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Let F be a closed or an open Riemann surface spread over the 2-ρlane,
then by the Dirichlet principle, it is proved0 that there exists a potential
function u(z, z0), which has a polar singularity at z0 and a potential func-
tion u (z; ζΊ, ζ2), which has logarithmic singularities at ζl9 f2. In this paper,
I shall prove this theorem and a more general Osgood's theorem simply by
means of the modified Green's function defined in § 1.

1. Modified Green's function

1. Let F be an open Riemann surface, which contains 2 = 0. We appro-
ximate F by a sequence of compact Riemann surfaces Fo cz Fi c c:Fw->F,
where FQ contains 2 = 0 and the boundary Vn of Fn consists of a finite num-
ber of analytic Jordan curves. Let gn(z, 0) be the Green's function of Fn

with 2 = 0 as its pole and let at z = 0,

gn(2, 0) = log 1/\z\ + Ίn(0) + εn(2) (fin(0) = 0), ( 1 )

where γΛ(0) is the Robin's constant.
Let

Mn = Max gn(z, 0). ( 2 )
Γo

then Heins J ) proved that

\Mn~gn(z, 0)| ^K(A) (Λ = 1, 2, ••••) ( 3 )

in any compact domain Δ, which lies outside Fo, where K(A) is a con-
stant, which depends on Δ only.

Hence on I\,

\Mn-9n(z, 0 ) ~ l o g 1/|2| | ^K(= const.) (n = l,2, ••••), ( 4 )

so that at 2 = 0,

| M . - 7 » ί 0 ) | ^K (Λ = 1,2, . . ). ( 5 )

From (3), (4), (5), we have easily the following theorem.

THEOREM 1. | gn (2, 0) - y» (0) | ^ K(Δ) fn = L 2, )

1) H.WEYL, Die Idee der Riemannschen Flache, Berlin (1923). HURWITZ-COURANT:
Funktionentheorie, Berlin (1929).

2) HEINS, The conformal mapping of simply connected Riemann surfaces, Annals of
Math., 50 (1949).
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in any comcapt domain Δ, which does not contain z = 0 and for any z in Fo

\gn(z, 0 ) - l o g l/\z\ - γ . ( 0 ) | ^K\z\ (n = 1,2, •• ••) {K = const.).
Hence we can find a partial sequence /v such that

Urn {gnv (z, 0) - γ*, (0)) = ^ (2, 0) (6)

converges uniformly in any compact domain, which does not contain z = 0.
#(2,0) is harmonic on F, except at z = 0, where <7(z,0) — logl/ |z | is harmo-
nic and vanishes.

2. For a closed surface, the following theorem holds.

THEOREM 2. Let F be a closed Riemann surface and z0 (=f=0) be a point of
F and Fn= F — ΔΛ, where Δ w : |2 - 20 | <; rM (rΊ > ra > > r»->0).
#w(2, to) be the Green's function of Fn, then

l im (flrn (2, 0) - 7n (0)) = 9 (z, 0)
n

l im(γ w (0)-log -^-

# (z, 0) + log 1/1 z — zQ I is harmonic at z = 20.
PROOF. Let

lim ^ (2, 0) - y„„ (0)) = 9 (z, 0) ( 1)
V

and in 0 < |2 — zo\ < ri, (2 — z0 = rβ?β),

y (2, 0) = log r + a0 + 2 ί^r* + ^-fcr-fc) cos ̂ <9

+ *-*r-*) sin *Λ (2)

the coefficient of log r is 1, since / -^rdθ = 2τr. Let in rΛ ^ |2 — 20 | ^ ru

J 0

9» (*, 0) - γ» (0) = log r + α "̂1 + 2 i«S°»* + dίίr-*) cos A0

+ 2 ( » ? V + 6?ίr~») sin *0. (3)

Then by (1),

lim dΓ = flo, lim αiBl" = <%, lim αc_¥ = β-t, lim ft?" = fc, lim ftiS)=A_*. ( 4 )
r ι/ r v v

Since #«(*, 0) = 0 on \z — 2y | = rn,

log r , + 4 W ) = - <γn (0), flie) r\ + β?S r ί * = 0, bPrϊ + b<Άrϊ* - 0. ( 5 )

Since by (4), a%v\ bίnv> (v = 1,2, ) are bounded and rnv -> 0, we have from

(5),

lim afX = β ^ •= 0, lim b^ = ^. fc = 0,
V V

so that
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g(z, 0) = log r -f a0 + 2( Λ & c o s *# + ̂ * s i n *0) **• ( 6 )
fc-l

Hence g (2,0) + log ll\z — zo\ is harmonic at z0 and
lim( 7 n μ (0) - log l/rnv) = - a0. ( 7 )

Next we shall prove that lim (gn(z, 0) — γ n (0)) exists. For, suppose that

the limit does not exist, then we can find two partial sequences nv, my,
such that

lim {gn£z, 0) - 740)) = gx{z, 0), lim (gmv(z, 0) - γ^ίO)) = g2(z, 0),

Since by (6), g^z, 0) — £2(*> 0) is harmonic on F, it is a constant and since
it vanishes at z = 0, #i(2,0) Ξ= g2(z, 0), which contradicts the hypothesis.
Hence lim (gn(z, 0) - 7n(0) and so lim (7n(0) — log ljrn) exists.

n n

3. The following theorem plays an important role in this paper.
THEOREM 3. Let F be an open Riemann surface, which contains 2 = 0 and

Fw -> F be its exhaustion, where Fo contains 2 = 0 and Tn be the boundary of
Fn. Let gn(z, ζ) be the Green's function of Fn with ζ as its pole and yn (ζ) be
its Robin's constant.

Let a disc Δ o : \ζ — ζo\ SPo be contained in Fn in > n0) and Δ be a com-
pact domain, which lies outside Δo and is contained in Fn. Then

( i )
(ϋ)

where ϋΓ(Δ0), K(Δo, Δ) are constants, which depend on Δo or Δo, Δ only.
PROOF. Let po< pι< p2)

C x : | r — ro|=Pi, Δ n i r - r o l S P i , C 2 : | f - f o | = f t , Δt. I C - f o l S p * ( 1 )
such that Δ lies outside d . Let g (z, ζ) (ζ € Δo) be the Green's function of
Δ2, such that

We put for ζ € Δo,

= Max —-—y—ry—ft — (ζ

( 2 )

and

= Mn(ζ) - ^ ^ ' - f ^ I f j 2 ' ?j) (" ̂  «»λ ( 4 >

We may assume that Mn(g) ̂  0, since, otherwise, we interchange #M(2, ?),
9n(z, go) and ^fe g), giz, ζ0). Since «n(^) = Mn(ζ) > 0 on Γ n and ^ 0 on C,,
by the maximum principle,
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un(z) > 0 in Fn - Δι. ( 5 )
Since u(z) — un{z) is harmonic in C2 and at a point z0 on d , w»(2u) = 0,
«(20) ^ 0, u(z0) — wn(z0) ^ 0, by the maximum principle,

Max (u(z) - un(z)) > 0.

Since ^(2) = M{ζ) on C2,

Min ww(2)gM(f). (-6)

From (2), for any ζ € Δo,
that

; #(Δo), where K(A0) depends on Δo only, so

Min un(z)^K(Ao). ( 7 )

In the following, we denote constants, which depend on Δo or Δo, Δ only
by the same letter K(AQ), K(AO, A).

Since un(z) > 0 in F» - Δi, we have by (7)

I u»(z)\ = I Mn{ζ) -
1

Hence for z on C2,

? € Δo, z € Δ

(«>«„)• (8)

\Mn{ζ)~ 9n{z' ζ)~ l o g " k = T Γ - ^ z ' \z -
- ( 9 }

Since the left-hand side of (9) is harmonic in C2, (9) holds in C2, so that at
z = ζ0, z = ζ, we have

MJX) ~ | f-£~£J { ffniζo, ζ) - log ^ ^

1 / 1
Mn(ζ) —' ιγzΣΎ~\ ( 7»(f) ~~ #»(?» £o) + l°g I f~H

Hence adding and subtracting each other, we have

^ - I ffn(ζ, ζθ) - lOg

(10)

;ΛΓ(Δo)ir-roi ( I D

Since by Theorem 1,

7n(ζ, ζθ) ~ log '\ξ~IΓξ~\ ~~ Vnβ

we have

\yn(ζ) - yn(ζo)\ S K(Ao)\ζ - ζo\ (n > n0), (12)

so that from (10), \Mn(ζ)\ ^K(A0), hence from (8),

\9n{z, ζ) — ̂ Mfe ζo)\ S XΪΔo, Δ) |? - ζo\, f € Δo, z € Δ (« ^ Wo). (13)
Hence our theorem is proved.

4. Let Δo, Δ be two compact domains on F, which have no common

points and Δo ci F», Δ c: Fn (n > no).
By Theorem 3 and BoreΓs covering theorem; we can prove easily that for



58 M.TSUJI

any 6 > 0, there exists δ = 8(6, Δo, Δ), which depends on 6, Δo, Δ only,
such that for any z £ Δ, \gn(z, ζι) - 9n(z, ζύ I < £, i f lfι - ?«l < δ, ξΊ€Δo,
f2 € Δo ί» ^ Wo) and for any ζ € Δo,

\gn(zi, ξ) ~ <7«fc, ?)| < 6, if |zχ - s s | < δ, Zj € Δ, z2 € Δ (w ̂  n0),
so that

l*.(*i, fi) - 9n(z2, f,)| < 26, if \zλ - z2| < δ, Id - ?,| < δ (Λ > Wo).

Hence

<Pn(z, ζ) = ^fz, f) - 7,(0) (Λ > Wo) (1 )

is equi-continuous for z € Δ, ζ* € Δo. Since by Theorem 1? gn(z, ξΌ) — 7n(ζΌ)
is uniformly bounded in Δ, 7n(ξΌ) ~ 7»»(0) and gn(z, ζ) — gn(z, ζ0) are bounded
by (i), <Pn(z, ζ) (n = 1, 2, ) is uniformly bounded for z € Δ, ζ € Δo. Hence
by Arzela's theorem, we can find a partial sequence wv, such that

lim ψnv{z, ζ) = l im(^fe ?) - 7^(0)) ( 2 )

uniformly in z € Δ, ζ € Δo. From this, we can prove easily that we can find
a partial sequence, which we denote nv, such that for any fixed ζ on F, (2)
converges uniformly in z in any compact domain, which does not contain
ζ and for any fixed z on F, (2) converges uniformly in ζ in any compact
domain, which does not contain z. Hence if we put

lim (gφ, ζ) - 7«,(0)) - g(z, ?), ( 3 )
V

then for any fixed ζ, g(z, ζ) is a harmonic function of z at z ( Φ f) and for
any fixed z, g(z, ζ) is a harmonic function of f at ζ (Φz).

Let £/: \z — ζo\ <:p, V: \ζ — ζo\ <.p be a neighbourhood of ξΌ and we
put f or 2 € *7, ? € V,

gn(z, ζ) = log

then ψ'wfe ζ) is a harmonic function with respect to each variable in z € U,
ζ€V. Since on \z - ζΌI = P, I? - (Γol = Po ( >p),

lim ψ ̂ β , ?) - ψί«, ?) = ί<*, ?) - log r - ^ T (5 )

uniformly, (5) converges uniformly in z € U, ζ € V, so that ^(z, ζ) is a
harmonic function of z in U for a fixed f € F and is a harmonic function
of ζ in V for a fixed z € ί7. Since ^ ( z , f) - 7 ^ 0 ) = gnv(ζ, z) - Ύn£0), we
have ^(z, ζ) = gf(̂ , z). Hence we have proved the following theorem.

THEOREM 4. Let F be an open Riemann surface and F« -> F be its exhaus-
tion, where Fo contains z = 0 and gn(z, ζ) be the Greens function of Fn with ζ
as its pole. Then there exists a partial sequence nv, stick that

lim (gnv(z, ζ) - 7wi,(0)) = g(z, ζ) (g(z, ζ) = g(ζ, z))
V

(for a fixed ζ) converges uniformly in z in any compact domain, which does not
contain ζ and (for a fixed z) converges uniformly in ζ in any compact domain,
which does not contain z. Hence for a fixed ζ, g(z, ζ) is a harmonic function
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of z at z ( Φ ζ) and for a fixed z, g(z, ζ) is a harmonic function ofζatζ (=$=2).
Let U: \z — ξΌI ^ P, V'\ \ζ — ζo\ ̂  p be a neighbourhood of ζ0 and for zζ U,
ζev, let

then for a fixed ζ € V, ψ(z,ζ) is a harmonic function of z in U and for a
fixed z € U, ψ(z, ζ) is a harmonic function of ζ in V.

We shall call g(z, ζ) the modified Green's function of F with ζ as its
pole. In the following, g(z, ζ) denotes always the modified Green's function.

2. Potential functions with two logarithmic singularities

We shall prove

THEOREM 5. Let F be an open Riemann surface and ξu ζ2 be two inner
points and put

gift ζi, ζi) = 9(z, ζi,) - g(z, ?*).

Then g(z\ζ\,ζ*) is harmonic on F, except at ζΊ, f2, where

g(z ?i, ζ2) — logϊ-—y-i is harmonic at ζh

9(2 ζu ?s) + logi^ _ » I is harmonic at ζt.

Let Γ be an analytic Jordan curve, which contains ζlt ζ2 in its inside and
Γ(F) be the part of F, which is contained in Γ. Then the Dirichlet integral
of g = g(z ζl9 ζ2) in F- T(F) is finite, such that

Γ

where v is the inner normal of Γ and ds is its arc element.

PROOF. Since the first part is evident, we shall prove the second part.
Let Fn->F be the exhaustion of F, where Fo contains the inside of Γ and
Γw be the boundary of Fn. We put

gn = gn(z ξl9 ζ2) = (gn(z, r o - 7 l l (0)) - [gn(z, ζ2) - Ύn(0)), (1)

then

lim g»v (z ζh ζr) = g(z, ζx) - g(z, ζ2) = g(z ζl9 ζ2). (2)

Since gn = 0 on ΓM, we have

J ov
Γ

so that

ΛF-W-ΓCF£#«I1 < Γgn ^ f ^5 (m < n).

Γ
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Hence if we make n = nv^<χ> and then m->oo, we have

9 ϊfrds. q. e. d.

r
REMARK. If F is a closed surface, we take off a point z0 (=f=ξΊ, =*=£2)

F and put F' = F - (20) and for the open surface F, we construct g(z; ζl} ζ2\
then since the Dirichlet integral of #(z ζΊ, ζ2) in the neighbourhood of zQ is
finite, g(z; ζ1} ζ2) is harmonic at z0. Hence there exists a potential function
on F, which has logarithmic singularities at Ci, £2.

In the following Theorem 6 and 7, we assume that F is open and though
we do not repeat the same remark, if F is closed we make the same
modification to establish the existence of a potential function with the
prescribed singularity.

THEOREM β. Let F be an open Riemann surface and ζly ζ2 be two inner
points. We connect ζ1} ζ2 by an analytic Jordan arc C and put

- j —&r ^ - J ~"
0 t>

where v is the normal of C at ζ, which is obtained from the direction of ds
by a rotation of an anφe — τr/2 then h (z ξ\, ζ2) is harmonic on F, but is
many valued, such that

h{z ζl} ζ2) — arg(z — ξτ) is harmonic at ζ1}

h(z ζΊ, ζ2) 4- arg(2 — ζ2) is harmonic at ζ2.

Let Γ be an analytic Jordan curve, which contains ζl} ζ2 in its inside, then
the Dirichlet integral of h = h(z ζh ζ2) in F - Γ(F) is finite, such that

f
ΓΓ

PROOF. For a fixed z € F — C, let h (z, ζ) be the conjugate harmonic
function of g(z, ζ), then

h(Z f „ ζ2)=f ^ P dsζ= j \h{z, ζ) = h(z, ?a) - h{Z, CO . (1)

Since by Theorem 4, Bg(z, ζ)/dp i s a harmonic function of z, h(z ζu fa) is a
harmonic function of z} except at ζltζ2.Let U: \z— ξΊ| ̂ p , V\\ζ — ζx\ < ρ
be a neighbourhood of ζΊ and for z € ί7, ξ* € F, put

P ( « f ) l θ g

then by Theorem 4, ψ{z, ζ) is a harmonic function in each variable. Let ζ0

be the first point of intersection of C with | ζ — Ci I = P> when we proceed
from Ci to £2 on C and let d be the part of C, which is bounded by Cι, and
ζo and C2^C- d, then



EXISTENCE OF A POTENTIAL FUNCTION ETC. 61

= arg(*-f O-argfe-?,,) + J ^ 1 } Λf + JM%fi dsζ. (2)

Since the three terms other than arg (z — ζλ) on the right hand side of (2)
are harmonic at ζu λ(z;ξΊ, ζ2) — arg (z — ξΊ) is harmonic at ξV Similarly
W2 ξΊ, £2) + arg(z — ζV) is harmonic at ζ2. Now we divide C into N arcs of
equal length As and ?* (fc = 0, 1, , ΛO ff0 = ?i, f̂  = ?a) be the point of
division and em be a unit vector at ξk7 which is orthogonal to C and put

< = uξ{z, 8) = 2 ^ ( z '-&-+.. « « p - - - ^ ' &>., Δs (δ > 0), (3)
λ; = l

then

lim lim lim «f = f ^ f e - * f = Hz ?„ ?«). (4)
C

Since «^ = 0 on Γ?J, we have

/

3uy

Γ

so that if we make succesively δ->0;Λf->°o, n = »^->oo,w->oo,we have

fh ^-ds, q. e. d.

3. Osgood's theorem

THEOREM 7. Z#£ F ^ an open Riemann surface and a schlicht disc Fι: | z \ ^ /?,

contained in F and let F0.\z\ <R0 (0 ^ i?0 < Rύ Let f(z) = 2Γ=i ^Z^'

>i? 0 aryί

U(z) =

Then
. N 3)

converges uniformly in any compact domain, which lies outside Fo, hence u(z)
is harmonic in F — Fo and u(z) can be continued harmonically in Fx, such that
u(z) — U{z) = V(z) is harmonic in Fτ. Let V be an analytic Jordan curve, which
contains Fo, then the Dirichlet integral of u{z) in F— T{F) is finite, such that

3)
* o) Γ
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That such a potential function exists (except the finiteness of the Dirichlet
integral) was proved by Osgood.4)

PROOF. Let for z € F3, ζ € F,,

*,?) = log j ^

then ψ(z,ζ) is harmonic in z € F2,
Since

_ (k - l)!cos kθ

(k - 1)! sin kθ
O £ +

if we put

V(z) =

a)

(2)

then
V(Z).

We shall prove that V(z) converges in Fi uniformly.

Let I ̂ (2, f)| £ * in |«| SΛi, Ifl Si?i, then for
cfiψjzfi) klM kϊM

Rϊ (4)

where M is a constant. Since^Πi&Ί^I + I**!)/•*?< °°> V(z) converges
uniformly in Fu so that u(z) — U(z) = Viz) is harmonic in Fτ. Let Δ be a
compact domain in F—Fo, then Δ lies outside a certain disc F: \ζ\ g / 2
(R}<R< R,) and

\g{z,ζ)\ S H W . 2€Δ, r€F'. (5)
Hence for 2 € Δ,

3»g(g,0) klM
R*

hence u{z) converges uniformly in Δ, so that is harmonic in Δ, hence u(z)
is harmonic in F — Fo. Let Γ be an analytic Jordan curve, which contains
JFO in its inside. Let Fn->F be the exhaustion of F and gn(z, ζ) = gn{z, ξ, η)
(ζ = ξ + iη) be the Green's function of Fn. We put for 8 > 0,

4) W.F.OSGOOD, Lehrbuch d. Funktioneπtheorie II2, Leipzig u. Berlin O932).
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, 0,0) = sr»(z, kS, 0) - ( * )P«(Z, (k - 1)8,0)

+ ( * V z > (*-2)8,0) ±9niz, 0,0), (6)

. 0, δ; - <;„(*, 0,0)),
then

We put

Since «J = 0 on ΓB, we have

f uξ ds

Γ

If we make successively δ-»0, n = ^->oo, iV->oo, m->oo, we have

^ ^ Γ ( F £ « ] ^ J u ^ ds3
q.e.d.

4 Potential functions with polar singularities

1. Let F be an open Riemann surface. If we put

then by Theorem 7, «(z) and 2;(2) have singularities

* - (k-l)lcoskθ

at 2 = ζ\ Let τ|(^), τ£*(2) be the analytic functions of z, whose real parts are
u(z)} v{z) respectively, such that

r} «= ̂ ψ^+* ). r/W = - | ^ | i + i( )• (1)
Let α be an analytic Jordan curve on F, which is not homotop null, then by
Theorem 6,

is harmonic on F, but is many valued, such that

ίdωa(z) = 1, (3)
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where a' is an analytic Jordan curve, which connects a point of a on one
shore to the corresponding point on the opposite shore, the direction of v
being so chosen, that if we rotate it by an angle π/2, it coincides with the
direction of dsζ.

Let wa(z) be the analytic function, whose real part is ωΛ(z), such that

f Λ — If tyte* ?) * Γ
2ι7ΐ j "dp I

For a fixed z, let ψz{ζ) be the analytic function of ζ, whsoe real part is
9(z,ζ), such that

Ψ*ζ)=9(z,ξ) + K )• (5)
Let z0 be a fixed point of F and we connect z0 to a point z by an analytic
Jordan arc C and let

= J ^ ± d s t <?*«,,**),
2Ό

where we integrate on C and v is the normal of C at ί, such that if we
rotate it by an angle ττ/2, it coincides with the direction of dst.

Let ψ'z{ζ) be the analytic function of f, whose real part is hz(ζ),
such that

Then we can prove easily the following relations.5)

THEOREM 8.

J *J(0- 2 , ^ ( ^ 1 ) , J A ^ O - ^ (Π)

= 91 ( ^ F ) , *Cτ?(«» = S ( ^ £ ) - ) . (Ill)

= 3(τ|(2)) - 3(τ^o)) = 3ί ( ^ P ), )

I (IV)

5) WEYl.,l.αD p. 112-113.
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PROOF. By (1), I

d'τ%z) \ oMv(z, ζ)

Since #(2, f) = <7("f, 2), we have

Similarly we can prove other relations of (I).
From (4) and g(z, ζ) = g(ζ, z), we have

Since

1 r
the left-hand side of (8) is equal to ~γ I dτk

z(ζ), hence
06

Another relation of (II) and relations of (III), (IV) can be proved similarly.

5. Biemann-Roch's theorem

By means of Theorem 8, we can prove easily the following Riemann-
Roch's theorem.

THEOREM 9. Let F be a closed Riemann surface of genus p^tl and

t> - —\ ±— (mv >0,nμ> 0) be a divisor, m~ 2 m^ ~ 2^μ being its
M i 1 " 1 ! ^ v = ι μ = ι

total order. Let B be the number of {in the complex sense) linearly
independent differentials on F, which are multiple of b and A be the number
of {in the complex sense) linearly independent one-valued analytic functions
on F, which are multiple ofljh, then

PROOF. Let p^lie on z = ξ^and qμlie on z = zμ. If ζv or zμ be a branch
point of F, the differentiation in the following means that with respect to
the local parameter. Let z0 be a point of F, which is different from ξv,
zμ. We take off z0 from F and for the open Riemann surface F' = F — (fc0),
we consider the modified Green's function g(z, ζ) and other potential functions.

Then by Theorem 1, g{z,ζ) has a logarithmic singularity at z0 and by
the remark of § 2, τ^(z), τ'ζ

k(z) are regular at z0. Let f(z) be a one-valued
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analytic function on F, which is multiple of 1/b, then f(z) can be expressed
in the form:

r

/ ( * ) = 2 H « ϊ ' i (*) + ft-r^GO + •••• + α ϊ . ^ ( * ) - t β'm#>Z<.z)l + {a+ib), (1)

where αy, βjf, #, 5 are real constants. Let au , α 2 P be a set of canonical
ring cuts of F, which makes F into a simply connected surface. We put
wh(z) = Wcoh(z), where wΛ/ι(z) is defined by (4) of § 4.

Since /(*) is one-valued, we have / df(z) = 0, so that by Theorem 8 (II),

+ β'mJS(-^#L)] = 0. (Λ = 1,2, • •, 2#). (2)

Since/(z) is a multiple of qj' qf,
γ

S K T ' ^ ) ) : + a = 0,

ft = 0,

(4)

By Theorem 8 (I), (III), (IV), (3), (4) can be written in the following forms

(30, (40, where we normalize, such that
O (v = l,2, ,r; * = 1, 2, -, w,).

(2)
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>(3')

(40

(ft = 1,2, ',2p;tz= 1,2, •••.,s;« = 1,2, - . . - , ^ - 1 ) .

(2), (3 r)3(40 is a sys tem of homogeneous l inear equat ions for 2( 2 W + l )
V = i ^

unkown quantities off, βl α3 b (v = 1,2 , r s ί = 1,2 ,*»,). Let i? be the
rank of the matrix (91) formed with the coefficients, then the system has
(in the real sense)

A = 2(2^ + l ) - Λ

linearly independent solutions, A' is the number of (in the real sense) linearly
independent one-valued analytic functions on F9 which are multiple of 1/b.
Let (210 be the transposed matrix of (21), then (9Γ) has the rank R. Hence
the following system of homogeneous linear equaltions (7), (8), (9) with the

coefficients matrix (9Γ) for 2 Γ^ nμ -f pj unknown quantities αh, bμ, b'μ1 cj,

d* (ft=1,2, ••• ,2ί;/L6= 1,2, . .-.,s;ft= 1,2, , n^. - 1) has (in the real sense)

( ) (6)

linearly independent solutions.
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( i / = 1 , 2 , -••, r ; λ = 1 , 2 , • • • • , » ! , , ) . ( 8 )

μ μ

From (7), (8), we have

2, βA — ^ x - + 2-[> ^ +b„ ^ A J

(v = 1,2, •••-, r ; λ = 1,2, •••-,»»„). (10)
By Theorem 1 and (9), we see that the differential

- [Σ «.^P +

is regular at z0 and from (10), we see easily that dυ{ζ) is a multiple of b.
Hence £ ' is the number of (in the real sense) linearly independent differen-
tials, which are multiple of b.

From (5), (6), we have

/ s

Let A be the number of (in the complex sence) linearly independent one-valued
-analytic functions, which are multiple of 1/b and B be the number of (in
the complex sense) linearly independent differentials, which are multiple of
b, then we can prove easily6) A' = 2A, B' = 2B, so that

A - B + (w + 1 - />).

Hence our theorem is proved.
We remark that, since A is even number, we see from (5). that R is

an even number.

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.

6) W E Y I . , 1 . C . I) p. 99.




