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The well-known classical Brouwer’s fixed point theorem reads :

If f maps continuously an n dimensional sphere | X|| <1 into itself, there
exists a fixed point X such that (X) = X.

Here in this brief note an alternative proof of the theorem will be pre-
sented : this will be carried out by appealing to some elementary results on
analytic functions rather than to a combinatoric lemma regarding a simplex
on which the customary proof is based.

In §2 the proof for the general case will be offered. We should like to
point out, however, that the case for # = 2 allows us to obtain an extremely
simple proof, which will be first described in § 1.

1. Case n = 2. We designate a point by a complex number z = x + ¥ in
a Gaussian plane. Without loss of generality we assume that f maps con-
tinuously a square K: |x| =<1, [y] <1 into itself.

We assume f has no fixed point. Then w = z —f(z) is continuous on K
and does not vanish, and therefore Ampw is defined everywhere in K.

Take an arbitrary square M in K. If z runs around the boundary of M
once in positive direction, the increment of Ampw is evidently a multiple of
27r, which we denote by p(M).

On the boundary of K

—m < Ampw — Ampz < 7
holds, as is easily shown by graphical consideration; and so, if z runs around
the boundary of K, the increment of Ampw — Ampzis zero. Since Ampz
is increased by 27 when z runs around the boundary of K, the corresponding
increment of Ampw is also 27r. Therefore we have p(K) = 2.

Now, if we subdivide K into m? squares K, ...., K,z each with edge of
length 2/m, the following relation holds as is easily seen:

Since ¢ = Min|w| is positive by our assumption, there is, by the uniform

continuity of w, a positive number & such that
|21 — 22| < & implies |w; —ws| < ¢/2
where w; = 2; —f(z:) (i = 1,2).

If we take insuch a way m > 24/2 /€, then for any z and 2’ in K; we
have |w —w'] < ¢/2; therefore w lies in the circle with center w’ and radius
¢/2, which does not involve the origin. Therefore for such a number m we
have p(Ki;)=0 (:=1,2,...., m?. Accordingly p(K)=0 by (1). This con-
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tradicts the above consequence p(K) = 27r. Hence there exists a fixed point.

2. Case n =3. We denote a point in a real Euclidian # space by X =
(%1, ....,%) and define | X]| =A/2*+ ....+ 22 . The sum of any two points
X=(x)and Y = (y) is defined as X+ Y = (% + 31, ...., Xn -+ In).

We assume f maps continuously a sphere || X|| <1 into itself.

It is easily seen that if a certain extension f of f which is defined by the
following formulas has a fixed point, this point is also fixed under the original
f, and vice versa:

AX) if |X]| =1
Ax/x)) i X =21

To see the existence of a fixed point for f, we consider the regularisation
/3 of f defined by

7x) = |

Fo(X) = f AX+ Y)dv/f 14V, AV = dy,....dv, 0< 8 < 1.
I 43 D (-1
fo(X) tends uniformly to f{X) when 8 tends to 0. Furthermore we have
If(X)| =1 for any allowable &.
Now assume that f; has a fixed point X(8) for every §, then, the com-

pactness of the unit sphere gives rise to the existence of a positive decreasing

sequence {8,} such that lim X(8.) exists. Next, in view of the uniform con-
NS00

vergence of {f3,(X)} together with the continuity of f(X), it follows that X, =
tim X(8,) is a fixed point of f.

Hence, the problem is reduced to show that f5 has a fixed point. Noting
that every coordinate of f5, the regularisation of f, has partial derivatives of

the n-th order and replacing f; by f for simplicity of notation, we may assume,
without loss of generality, that

S is a continuous mapping from an n space R" into the wunit sphere || X||

=<1, and every coordinate y: of f(X) has partial derivatives of the n-th order,
(o Ve o

Sxoms  omon, O

We proceed to the next step of our proof. For every X such that X =
&(X) where |&] < 1.5, we define fAX|E) by
X —eXx) )
X — &l
The function f(X|&) has evidently derivatives of the n-th order and is con-
tinuous with respect to (X, &) whenever it is defined. Moreover it is a regular
function of &.

Since X — &f(X) does not vanish on the surface of the cube K: |x]| <2,
... |a] 22, fIX|€E) is continuous there. Take a point X; = (%, -..., %)
and consecutive 7# — 1 points

consequently

fix|e) =
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X’ = (x,, ey x,+dx,, ceeay xn) (j= 1, -...,i'—‘l, i+ 1, ....,n)
lying on the surface S; of K defined by x; =2. We calculate the limit of
the ratio of the volume of a tetrahedron with vertices f(X;|€), .. .., AXa|&)
and 0, to that of another tetrahedron with vertices X, ...., X, and 0. If
we put AX|E) = (¥, ....,¥s) and D(¥;/%,) = 9Y;]o%, this limit is given by

U i
hd ~

1 [+ Dy/x)dx : y Y+ DOi/%m)d%e | 1 ; xnt+de :oxm o X
o : R : I TH
Yn +_D(y,,/x1)dx1 Yn In + D(’}’n/xn) dxn 3 Xn x:n Xn + d%n \
4
_ 1 Dy /%) : n . Difxw)
= : Dol : (X = 2).

DOa/%) © ¥a i D(¥a)%) |
We define for every X such that X=+&(X)
Di/x) :© ¥ : D%
FXxje)=| oo @)
Du/%) © Iu : D(n]%)
As the height of the latter tetrahedron is 2, F¥(X|&), -2 is just the ratio

by which the area element at X; on S; is magnified under the mapping
f(X]8), AX|€) being regarded as a mapping from S; on the surface of the

unit sphere. In a similar manner, — F¥X|&),--2 is the corresponding
magnifing ratio for area elements under the mapping f(X|&) from S; defined
by % = —2 on the surface of the unit sphere.

Since f(X|0) = X/||X|| maps homeomorphically the surface of K on that
of unit sphere and, as is easily shown, FY(X|0),-z=2/(2v/n)* and — F¥(X]
0),- -2 = 2/(2/n)* hold, FY(X|E)y,-2 and — F'(X|&),,--: are also positive for &
sufficiently near 0, and consequently for such a small & AX]|&) is a homeo-
morphism from the surface of K on that of the unit sphere. For every image
point is an inner point and the set of all image points must be closed as the
image of a compact set, and therefore the image of the surface of K is the
surface of the unit sphere. Therefore we have for small &

Ef..f{F‘(Xle)m,ﬂ — F¥(X| €)= —2}d%: .. . .A%i 1 dXisy. . ..d%, = const.  (3)
i=1
where the constant equals to the area of the surface of the unit sphere.

If we use a complex number £ instead of real number &, f(X|&) can be
defined by the same formula as (1) whenever X = £(X), where | X — &(X)|
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1/2
denotes a complex number {2 (% — Z;'ﬂ'(X))“} . Though we must determine,

i 12
in a precise consideration, which value 12 (2 — Eft(X))Z]» represents, we

define the value only for X and & such that || X] > 1.8 and |&| < 1.7, because
we use X near the surface of K. For any X such that | X] > 1.8, we define

12
{ 2 (% — Ef;(X))“} in such a way that it represents a regular function

which takes a positive number at £ = 0. Thus if || X]| > 1.8 holds, coordinates
y; = ¥5(X|E) of AX|E) are, as is easily seen, regular in a circle |£| < 1.7 and
continuous with respect to (X, &) in this region. Moreover y,X|&) has, as
is easily shown by our assumption, partial derivatives D(y;/%;|&) = @%i@
.

continuous with respect to (X, €) in the same region.

Now, we will show that D(y;/x:|€) is analytic. Denoting X = (x, .. ..,
%) and Y = (%, ..., % + A%, ....%), the Cauchy’s integral formula gives us,
for every £ such that |&| < 1.6,

yi(Y|E) —ys(XIE) _ 1 1 y(Y|8) —y4X]8) dt

Ax,‘. 2mri A g - E Ax;;

where C denotes a circle with a center 0 and radius 1.6. When Ax; tends

D(y;/ % &)
&-¢&

to zero, the integrand of the right side tends to uniformly with

respect to & on C. Therefore we have

D(y;/%,| E) = .,2;1;; D,(yg/fkg), i@,

Hence D(y;/x,|E) is a regular function of &|&| < 1.6), as was to be shown.
Thus D(y;/x.|€) is continuous with respect to (X, &) and regular with
respect to E. Replacing D(¥;/x.) by D®;/%:]E) in (2), we define F/(X|¥) in
the same way. Then FiX|&) is continuous with respect to (X, &) on the
region defined by ||X|| > 1.8 and |&| <« 1.6, and regular in |£| < 1.6.
Therefore F! (X |E),,-» is also regular in [&| < 1.6 and continuous with
respect to (X, &) when X ranges on the surface S; of K. By an analogous

method as above which depends only on the Cauchy’s integral formula
and on the theory of uniform convergence, we can show that

f..fFi(le):,;[=gdxl....dxg_ldxz+1~...dxn

is ragular in |§| < 1.5, integral domain being —2=<x;<2 ;=12 ....,
i—1, i+1,...., n. By the similar considzration, we know that

> f..f{F"(X[E)mFg-F”'(Xlé)mt:_.z}dxl....dxi_ldxfﬂ.. dx, (4)

i=1



AN ELEMENTARY PROOF OF BROUWER’S FIXED POINT THEOREM 109

is regular in a circle |&| < 1.5.

Since (3) holds for every real & sufficiently small, the representation (4)
equals to a constant in |£| < 1.5 by a well-known property of analytic
functions. Putting & = 1 in (4), we have

f f{F{(XI Doe=2 — F(X|Dyi=-2}dx;. . . .d%i-1dA%isq....d% =0 . (5)
i=1

It will be shown that, if f has no fixed point, the left side of (5) is zero.
In fact, if / has no fixed point, then F¥(X|1) is defined and has continuous
derivatives everywhere by our assumption. Therefore the left side of the
representation (5) equals to

Denote Al the determinant which is obtained by differentiating the j-th column
of F¥(X|1) with respect to x;, then we have

n

F(X|1 oy
> PAID 224\» > A,

i=1 =1 j=1 i=1

because 7 + j implies A}= —A] as is easily shown. Since yi+ ....+y;=1
implies A} = 0, we have

oFi{(X|1
20 a(x¢l) EA,_ s

i=1 i=1

Hence if / has no fixed point, the left side of the representation (5)
vanishes. This contradicts (5). Therefore f has a fixed point.
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