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1. Introduction. Let f(t) be an integrable function periodic with period
2τr and let

φ»{t) - φ(t) = Ax + t) + Ax - 0 - 2s.
We denote by Δ a constant > 1.
G. H. Hardy and J. E. Littlewood [3] proved the following theorem:

THEOREM A. If φ{t) satisfieί
t,

1. 1) J \φ{u)\du = θ(//lθg J

and

(1.2) f \d{u±φ{u)}\ =

o

then the Fourier series of At) converges to s at a point x.
Recently G. Sunouchi [5], [6], [7] proved the following theorems:
THEOREM B. Ifφ{f) satisfies the condition (1.2) and

<1.3) J φ{u)du = o(*Λ),
o

then the Fourier series of f{f) converges to s at a point x.

THEOREM C. If satisfies the condition (1.3) and

<1.4) Mm Km sup \ X ' + «>-***)! d t = 0 >

then the Fourier series of f{t) converges to s at a point x.

THEOREM D. If φ(t) satisfies the conditions (1.1) and (1.4), then the
Fourier series of f(f) converges to s at a point x.

THEOREM E. Let us suppose that

<1.5) θ(x) is a positive differentiate function with &{x) > 0,

{1.6) Θ(*) = Γ - ^ - increases with x,
J uθ(u)

(1.7) M*,c) = l/Θ-HΘ(*)-c).
Let fit) be an even integrable function with mean value zero and its
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Fourier series be

If

f(t)
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an cos nt.

ί \f(u)\du =-

and there is a positive constant c such that an > —μ(n, c), then
oo

2 an = 0.
n = \

As examples of θ and μ, he stated as follows :

Case

θ

μ

1

1

A/x

2

log logx

(logx)r/x

3

log.r

1/̂ "°

4

log .r log log x

exp{—(\ogx)e }

(1.8)

The case Δ = 1 in Theorem B is Young's convergence test. For this
case, G. H. Hardy and J. E. Littlewood [2] showed that the conditions (1. 2)
and (1.3) imply (C, p) summability, where p is any negative number such
that — KpSO.

Concerning Cesaro summability, J. J. Gergen [1] proved the following
theorem:

THEOREM F. Let ψβ{t) be the β-th integral of φ(t). If

(1.9)
and

(1.10)
J t1 + P

then the Fourier series of f(t) is (C, p) summable to s at a point x, where p >
—1, m is some positive integer and

(1. ID φ(t + vu).

Being assumed only the continuity condition of the function, Cesaro
summability of positive order was discussed by many writers. For example,
S. Izumi and G. Sunouchi [4] proved the following theorem:

THEOREM G. If 0< β< y, β^l +y - β and φβ(t) *= o(P\ then the
Fourier series of fit) is summable (C, β/(y — β -f 1)) at a point x.

Especially if we suppose β = 1 and γ > 1, that is,
t

φ{u)du = o(P),
b
s
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then the Fourier series of fit) is summable (C, 1/7) at a point x.

la this paper, we shall generalize Theorems A, B7 C and D. replacing
convergence-property by Cesaro summability.

Finally the author has to express his hearty thanks to Prof. S. Izumi,
who gave him many valuable remarks and advices.

2. Our resultes are stated as follows:
THEOREM 1. Let Δ£^l, — 1 < p < 1 and

(9Ί) P - Λ 2 p { A ~ 1 }

If

(2.2) j φ{u)du^ o(t61)

and

(2.3) Γ \d{u*φ(μ)}\ = Oζt),

then the Fourier series of f(t) is (C, p) summable to s at a point x.

THEOREM 2. Let Δ£^l, - K p ^ O and

If <p(t) satisfies the conditions (2.3) and

r / €i 1 \

(2.5) J \φ(u)\du — o[ t /log — J,
0

then the Fourier series of At) is (C, p) summable to s at a point x.
THEOREM 3. Let Δ > 1, — 1< p < 1 and

(2.6) £3=Δ-p(Δ-l).

(2.7) I ψ{u) = oψ*)
0

and

/

It

iΔf^wi^ dt = 0

then the Fourier series of f(t) is (C, p) summable to s at a point x, where
is defined by (1.11).

THEOREM 4. Z^/Δ>1 ; - K p S O and

(2.9) £4 = l - p ( Δ - l ) .

// φ(t) satisfies the condition (2.8) and if
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t

(2.10) J Iφ{u)\du = o( tu/log j - ) ,
0

fe Fourier series of fit) is (C, p) summable to s at a point x.

3. For the proof of our theorems, we need several known lemmas.
Let us denote by K(

n

p\t) the n-th Cesaro mean of ordre p of the series

1/2 + 2 C O S kt-
fc = l

Then we have

LEMMA 1.2 ) If we suppose that — 1 < p < 1, then

(3-D «2 > w = s sr

cos (AJ + A)

nt3 ^ riΨ
(3.2) \R$\t)\<Mlnt\ 4r £(f<t) -' — -*- —

n dt n

and
(3. 3) An = n + (p + l)/2, A = -(p

LEMMA 2. 7/ — 1< p g 1 «w^

j φ{u)du =
o

fc/rc

lim lim sup J φ{t)K$\t) dt = 0.
o

Proof runs similarly as in a lemma due to J. J. Gergen ([1], Lemma 11).

IEMMA 3. If φλ(t) = O(t), then we have

φ{t)R%\t)dt = 0,

where ξ is a fixed number and y = Oihjri).

This is due to J. J. Gergen ([1], Lemma 12).

4. Proof of Theorem 1. The case Δ = 1 is the Hardy-Littlewood's
theorem stated in the introduction. We may then suppose that Δ > 1.

If we denote by <τ^\x) the n-th. Cesaro mean of order p of the Fourier
series of fit) at a point x, then

1) Cf. A. Zygmund [8].
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*{«•$"(*) ~ S} = f φitWXKt) dt

= J ^OβifW * + J φ{Wιf{t)dt + J <p(t)S<?Kt) dt,

where, by Lemmas 2 and 3, the first and the second terms on the right side
of (4 1) are of o(l). Hence, for the proof of Theorem 1, it is sufficient to
show that the third term on the right side of (4.1; is of o(l), which we
shall denote by /.

Let a = (k/nf, where δ =

(4.2) 7 " { / + ί } *< ί ) S » P W Λ = 7l

Tcfn oύ

say.
If we put - f _cos {Anu 4- A) d

--J (2sinW2)^+Δ '

then by the second mean value theorem, we have

Λ(ί) =

By integration by parts, we have

**= -̂ TΓv Γ ^C0(2 s i n

= 73 74,

say, where

If we take k sufficiently large, then we have Is = o(l). Putting

= (2 sin tl2)*φ{t), Φ(t) = J 1^(/)|, we have

(4.3)
by the assumption of Theorem 1.

Using (4.3), we get
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O

It remains to estimate /,. For this purpose, we put

φι(t) = I ^(^)J^ = 0(f x\
u

Integrating by parts, we have

1 Γ m cos (Anf + A) Ί _!_ An f / .x sin (Awf 4- A)
[ ^ ) (2Ϊm7/2)^ J + AIT ) Ψ{t)J 2 sin

Tc.n k/n

kin

= h + /6 + A,
say, where

/5 = ί/JLΓ/v-i-pl \ = nd/^,-1) + o(l/tt»« i-*-») = 0(1),
fc/w

/ 6 =

at

/fc/Λ

and

fc/ l

Thus we obtain Iλ = oil), which completes the proof.

5. Let us prove Theorem 2. The case Δ = 1 is trivial and the case
p ~ 0 is Theorem A, and then we may suppose that Δ > 1 and — 1 < p < 0.

As in the proof of Theorem 1, it suffices to show that (4. 2) is of 0(1).

Let a = (k/n)8 and δ = ^ p = g^Γ" PZ7f

if f 1
7 = \ I + / \ <p(f)S{

n

p)(t) = /, + /;,

I J ./ J
say, where /3 = 0(1) as we have 72 = 0(1) in the proof of Theorem 1. In
order to estimate Jh we put

φlt) = J | ^ ) ! ^ = 0 ^ r/log y ) .
0

Then, by integration by parts, we have



CESARO SUMMABILITY OF FOURIER SERIES 115

k/n

^ [aw-1-'} ) + o(-^J ^
jfc/Λ k/n

which is the required.

6. For the proof of Theorem 3 we require some lemmas.
In what follows we set y = π/An, An being defined by (3. 3).

LEMMA 4. If φ{t) satisfies the condition (2.7), then

(6.1) J φVWKt) dt = O{1),
icy

where v is a positive integer.
PROOF. When k is taken sufficiently large, we may replace the upper

limit of the left side integral of (6.1) by

= _^__ j- H t ) ψ^±β] v ) --±zJ
ky icy

,p An sm(Aj -f

~ fei/ " ky

+ 2(1 + p) f{m

 i ( / ) cos (Ant±A) nΛc ^
A^ J ^L (2 sin

ky

say, where

2 = °(-7ΓΓ I t^-'-rdt) = o(l/ne*-1) H-
\w >. J J

and
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ky

Thus we get the required.

LEMMA 5. // φx(t) = 0(/),

lim lim sup - r ^ I φ(t + vy) ω(*,.y) cos(Aw£ + A) dt = 0
fc-^oo W->oo AiP ; J

ω^'y) "" {sin (/ +^y)/2}1 + p {sin7/"2}1+p {sin(ί + 2my)/2}ί+p
and m and v are integers such that l^v^m.

Proof follows from the inequalities

ω{t) = 0{yηt^\ ^~ = O(y*/ti+p),

(cf. J. J. Gergen [1], Lemma 13).

LEMMA 6. Let — 1 < p < 1, Δ > 1

//* η{™&u, k) = 0(1 )2\ ί^w V{™A(U> k) ~ °(1 )> where m and mf are positive integers
such that n/ >m>0.

Proof runs similarly as Lemma 14 in J.J. Gergen's paper [1].

Using above lemmas, we can now prove Theorem 3 :
After J. J. Gergen, we have

2(2Γ)/ ?(W)Λ+Σ(ΐ)/

say, where ζ)j = o(l) by Lemma 2, and Q3 = 0, since φ{t)K^(t) is an even
periodic function. Accordingly it is sufficient for the proof to show that

ft =0(1):
2m *+(,-»ι)y 2 m Tr+Cvm)!/

» = 2 (2Γ) / *ww Λ + 2 (2Γj J
= ©4 +

say.

2) This means that lim lim sup rSmXu,k) =



CESARO SUMMABILITY OF FOURIER SERIES

By Lemma 3 we have Q5 = o(l). Concerning Q4, we have

2

( 6 . 2 ) <?4 =

\γj

where the first part of the right side of (6. 2) is of o(l) by Lemma 4, and
the second part is

—1— ί ί
\kyγ

1 .

>y)cos^A^

(kyy*

say. By the assumption of the theorem and Lemma 6, we have QQ = o(l)

and <?7 = o(l), and Q8 = o(l) by Lemma 5. Thus we get the theorem.

7. The proof of Theorem 4 is similar as that of Theorem 3, except
the estimation of

(7.1) f φ{t)S\ΐ\t)dt:

By integration by parts, we get

φ{t)SP{t) dt

S

W

Λ

Jcy

\φ(t)\\SitKt)\ dt

ky

ky ky

= Γi + τt,
say, where

and
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Thus we can prove the theorem as in the proof of Theorem 3.

8. We can easily generalize Theorem 4 in the following form:

THEOREM 5. Let θ{x) and μ(x,c) satisfy the conditions (1.5)^(1.7). //
there are numbers 8 and c > 0 such that

= J
f

J (

= 0,

(8.1) μ(x)c)^kxpKe-p~i:>

J as Λ;-> OO, k is an absolute constant, and £ > 1,
then the Fourier series of f(t) is (C, p) summzble to s at a point x, where — 1
< p< 0.

The method of the proof of Theorem 5 is similar to those of Theorem
E and Theorem 4:

LEMMA 7. Under the assumption of the theorem, we have

_ r^h
(8.2) L = J <p(t)S<t\t) dt - o(l), as

icy

where v is a positive integer and y = πjΆn.
PROOF. In the following we denote μ(l/ky,c) by μn.

say. Using the inequality μ(x, c) > 1/χ, we have

]

and

\ n" J I \t J J \ nf J tθO-lt)
ley



dt
tθOJt)

ky

However
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J tOil It) J u 00θ{u)
μn+vy)

ι l k yΛ T W ^ rιlky Λ rViLn

ί -Ϊ7T + ί ~irτ = ί -J w0 (w) J ^ ^(M) J U

say, where ξ is a constant such that l/(μn + i>.y) > l/ξμn-
Since Ijuθ(u) is a monotone decreasing function,

Γllμn

and by (1. 6) and (1. 7) we have

F 4 = θ(l/fty) - WXIky) + c = O(l).

Then we get F2 = 0(1). Thus we have the required.
Moreover we can get some needed lemmas, in which will be replaced

(ky)ιlx by μ(l/ky,c) in Lemmas 5 and 6.
Combining these lemmas, as in the proof of Theorem 3 and 4, we can

get the theorem.

COROLLARY. One of the following conditions is sufficient fo? the (C, p)
summability ( — 1 < p < 0) :

1°. j \ψ{u)\du = o(t)

and

2°. ί \φ{u)\du = o(tί+s/log log lit)

and

where δ > 0 and c ̂  0.

3°. ί \φ{u)\du = o(^/log lit)
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and

f
where £4 is given by (2. 9).

9. For the case 1 > p > 0 in Theorem 1 and 3, we have to give some
remarks. As we stated in §1, the conditions (2.2) and (2.7) imply (C, l/£3)
and (C,l/£5) summabilities respectively. Therefore if p ^ l/£t (z = 1, 3), then
our theorems become trivial. Accordingly Theorem 1 and 3 have the meaning
when

0 < p < 1/(Δ - 2)
and

0 < p < 1/(Δ - 1),
respectively.
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