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1. Introduction. Let f(¢#) be an integrable function periodic with period
27 and let
@u(t) = p(t) = f(x + ) + flx — ) — 2s.

We denote by A a constant = 1.
G. H. Hardy and J.E. Littlewood [3] proved the following theorem :

THEOREM A. If @(t) satisfiec

1.1 f | s |t = o(t_/log i )
0
and
(1.2) [ 1aw g = 0w, 0sisy,
0

then the Fourier series of f(t) converges to s at a point x.
Recently G. Sunouchi [5],[6],[7] proved the following theorems :

THEOREM B. Ifg(t) satisfies the condition (1.2) and

t

{1.3) f @p)du = o(t>),
0
then the Fourier series of f(t) converges to s at a point x.

THEOREM C. If satisfies the condition (1.3) and

7

(1.4 lim lim sup lptt+2) — @) 4 _ ¢
k->eo u->0 4
et/

’

then the Fourier series of f(t) converges to s at a point x.

TRHEOREM D. If @(t) satisfies the conditions (1.1) and (1.4), then the
Fourier series of f(t) converges to s at a point x.

THEOREM E. ZLet us suppose that

(1.5) 0(x) is a positive differentiable function with ¢(x) >0,

(1.6) O(x) = f _du increases with x,
u6(u)

1.7 pw(x,¢) =1/0-Y(0O(x) — c).

Let f(t) be an even integrable function with mean value zero and its



110 M. KINUKAWA

Fourier series be

1) ~ 2 a, cos nt.

n=1

If

1

[ 17wt = atrecaien

0
and there is a positive constant ¢ such that a, > —up(n,c), then

> a, =0.
n=1

As examples of @ and g, he stated as follows:

Case ) 1 ’ 2 : 3 \ 4
(1.8) e | 1 } log log x ‘ log x log = log log x
u ‘ Alx (logz)'/z | 1/22"° exp{—(log x)e—ﬂ}

The case A =1 in Theorem B is Young’s convergence test. For this
case, G.H.Hardy and J.E.Littlewood [2] showed that the conditions (1.2)
and (1.3) imply (C, p) summability, where p is any negative number such
that —1< p<0.

Concerning Cesaro summability, J.J. Gergen [1] proved the following
theorem :

THEOREM F. Let @g(t) be the B-th integral of ¢(t). If

1.9) Pa(t) = ot?)

and

(1.10) lim lim sup P f AP gr = 0,
k>eo >0 {r+e

ku

then the Fourier series of f(t) is (C, p) summable to s at a point x, where p >
—1, m is some positive integer and

m
(1.11) AP () = 20 (=1 ( ’;j) Pt + vu).
Being assumed only the continuity condition of the function, Cesaro
summability of positive order was discussed by many writers. For example,
S.Izumi and G. Sunouchi [4] proved the following theorem:

THEOREM G. If 0< B< vy, B=1+v— B and @it) = oY), then the
Fourier series of f(t) is summable (C, 3/(y — B + 1)) at a point x.
Especially if we suppose B =1 and v > 1, that is,

t
f @p(u)du = o(17),
0
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then the Fourier series of J(t) is summable (C,1/vy) at a point x.

In this paper, we shall generalize Theorems A,B,C and D. replacing
convergence-property by Cesaro summability.

Finally the author has to express his hearty thanks to Prof. S.Izumi,
who gave him many valuable remarks and advices.

2. Our resultes are stated as follows:
THEOREM 1. Let A=Z1, —1< p<1and

@1 & =A— 2_P<1%D .
1

@.2) f ' e = ot

and rU

@.3) f |d{utp(w}| = O),

then the Fourier series of f(t) is (C, p) summable to s at a point x.
THEOREM 2. Let A=1, —1< p=0 and

_1_ pA—=T1)
(2.4) &, =1 1+p -
If @(t) satisfies the conditions (2.3) and
13
(2.5) f | @) | du = o( £*/log %) ,
1]
then the Fourier series of fi1) is (C, p) summable to s at a point x.
THEOREM 3. Let A=1, —1<p<1and
(2.6) E&=A—-pA—1)
7
t
@.7) [ #tar = o
0
and
" (m)
@.8) lim lim sup %P f IAPPO] g = o,
k->oo w0 {Lr+e
Chuy 1/

then the Fourier series of f(t) is (C,p) summable to s at a point x, where
A™q(t) is defined by (1.11).

THEOREM 4. Let A=1, —1< p=0 and
2.9 & =1—p(A-1).

If @(t) satisfies the condition (2.8) and if
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(2.10) f n | plad) | de = o( t4/log ti)

then the Fourier series of f(t) is (C, p) summable to s at a point x.

3. For the proof of our theorems, we need several known lemmas.
Let us denote by K®(¢) the n-th Cesaro mean of ordre p of the series

1/2 + ECOS kt.

k=1
Then we have

LEMMA 1.V If we suppose that —1< p=<1, then

3.1 EP(t) = SP() + RP(),
where

_ cos (At + A)

SV = A @sin 225+

1 d o M
3.2) RO < Mint, | 5o ROW)| < 1 + g
and
(3.3) Av=n+(p+ D)2, A=—(p+ /2

LEMMA 2. If—1<p=<1 and

f Plw)du = of?),

then
k/n
lim lim sup f P(HKP(t) dt = Q.

k—>oco Nn->c0
0

Proof runs similarly as in a lemma due to J.J. Gergen ([1], Lemma 11).

LEMMA 3. If @i(t) = O(), then we have
o+

lim lim sup f P()RP()dt = 0,
o= e k/n

where E is a fixed number and y = O(k/n).
This is due to J.J. Gergen ([1], Lemma 12).

4. Proof of Theorem 1. The case A =1 is the Hardy-Littlewood’s
theorem stated in the introduction. We may then suppose that A >1.

If we denote by o{P(x) the n-th Cesaro mean of order p of the Fourier
series of f(¢) at a point x, then

1) Cf. A.Zygmund [8].
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2{o (%) — s} = f P(OKP(t) dt

4.1) ¥/ 0 . 3
= f P(OKSAt) dt + f P(ORP(2)dt + f P(B)SPNL) dt,
0 k/n kln

where, by Lemmas 2 and 3, the first and the second terms on the right side
of (4.1) are of o(1). Hence, for the proof of Theorem 1,it is sufficient to
show that the third term on the right side of (4.1) is of o(1), which we

shall denote by I.
1+p _1—p

- ) _ =
Let a = (k/n)’, where & Atp & —p "

o 7T
“.2) 7= { [+ L espna = 1+
k/n :x: .
say.
If we put

" cos (Anu + A)
du,
@sin u/2yrers ¥

At) = —

then by the second mean value theorem, we have
A@) = O/ nttte+a),
By integration by parts, we have

I, = 2(np),[¢(t)(2 sin 2/2)*At) ] - AlTw f A sin 2/2)*p(B)}
=L —1I,
say, where

1 oa I® 1 1
L=0 ('n'u—p["' p AL) =ol)+ 0 ( FrEy " i eIeTa >
= o(1) + O(1]k++p).
If we take k sufficiently large, then we have I3 = o(1). Putting

(%) = (2sin ¢/2)2 @(t), ®@F) = f |dé(t)|, we have

4.3) D(t) = O(2),
by the assumption of Theorem 1.
Using (4.3), we get

I = 0( L f t‘l‘P'Alde(t)|> = 0( 1 [’ t‘l‘P-AdCIJ(t))

ni+e ni+e
@

[
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“o(h [wore] ) < o [ o)

= 01/ n*#) + O (g L ) = o(1).

Rip+a) ql+P=8(3+p)

It remains to estimate /;. For this purpose, we put

'

() = f pw)du = o(t.
U
Iatezrating by parts, we have

1 cos (At +A)7] | An [“ sin (Aut + A)
1) Az‘,) [ q)l(t) (2 Sint/2)1+" :‘ + A,(lP) ) (pl(t) (2 Sin t/2)1+P (1t

En k/n

1+p cos (Ant + A)
_2743;?),_. . @i )W cos t/2 dt
k/n
= I5 + IG + 1’7,

say, where

I = o(%—[tw—"] ) = o(1/ma=1) + o(1) ne*iie=1-92) = o(1),

kln

o .
I;= 0( 1 f T A dt) = o(1/n°~1*17P) + o(1/np~1+31=P) = o(1)
k/n
and

o
L=o ( %— f fey=1-p dt> = o(1/nP*<,~%) + o(1/nP+3, =) = o(1).

kfa
Thus we obtain 7; = o(1), which completes the proof.
5. Let us prove Theorem 2. The case A =1 is trivial and the case

p =0 is Theorem A, and then we may suppose that A>1and —1< p< 0.
As in the proof of Theorem 1, it suffices to show that (4.2) is of o(1).
1+p -
_ s = LTl _ S
Let a = (&/n)® and & Afp &—p=1-

I= {f + [ }f/)(f)S,‘ﬁ(t)=]1 + /)
k/n Zv
say, where J, = o(1) as we have I,= o(1) in the proof of Theorem 1. In
order to estimate J;, we put

Pt = f t | lae) e = o( #/log ;1) .
0

Then, by integration by parts, we have
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o( L] w | o) -2vat )

x/n

17 1 (" e
o o] )+o( [ )
kin k/n
@ 1 & 1]
o(r (] Yro(o [ {emminon g jar)
kln

k/n

=~
I

I

1l

1 Y at
= € —1 ‘aap+8(e, —1-p)
o(1/n%1) + o(1/ne+d )+ 0( S 1-p) f tlog 1/¢ )

k/n

=o(1)+o<fwi~£—1—ﬁ) - o(1)+o([ — log log 1/:]0’ )
k/n

kjn
= o(1) + o(log 1/8) = o(1),
which is the required.

6. For the proof of Theorem 3 we require some lemmas.
In what follows we set y = 7z/An, A, being defined by (3.3).

LeEMMA 4. If @(t) satisfies the condition (2.7), then

o)Ay

6.1) f P()SPAE) dt = of1),
KY
where v is a positive integer.
Proor. When £ is taken sufficiently large, we may replace the upper
limit of the left side integral of (6.1) by (ky)'/2:

1/a A

(ky)

i 1 cos (Ant + A)
HSeN(t = o i F/oNlEp

f POSPE) dt = 1o f PO " Gsin tjzyee U

ky ky
(GO RG A
_ (1) €054 (At + A) J _ 'l_f @ )An sin(A.t + A)
A“’) \_ (@2 sin ¢/2)+e AP ! (2sin 2/2)1+P
2+ p [ (Ad+A) ¢
) o Cos (At +A) L
AP O =g sin /2y Sy
cy
=P+ P;+ P,
say, where
(ky) /2

1 ,
Pi=o (W[t] ) = o(1) + o(1/na=2) = o(1),
ky
I &y
P,= 0< j fea—1-p dz‘) = o(1/ne"1) + o(1/mP—1*+Ca=r3) = o(1)

nP-L,
ky

and
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&yt
P = o(—l— f tfa-z-ﬂdt) = o1).
ne
kY

Thus we get the required.
LEmMMA 5. If ¢u(t) = O@), then

7 —my

}GLIE hm sup A(P’

(kY)

@t + vy) o(t,y) cos(Ant + A dt=90

1/a
where

w(t,y) = . 2m o 2Zm—v 0V

2Y)=Tsin (4 w)/2} 0 T {sin#/2}1+* T {sin(f + 2my)/2}1+°

and m and v are integers such that 1 < v = m.

Proof follows from the inequalities

w(t) = OWHE+), 22 = Ol [th+)

(cf. J.J. Gergen [1], Lemma 13). '

LEMMA 6. Let —1<p<1 A=1 and

AP gy

1/.) ’ ti+e

i, k) = P f
(k)
If 9" u, k) = o(1)», thenn{"(u, k) = o(1), where m and m! are positive integers

such that m' = m > 0.
Proof runs similarly as Lemma 14 in J.J. Gergen’s paper [1].

Using above lemmas, we can now prove Theorem 3:
After J.J. Gergen, we have

2m
20m-17(g® —§) = 2 2’” f PKP(t) dt

VHU
2m w4+ (v—m)y F4

+3®) [ porewas > (2m) [ woxew a

v=0 Ky v=0 2+(v—m)y
=Q: + @, + @,
say, where @, = o(1) by Lemma 2, and Q; = 0, since @(¢)K{(f) is an even
periodic function. Accordingly it is sufficient for the proof to show that
Qz = 0(1)2

2m +(v—m)y w+(v—m)y

@(1)SP(t) dt + 2 (2’”) f P(tRP(2) dt

v=0 v=0

= Q4 + st

say.

2) This means that lim limsup r“">(u k)=0
k>oc 10
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By Lemma 3 we have @; = o(1). Concerning @,, we have
2m GO 2m
6.2) Q=3("" f PSP dt + 3 (27 f P(1)SP(@) dt,
v=0 (ky)llA
where the first part of the right side of (6.2) is of o(1) by Lemma 4, and
the second part is

a4+ (v—-m)y

v=0

ky +vy

7—Mm7Y

1 AG Dt +y)
1 ATVl ) £+ A)dt
AP {([ s {sin(E  2my)jzyree C°8 (Al + A)

Agn Vet

SRy cos(A,t + A) dt

fn-my
(ky)/A

am—1 wmy

© 250

(k)

Pt + w)o(t,y) cos (At + A) dt }
1/
=Qs+ Q7+ Qs
say. By the assumption of the theorem and Lemma 6, we have s = o(1)
and @; = o(1), and @3 = o(1) by Lemma 5. Thus we get the theorem.

7. The proof of Theorem 4 is similar as that of Theorem 3, except
the estimation of

Gy A4y
(7.1) P(t)SP(t)dt :
kY
By integration by part/s, we get
) By k) 20y
| s at| = [ PD11SP)| dt
ey ky
1 VA 4oy
= 0(;,7] |l 210 dt)
ky
G a4
=o (L[ g +o(L (E)t-2-rdt
ne P J s L2\
ky ky
/A xn/
=0 (wlu [tﬂ’l""jl +o0 <—1~~f t"1-°/t log 1 dt)
ne nP t
ky ky
= Tl + Tl:
say, where

Ty = o1/m+co1-P12) = o(1)
and

@/
1

1 -
T,=o0 (;,lﬂ-l-(u—l—P)/A f ‘tlog 1/t dt) = ofl).
ky
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Thus we can prove the theorem as in the proof of Theorem 3.
8. We can easily generalize Theorem 4 in the following form:

THEOREM 5. Let 6(x) and p(x,c) satisfy the conditions (1.5)~(1.7). If
there are numbers & and ¢ >0 such that

Pt = Of | ()| du = 0 (tf/e (}—)) as 50,

" (m)
lim lim sup u® f AP gy = o,
koo U0 1 f1+p
"(Icza’c)
8.1) W%, €) < karle-P=D g5 x> oo, k is an absolute constant, and &=1,
then the Fourier series of f(t) is (C, p) summable to s at a point x, where — 1
<p<O0.

The method of the proof of Theorem 5 is similar to those of Theorem
E and Theorem 4:

LeMMA 7. Under the assumption of the theorem, we have

(ky,c)ﬂ'y
8.2) L= f P(B)SP(2) dt = o(1), as n-yoo,
ky
where v is a positive integer and y = n[A,.
Proor. In the following we denote u(1/ky,c) by pa.

T A dt
Li< L. T L —
12l = Aff)f |t ),(2 sin ¢/2)1+e

ky

—o( L[ R )

ky
Mn+ vy en+vy

— / 1 * -1 - 1 * — -

= 0(»1-;,,— [q)l(l‘)t ! "] ) + 0(717.[ PULE-2=P dt )
ky ky

= Vl + V‘J:

say. Using the inequality u(x,c)=1/x, we have

Mptvy

Vizo( [t | ) = otmm + otusofw)

ky

= o +o( o (55 )) =

V,= o( f te 1- P te(——) dt) — o (at uy)"'"" ;{un ta(;i/tt))

and
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e
-0 (f 'tBZt/T) ) :
ky

However
i+ VY 1/ky
f _at f du
kY 1 (puptvy)
Ywn d 1/ky d Vin P
- B f N f + {01/ ky) — O/
Hluntyt) Hpn Lgun

= V3 + V4r

say, where £ is a constant such that 1/(us + vy) > 1/Eptn.
Since 1/#6(x) is a monotone decreasing function,

1/
_—EL du = hﬂ_,]‘;_ _ o
V= B Epm) f “S aEmy LY =0

1/€mp

and by (1.6) and (1.7) we have
V= 0O1/ky) — O(1/ky) + ¢ = O(1).
Then we get V,; = 0(1). Thus we have the required.
Moreover we can get some needed lemmas, in which will be replaced
(kyY> by m(1/ky,c) in Lemmas 5 and 6.

Combining these lemmas, as in the proof of Theorem 2 and 4, we can
get the theorem.

COROLLARY. Oune of the following conditions is sufficient for the (C,p)
summabilily (— 1 <. p < 0):
14
1°, f |@(a)|du = oft)

U
and

b f 1APON gr — 1),

tl‘-i-p
ki
12
2°, f |@p(2)|du = o(t*+°/log log 1/2)
0
and
i (m) -
u | éé;,ff;@l__ dt = o(1),
ku(logﬁ ’

where & >0 and ¢ = 0.

3°. f |p(2) |du = oft=/log 1/t)
0
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and

11+p
euyt/a

where &, is given by (2.9).

9. For the case 1 >p >0 in Theorem 1 and 3, we have to give some
remarks. As we stated in §1, the conditions (2.2) and (2.7) imply (C,1/&)
and (C,1/¢&,) summabilities respectively. Therefore if p =1/&; (i = 1, 3), then
our theorems become trivial. Accordingly Theorem 1 and 3 have the meaning
when

0<p<1/(A—2)
and

0< p<1/(A—1),
respectively.
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