AN ELEMENTARY PROOF OF BROUWER'S FIXED POINT THEOREM

TAKEJIRO SEKI

(Received December 25, 1956)

The well-known classical Brouwer's fixed point theorem reads:

If f maps continuously an n dimensional sphere $||X|| \le 1$ into itself, there exists a fixed point X such that f(X) = X.

Here in this brief note an alternative proof of the theorem will be presented: this will be carried out by appealing to some elementary results on analytic functions rather than to a combinatoric lemma regarding a simplex on which the customary proof is based.

In §2 the proof for the general case will be offered. We should like to point out, however, that the case for n=2 allows us to obtain an extremely simple proof, which will be first described in §1.

1. Case n=2. We designate a point by a complex number z=x+yi in a Gaussian plane. Without loss of generality we assume that f maps continuously a square $K: |x| \le 1$, $|y| \le 1$ into itself.

We assume f has no fixed point. Then w = z - f(z) is continuous on K and does not vanish, and therefore Amp w is defined everywhere in K.

Take an arbitrary square M in K. If z runs around the boundary of M once in positive direction, the increment of Amp w is evidently a multiple of 2π , which we denote by $\rho(M)$.

On the boundary of K

$$-\pi < \operatorname{Amp} w - \operatorname{Amp} z < \pi$$

holds, as is easily shown by graphical consideration; and so, if z runs around the boundary of K, the increment of $\operatorname{Amp} w - \operatorname{Amp} z$ is zero. Since $\operatorname{Amp} z$ is increased by 2π when z runs around the boundary of K, the corresponding increment of $\operatorname{Amp} w$ is also 2π . Therefore we have $\rho(K) = 2\pi$.

Now, if we subdivide K into m^2 squares K_1, \ldots, K_{m^2} , each with edge of length 2/m, the following relation holds as is easily seen:

$$\rho(K) = \rho(K_1) + \ldots + \rho(K_{m^2}) \tag{1}$$

Since $c=\mathrm{Min}|w|$ is positive by our assumption, there is, by the uniform continuity of w, a positive number ε such that

$$|z_1 - z_2| < \varepsilon \text{ implies } |w_1 - w_2| < c/2$$

where $w_i = z_i - f(z_i)$ (i = 1, 2).

If we take in such a way $m > 2\sqrt{2}/\varepsilon$, then for any z and z' in K_i we have |w - w'| < c/2; therefore w lies in the circle with center w' and radius c/2, which does not involve the origin. Therefore for such a number m we have $\rho(K_i) = 0$ $(i = 1, 2, \ldots, m^2)$. Accordingly $\rho(K) = 0$ by (1). This con-

106 T. SEKI

tradicts the above consequence $\rho(K) = 2\pi$. Hence there exists a fixed point.

2. Case $n \ge 3$. We denote a point in a real Euclidian n space by $X = (x_1, \ldots, x_n)$ and define $||X|| = \sqrt{x_1^2 + \ldots + x_n^2}$. The sum of any two points $X = (x_1)$ and $Y = (y_1)$ is defined as $X + Y = (x_1 + y_1, \ldots, x_n + y_n)$.

We assume f maps continuously a sphere $||X|| \le 1$ into itself.

It is easily seen that if a certain extension \overline{f} of f which is defined by the following formulas has a fixed point, this point is also fixed under the original f, and vice versa:

$$\overline{f}(X) = \begin{cases} f(X) & \text{if } ||X|| \leq 1 \\ f(X/||X||) & \text{if } ||X|| \geq 1. \end{cases}$$

To see the existence of a fixed point for \overline{f} , we consider the regularisation \overline{f}_b of \overline{f} defined by

$$\overline{f_{\delta}}(X) = \int_{\|Y\| \leq \delta} \overline{f}(X+Y)dV / \int_{\|Y\| \leq \delta} 1dV, \ dV = dy_1 \dots dy_n, \ 0 < \delta < 1.$$

 $\overline{f_{\delta}}(X)$ tends uniformly to $\overline{f}(X)$ when δ tends to 0. Furthermore we have $\|\overline{f_{\delta}}(X)\| \le 1$ for any allowable δ .

Now assume that $\overline{f_\delta}$ has a fixed point $X(\delta)$ for every δ , then, the compactness of the unit sphere gives rise to the existence of a positive decreasing sequence $\{\delta_n\}$ such that $\lim_{n\to\infty} X(\delta_n)$ exists. Next, in view of the uniform con-

vergence of $\{f_{\delta_n}(X)\}$ together with the continuity of $\overline{f}(X)$, it follows that $X_0 = \lim X(\delta_n)$ is a fixed point of \overline{f} .

Hence, the problem is reduced to show that $\overline{f_{\delta}}$ has a fixed point. Noting that every coordinate of $\overline{f_{\delta}}$, the regularisation of $\overline{f_{\delta}}$ has partial derivatives of the *n*-th order and replacing $\overline{f_{\delta}}$ by f for simplicity of notation, we may assume, without loss of generality, that

f is a continuous mapping from an n space R^n into the unit sphere $||X|| \le 1$, and every coordinate y_i of f(X) has partial derivatives of the n-th order, consequently $\frac{\partial^2 y_i}{\partial x_i \partial x_k} = \frac{\partial^2 y_i}{\partial x_k \partial x_j}$ holds.

We proceed to the next step of our proof. For every X such that $X \neq \mathcal{E}f(X)$ where $|\mathcal{E}| < 1.5$, we define $f(X|\mathcal{E})$ by

$$f(X|\mathcal{E}) = \frac{X - \mathcal{E}f(X)}{\|X - \mathcal{E}f(X)\|}.$$
 (1)

The function $f(X|\mathcal{E})$ has evidently derivatives of the *n*-th order and is continuous with respect to (X, \mathcal{E}) whenever it is defined. Moreover it is a regular function of \mathcal{E} .

Since $X - \mathcal{E}f(X)$ does not vanish on the surface of the cube $K: |x_1| \leq 2$, ..., $|x_n| \leq 2$, $f(X|\mathcal{E})$ is continuous there. Take a point $X_i = (x_1, \ldots, x_n)$ and consecutive n-1 points

$$X_j = (x_1, \ldots, x_j + dx_j, \ldots, x_n) \quad (j = 1, \ldots, i-1, i+1, \ldots, n)$$

lying on the surface S_i of K defined by $x_i = 2$. We calculate the limit of the ratio of the volume of a tetrahedron with vertices $f(X_1|\mathcal{E}), \ldots, f(X_n|\mathcal{E})$ and 0, to that of another tetrahedron with vertices X_1, \ldots, X_n and 0. If we put $f(X|\mathcal{E}) = (y_1, \ldots, y_n)$ and $D(y_j/x_k) = \partial y_j/\partial x_k$, this limit is given by

$$\frac{1}{n!} \begin{vmatrix} y_1 + D(y_1/x_1)dx_1 & \vdots & y_1 + D(y_1/x_n) dx_n \\ \vdots & \vdots & \vdots & \vdots \\ y_n + D(y_n/x_1)dx_1 & y_n & y_n + D(y_n/x_n) dx_n \end{vmatrix} : \frac{1}{n!} \begin{vmatrix} x_1 + dx_1 & \vdots & x_1 \\ \vdots & \vdots & \vdots \\ x_n & \vdots & \vdots \\ x_$$

We define for every X such that $X \neq \mathcal{E}f(X)$

As the height of the latter tetrahedron is 2, $F^{t}(X|\mathcal{E})_{x_{i}=2}$ is just the ratio by which the area element at X_{i} on S_{i} is magnified under the mapping $f(X|\mathcal{E})$, $f(X|\mathcal{E})$ being regarded as a mapping from S_{i} on the surface of the unit sphere. In a similar manner, $-F^{t}(X|\mathcal{E})_{x_{i}=-2}$ is the corresponding magnifing ratio for area elements under the mapping $f(X|\mathcal{E})$ from S'_{i} defined by $x_{i}=-2$ on the surface of the unit sphere.

Since $f(X|0) = X/\|X\|$ maps homeomorphically the surface of K on that of unit sphere and, as is easily shown, $F(X|0)_{x_i=2} \ge 2/(2\sqrt{n})^n$ and $-F^i(X|0)_{x_i=2} \ge 2/(2\sqrt{n})^n$ hold, $F^i(X|\mathcal{E})_{x_i=2}$ and $-F^i(X|\mathcal{E})_{x_i=-2}$ are also positive for \mathcal{E} sufficiently near 0, and consequently for such a small \mathcal{E} , $f(X|\mathcal{E})$ is a homeomorphism from the surface of K on that of the unit sphere. For every image point is an inner point and the set of all image points must be closed as the image of a compact set, and therefore the image of the surface of K is the surface of the unit sphere. Therefore we have for small \mathcal{E}

$$\sum_{i=1}^{n} \int \dots \int \{F^{i}(X|\mathcal{E})_{x_{i}=2} - F^{i}(X|\mathcal{E})_{x_{i}=-2}\} dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{n} = \text{const.}$$
 (3)

where the constant equals to the area of the surface of the unit sphere.

If we use a complex number ξ instead of real number ε , $f(X|\xi)$ can be defined by the same formula as (1) whenever $X \neq \xi f(X)$, where $||X - \xi f(X)||$

108 T. SEKI

denotes a complex number $\left\{\sum (x_i - \xi f_i(X))^2\right\}^{1/2}$. Though we must determine, in a precise consideration, which value $\left\{\sum (x_i - \xi f_i(X))^2\right\}^{1/2}$ represents, we define the value only for X and ξ such that $\|X\| > 1.8$ and $|\xi| < 1.7$, because we use X near the surface of K. For any X such that $\|X\| > 1.8$, we define $\left\{\sum (x_i - \xi f_i(X))^2\right\}^{1/2}$ in such a way that it represents a regular function which takes a positive number at $\xi = 0$. Thus if $\|X\| > 1.8$ holds, coordinates $y_j = y_j(X|\xi)$ of $f(X|\xi)$ are, as is easily seen, regular in a circle $|\xi| < 1.7$ and continuous with respect to (X,ξ) in this region. Moreover $y_j(X|\xi)$ has, as is easily shown by our assumption, partial derivatives $D(y_j/x_k|\xi) = \frac{\partial y_j(X|\xi)}{\partial x_k}$ continuous with respect to (X,ξ) in the same region.

Now, we will show that $D(y_j/x_k|\xi)$ is analytic. Denoting $X = (x_1, \ldots, x_n)$ and $Y = (x_1, \ldots, x_k + \Delta x_k, \ldots, x_n)$, the Cauchy's integral formula gives us, for every ξ such that $|\xi| < 1.6$,

$$rac{y_j(Y|\xi)-y_j(X|\xi)}{\Delta x_k}=rac{1}{2\pi i}\int\limits_{C}rac{1}{\xi-\xi}rac{y_j(Y|\xi)-y_j(X|\xi)}{\Delta x_k}\,d\zeta$$

where C denotes a circle with a center 0 and radius 1.6. When Δx_k tends to zero, the integrand of the right side tends to $\frac{D(y_j/x_k|\zeta)}{\zeta-\xi}$ uniformly with respect to ζ on C. Therefore we have

$$D(y_j/x_k|\xi) = \frac{1}{2\pi i} \int_C \frac{D(y_j/x_k|\xi)}{\zeta - \xi} d\zeta.$$

Hence $D(y_j/x_k|\xi)$ is a regular function of $\xi(|\xi| < 1.6)$, as was to be shown.

Thus $D(y_j/x_k|\xi)$ is continuous with respect to (X,ξ) and regular with respect to ξ . Replacing $D(y_j/x_k)$ by $D(y_j/x_k|\xi)$ in (2), we define $F^i(X|\xi)$ in the same way. Then $F^i(X|\xi)$ is continuous with respect to (X,ξ) on the region defined by ||X|| > 1.8 and $|\xi| < 1.6$, and regular in $|\xi| < 1.6$. Therefore $F^i(X|\xi)_{x_i=2}$ is also regular in $|\xi| < 1.6$ and continuous with respect to (X,ξ) when X ranges on the surface S_i of K. By an analogous method as above which depends only on the Cauchy's integral formula and on the theory of uniform convergence, we can show that

$$\int \ldots \int F^i(X|\xi)_{x_i=2} dx_1 \ldots dx_{i-1} dx_{i+1} \ldots dx_n$$

is regular in $|\xi| < 1.5$, integral domain being $-2 \le x_j \le 2$, $j = 1, 2, \ldots$, $i - 1, i + 1, \ldots, n$. By the similar consideration, we know that

$$\sum_{i=1}^{n} \int \dots \int \{F^{i}(X|\xi)_{x_{i}=2} - F^{i}(X|\xi)_{x_{i}=-2}\} dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{n}$$
 (4)

is regular in a circle $|\xi| < 1.5$.

Since (3) holds for every real ε sufficiently small, the representation (4) equals to a constant in $|\xi| < 1.5$ by a well-known property of analytic functions. Putting $\xi = 1$ in (4), we have

$$\sum_{i=1}^{n} \int ... \int \{F^{i}(X|1)_{x_{i}=2} - F^{i}(X|1)_{x_{i}=-2}\} dx_{1} dx_{i-1} dx_{i+1} dx_{n} \neq 0 .$$
 (5)

It will be shown that, if f has no fixed point, the left side of (5) is zero. In fact, if f has no fixed point, then F(X|1) is defined and has continuous derivatives everywhere by our assumption. Therefore the left side of the representation (5) equals to

$$\sum_{i=1}^n \int \dots \int \frac{\partial F^i(X|1)}{\partial x_i} dx_1 \dots dx_n = \int \dots \int \sum_{i=1}^n \frac{\partial F^i(X|1)}{\partial x_i} dx_1 \dots dx_n.$$

Denote Δ_j^i the determinant which is obtained by differentiating the *j*-th column of F(X|1) with respect to x_i , then we have

$$\sum_{i=1}^n \frac{\partial F^i(X|1)}{\partial x_i} = \sum_{i=1}^n \sum_{j=1}^n \Delta^i_j = \sum_{i=1}^n \Delta^i_i ,$$

because $i \neq j$ implies $\Delta_j^i = -\Delta_j^j$ as is easily shown. Since $y_1^2 + \ldots + y_n^2 = 1$ implies $\Delta_i^i = 0$, we have

$$\sum_{i=1}^n \frac{\partial F^i(X|1)}{\partial x_i} = \sum_{i=1}^n \Delta_i^i = 0 .$$

Hence if f has no fixed point, the left side of the representation (5) vanishes. This contradicts (5). Therefore f has a fixed point.

TOKYO COLLEGE OF SCIENCE.