,”3( . d;'"':(;‘ }Lb:o,
ar; (§) dr; (£ (e
-t [ ( dé‘,, ) BI’\ dg;**' + i + am;}t( dé‘nlv my
dmrk (&,
- Bfny3(~“—;gtfg) |=o,
Y “@)
N () o ATEED s o ATED
z[alg}e( dz‘,, ‘) + By\S( dé',, > T a"lvm( dé—m -
(L
8.3 ( dg'm ] =0
(h=12,----2p;=12,----,5;k=1,2, - n, — 1).
2),(3),(4) is a system of homogeneous linear equations for 2<2m + 1)
unkown quantities @, 8¢, a,b (v =1,2----,7;i=1,2----,m,). VLet R be the

rank of the matrix (%) formed with the coefficients, then the system has
(in the real sense)

A = Z(Zlm + 1) R )

linearly independent solutions, A’ is the number of (in the real sense) linearly
independent one-valued analytic functions on F, which are multiple of 1/b.
Let () be the transposed matrix of (%), then (W) has the rank R. Hence
the following system of homogeneous linear equaltions (7), (8), (9) with the

coefficients matrix (W) for 2 (Z Ny, +ﬁ> unknown quantities a@,, &, b, ¢,
¢t (h=1,2,----,2p;0=1,2,----,5;k=1,2,----,;, — 1) has (in the real sense)
B =2(Zn.+ p) —R ©6)
=1
linearly independent solutions.

§ o d z;gaé‘v) ) ; [ BR d‘\l:;{,,&&) " ER( dw;g A(Cv) ﬂ

+ 25 (I, cm(_":ﬁfl)]ﬂ e

m=1k=1
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-- P pECIE SR

wv=12----, r;n=1,2,----,m,). 8)

> b.=0, S =0. 9
m=1 =1 !

From (7), (8), we have

Lo dw) <[, V) dVE)
% a;, dé‘)\ + M’Z[bﬂ dél,): +bM —_— dg\ —«‘J
s nu-1 dATI;: (:v) N a’r I.(é'v)
- P [ L S T J“O
=12, r;a=12----,m). (10)
By Theorem 1 and (9), we see that the differential
ayr. d )
dv(§) = [2 @ — dw,,(é,’) + 2( ¥ "(g) b, - v’ (: )+
L dT,,. (:) dT;’;(C)
22( e %_fw]@ an

p=lk=1
is regular at z, and from (10), we see easily that dv({) is a multiple of b,
Hence B’ is the number of (in the real sense) linearly independent differen-
tials, which are multiple of b,
From (5), (6), we have

A =B +2m+1-—p), (m = 2 m, — 2 n,L>. (12)
v=1 =1
Let A be the number of (in the complex sence) linearly independent one-valued
analytic functions, which are multiple of 1/d and B be the number of (in
the complex sense) linearly independent differentials, which are multiple of
b, then we can prove easily® A’ =2A, B’ =2B, so that
A=B+0m+1-—p).

Hence our theorem is proved,
We remark that, since A’ is even number, we see from (5), that R is
an even number,
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6) WEYL,Lc. 1) p.99.





