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In the theory of rings of operators, it is interesting to study the
algebraical structure of such rings. Many authors have investigated that
structure, but it remains obscure except for some special ones. F. J. Murray
and J. von Neumann [6] have made some interesting works in fact, they
introduced the concepts of fundamental groups, genera and the property Γ
for finite factors and obtained many results. The purpose of this paper is
to give a trial to study the algebraical structure theory of factors. In [3],
we have studied the direct product of Wr*-algebras, which will play the
fundamental role throughout this paper.

A factor N is called a divisor of a factor M if M is the direct product
of iV" and some factor P. The set of all divisors of M is called the divisor
set of M. The first section will be devoted to the elementary properties of
divisors. In the second section, we shall study some relations between
factors and its divisors with respect to the concepts of the normalcy and
the property Γ. Our results are as follows: If a given factor contains any
divisor which is not normal (resp. has the property Γ), then the factor
itself is not normal (resp. has the property Γ). In the final section, we
shall show that the restricted infinite direct product of finite factors by
traces in the sense of Takeda [8] has property Γ and its fundamental group
contains all positive numbers.

Throughout this paper, by an isomorphism we mean a ^-isomorphism
and any two factors are identified if they are isomorphic to each other.

1. Definitions and preliminary considerations. Let M and N be two
TF*-algebras on Hubert spaces ξ> and S? respectively. By the direct product
M(g)N of M and N, we shall mean the weak closure of the algebraical
direct product MQN on the Hubert space ©®Sf in the sense of F. J.
Murray and J. von Neumann [5]. In [3], we have proved that M®iV
depends on M and N only, but not on the choice of underlying Hubert
spaces «£) and R. Moreover we have proved that M(χ) N is a factor whenever
M and N are factors. Therefore, the set of all factors may be considered
as a (commutative) semi-group by the prouct (g).

LEMMA 1. Let N, P be two W*-algebras and M be the direct product of
N and P. If M is a factor then N and P are factors.

PROOF. If N is not a factor, then there exists an element x in the
center of M which is not a scalar multiple of the identity. It is clear that
x®e is contained in the center of M and not a scalar multiple of the
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identity where e is the identity of P. This is a contradiction since M i s a
factor, so that N is a factor. Analogously, P is a factor.

We shall give the following definition:

DEFINITION. A factor N is said to be a divisor1^ of a factor M, if M is
the direct product of N and some factor P. The set of all divisors of a
factor M is said the divisor set of M and is denoted by D(M). A factor M
is called idempotent if M = M ® M.

LEMMA 2. £#ί Nbe a divisor of a factor M and P be a divisor of N, then
P is a divisor of M.

PROOF. By the assumptions, we have

M - N®NL and N= P(g)P1

where iVΊ and Pi are suitable divisors of M and N respectively. This implies

Thus P is a divisor of M.

Next we shall introduce the following order relation >~ in the set of all
factors: For given two factors M and N, by My-N we mean that AT is a
divisor of M. Then, by the preceding lemma, the relation > is a quasi-
order.

LEMMA 3. A finite factor has no infinite factor as its divisor.

PROOF. Let M be a finite factor and N be its divisor, then we have
M = N® P for a suitable divisor P of M. If A" is infinite, then there exists
a family {eι i = l,-2, } of non-zero projections in N which are mutually
orthogonal and equivalent. Then for any non-zero projection/ in P, {e{ (χ)f;
i~ 1, 2, } is a family of non-zero projections in M which are mutually
orthogonal and equivalent. This contradicts to the finiteness of M. This
proves the lemma.

PROPOSITION 1. Any divisor of a factor of type ϊm (m < oo) is a finite factor
of type I. A factor of type In (n < oo) is a divisor of a factor of type Im (m <
oo) if and only if m is divisible by n.

PROOF. Let M be a factor of type Im and N be its divisor. Then N is
a finite factor by Lemmas 1, 2 and we can put M = N® P for a divisor P
of M. If Af is non-discrete, then there exist infinitely many non-zero projec-
tions {eι i = 1, 2, } which are mutually orthogonal. Let / be any non-
zero projection in P, then {et®f\ i = 1,2, } are non-zero projections in
M which are mutually orthogonal. This is a contradiction since M is a
factor of type Im (m < oo), that is, A" is a finite factor of type I.

Analogously P is of type IP for some positive integer p. Let eh , em

be mutually orthogonal minimal projections in N and/x, . . . . , fP be the same
ones in P. Then it is clear that

1) Our definition of a divisor is different from that of Murray and von Neumann [6).



ON DIVISORS OF FACTORS 65

z ^ l , ...... n ; j = l f . . . . , p

are mutually orthogonal minimal projections in M with the identity as their
union. This shows that m = np, that is, m is divisible by n.

Conversely, if m is divisible by n, say m = np. Let N, P be factors of
type In, lp respectively, then their direct product is a factor of type Im.
In other words, a factor of type ln is a divisor of a factor of type Im.

Thus the proposition is completely proved.

LEMMA 4. Let M be a factor which is infinite or of type IIh then, for
every integer n, My- N where N is any factor of type In.

PROOF. At first, assume that M is infinite and let N be any factor of
type In. Let e, f be the identities of M, N respectively and fΊ be a minimal
projection in N. Then M(χ) N is an infinite factor and e®f is its identity
and moreover e ®f is an infinite projection. Hence e ®f is equivalent to
e®fτ and the contraction of M®N on the range of e®f is isomorphic
to M®N. On the other hand, we can easily see that the contraction of
M®N on the range of e®fx is isomorphic to M since e®fλ is equivalent
to the identity. These show that M = M® N, that is, TV is a divisor of M.

When M is of type IIx the lemma is an immediate consequence of a
theorem of Murray and von Neumann [β , Theorem 6].

LEMMA 5. // M is an idempotent factor, then the divisor set of M is a
semi-group.

PROOF. Let Mx and M2 be two divisors of M, then there exist two
divisors iVΊ and Ns such that M = Mi (x) Ni (i = 1, 2). Since M is idempotent,
we have

M = M ® M = Mi ® Ni ® M2 ® iV* = (Mi ® Λfa) ® (iVi 9 iV2).

In other words, Mi ® M2 € D(M). This proves the lemma.

LEMMA 6. Zgί M «wc? JV be idempotent factors, then M = N if and only
if My-N and N>M.

PROOF. AS the necessity is obvious, we shall show only the sufficiency.
By the assumption, we have M = N®Nι and N- M®Mλ. Hence we have

M ® N=N® Nι® N=N® Nι = M.

Analogously we have N = M ® N. Therefore M = N.

As an immediate consequence of the above lemma, we have

LEMMA 7. The set of all idempotent factors is a directed set by the relation

>.
The following lemma is an immediate consequence of Theorem 8 in [3J.

LEMMA 8. Let N be a divisor of a finite factor M, then the fundamental
group of M contains that of N.

2. The normalcy and the property Γ. Some properties of factors
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are closely related with those of their divisors. In this section, we shall
study on the property of normalcy and on the property Γ.

The following definition is due to Murray and von Neumann [5].

DEFINITION. A factor M is normal if (N* Π M)r Π M = N for any W*-
subalgebra N of M.

It is known that a factor of type I is normal and a factor of type II is
not normal (cf. [2], [5]). Hence, Lemma 4 shows that there are non-normal
factors which have normal factors as their divisors. On the other hand, we
can prove the following theorem.

THEOREM 1. A factor which has a non-normal factor as its divisor is not
normal.

PROOF. Let N be a divisor of a factor M and assume that N is not
normal and M = N (x) P. The non-normalcy of N implies that there exists
a tF*-subalgebra Nτ of N such that

Let e be the unit of P, then NL ® e is a PF*-subalgebra of M and moreover
we have

((ΛΓi ® e)' Π (N ® P))' Π (N® P) i>((JVΪ ® B) f] (N ® P))' f] (N ® P)

Ξ> ((ΛΓ; n AT)' n N) ® (P' n P)
where B is the full operator algebra on the Hubert space on which P acts.
Hence

((iVi ® e)' Π (N ® P))' Π <N ® P) p ΛΓi ® e,
which proves the theorem.

The type of the direct product of two factors has not yet been determined
except when they are both semi-finite or one of them is of type I. It seems
probable to the author that a factor of type I has no non-discrete factor as
its divisor, the following corollary will give only a partial answer for this.

COROLLARY. The direct product of two footers is not of type I if at least one
of them is of type II.

PROOF. AS we have noticed, every factor of type II is not normal,
therefore, the direct product of a factor of type II and any other factor
is not normal by the theorem. On the other hand every factor of type I is
normal and therefore the direct product in question is not of type I.

Next we employ the following definition in [6]:

'DEFINITION. A finite factor M has the property Γ if it satisfies the
following: Given any system xif , xm € M and any S > 0, there exists a
unitary element u € M stich that τ(u) = 0 and

[[u-lXteU — Xh]] < S for k = 1, , m}

where r is the normalised trace of M and [[•]] is the norm of the prehilbert



ON DIVISORS OF FACTORS 67

space generated by M and T as in a usual way.

THEOREM 2. Let M be a finite factor, ϊf there exists a divisor of M which
has the property Γ, then M itself has this property.

PROOF. Let N be the divisor of M which has the property Γ and assume
that M = N ® P. By Lemma 4, P is a finite factor. Let xu , xm be
arbitrary elements in M and £ be any positive number. It is known that
M is the closure of the algebraical direct product N 0 P by the norm [[ ]].
Hence there exist

nk

2 ^ . « ® '**>*> yκs € N> z^ € p (Λ = 1, ..'.., wι)

with

[to - 2 Λ,i ® &, j j < 4 ίΛ=i,...., »ι).
i = l

Let τi, τ2 be the normalized traces of • ΛΓ, P and [[ ]]i, [[ ]]a be the
norms on N, P induced by τhτ2 respectively. Since N has the property Γ,
we can choose a unitary element u in N such that τλ(u) = 0 and

[[u-'y^tu -yh,i]h < ~- (i = l,....,nk,k = l,....,ni)

where a — max wfc and p = max [fe ί]]2. Let / be the unit of P, then u ® /
A; fc, i

is a unitary element in M. By Theorem 6 in [3], we have

<u ® / ) = τ,(»)τa(/) = 0

and

2 ) ) - 2 Λ , i ® ft,*]]-M 2 Λ , I ® ft,i ) (»

Accordingly we have

i-l

nk nk

This shows that M has the property Γ.

REMARK 1. In the above proof, u ® / is orthogonal to gg)^ in the
sense of the structure of the prehilbert space generated by M and T, where
.e is the unit of M; in fact,

τ((e ® *)*(» ® /)) = Tι(iί) T2(Λ:*/)-= 0
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for any x € P. Accordingly M has the property Γ relative to e ® P in the
sense of Dixmier [1].

REMARK 2. In [3], we have proved that the direct product of two finite
factors is finite too. Hence the set of all finite factors is a semi-group and
the factor of type lL is the unit factor of this semi-group.

By the Corollary of Theorem 1, we can easily see that the set ©0 of
finite factors of type II is also a semi-group. By the preceding theoremr

the unit of ©0, if it exists, does not have the property Γ since there exists
a factor which does not have the propery Γ [6]. Especially the approxi-
mately finite factor can not be the unit of ©α since it has the property Γ*
[6, Lemma 6.1.2].

3. The infinite direct product of finite factors. As an application,
of our theory, we shall consider a finite factor which is the infinite direct
product of finite factors.

For this purpose, we shall give a brief consideration to the infinite
direct product of factors. The theory of the infinite direct products of
factors has been introduced by von Neumann [7] and recently Takeda [8}
has generalized it. We shall employ a special kind of infinite direct product
of finite factors.

Let Mn (n = 1, 2, ) be finite factors and τn {n = 1,2, ) be their
normalized traces. Let ©Λ Mn be the algebraical infinite direct product of
Mn and for any element

(aCij's are scalars, XijξzMi and cctjX(y/s are the identities except finite
number of them) in Qn Mn, put

( n
Σ Λ M * l . J ® ® )

/ 5=1 l«i

Then T is well defined and a positive linear functional on the *-algebra
Qn Mn* By the usual way, we can construct a Hubert space ξ> by (z)nMn

and T. Furthermore QnMn can be considered as an operator algebra on ξ).
By (x)nMn, we denote the weak closure of QnMn on ξ) and call it the

.restricted infinite direct product of Mn. As Takeda [8] has proved, ®nMn is
a finite tactor.

THEOREM 3. The restricted infinite direct product of finite factors has the*
property Γ, and its fundamental group contains all positive numbers.

PROOF. Let M be the restricted infinite direct product of finite factors
•Mn. By Lemma 3, we can represent as

Λf» = iV» ® P», n = 1,2, . . . . ,

where Nn are of type I and finite. Lemma 4 shows that every Pn is also
finite. Accordingly, there are no difficulties to see that M is the direct



ON DIVISORS OF FACTORS 69

product of two restricted infinite direct products of Nn and Pn, that is

M = N ® P

where N = ®nNn and P = (x)nPn. By Corollary 2.1 in [4], N is an approxi-
mately finite factor and hence its fundamental group contains all positive
numbers [6; Lemma 4.8.4]. This fact and Lemma 7 show that the funda-
mental group of M contains all positive numbers.

An approximately finite factor has the property Γ and the remainder
of the theorem is an immediate consequence of Theorem 4. This completes
the proof.
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