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The well-known classical Brouwer's fixed point theorem reads:

If f maps continuously an n dimensional sphere \\X\\ ̂  1 into itself, there
exists a fixed point X such that f(X) = X.

Here in this brief note an alternative proof of the theorem will be pre-
sented : this will be carried out by appealing to some elementary results on
analytic functions rather than to a combinatoric lemma regarding a simplex
on which the customary proof is based.

In § 2 the proof for the general case will be offered. We should like to
point out, however, that the case f or n = 2 allows us to obtain an extremely
simple proof, which Will be first described in § 1.

1. Case n = 2. We designate a point by a complex number z = x -f yi in
a Gaussian plane. Without loss of generality we assume that / maps con-
tinuously a square K\ \x\ <Ξ 1, \y\ g 1 into itself.

We assume / has no fixed point. Then w = z —f(z) is continuous on K
and does not vanish, and therefore A.mpw is defined everywhere in K.

Take an arbitrary square M in K. If z runs around the boundary of M
once in positive direction, the increment of Amp w is evidently a multiple of
2ττ, which we denote by p(M).

On the boundary of K

— 7r < Amp w — Amp z < π

holds, as is easily shown by graphical consideration and so, if z runs around
the boundary of K, the increment of Amp w — Amp z is zero. Since Amp z
is increased by 2ττ when z runs around the boundary of K, the corresponding
increment of Amp w is also 2ττ. Therefore we have p(K) == 2ττ.

Now, if we subdivide K into m- squares K\, , Km*, each with edge of
length 2/m, the following relation holds as is easily seen:

p(K) = ptld) + . . . . +p(Km*) (1)

Since c = Min|w| is positive by our assumption, there is, by the uniform
continuity of w, a positive number £ such that

\Zι — 2al < £ implies \Wι — w2\ < c/2

where wι = Zι —f(zι) (i = 1,2).
If we take in such a way m > 2\/2 /£, then for any z and z' in Ki we

have \w — w'\ < c/2; therefore w lies in the circle with center u/ and radius
c/2, which does not involve the origin. Therefore for such a number m we
have p(Kt) = 0 (i = 1, 2, . . . . , m2). Accordingly p(K) = 0 by (1). This con-
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tradicts the above consequence p(K) = 2ττ. Hence there exists a fixed point.

2. Case n ί> 3. We denote a point in a real Euclidian n space by X =

(*ι, ____ ,#n) and define \\X\\ = /v/*ϊ + ---- + aj . The sum of any two points
X = (Xi) and F = (yf) is defined as JC+.F= (*ι + tt, •• ••, *n-f J>»).

We assume / maps continuously a sphere ||X|| < 1 into itself.

It is easily seen that if a certain extension/ of / which is defined by the
following formulas has a fixed point, this point is also fixed under the original
/, and vice versa :

To see the existence of a fixed point for /, we consider the regularisation

fs of / defined by

= J J(X + Y)dVJ ί IdV, dV = flEv! . . . .#», 0 < δ < 1.

tends uniformly to f(X) when δ tends to 0. Furthermore we have

||/ΪOX)II S 1 for any allowable δ.

Now assume that /i has a fixed point X(δ) for every δ, then, the com-
pactness of the unit sphere gives rise to the existence of a positive decreasing
sequence {δn} such that lim X(Sn) exists. Next, in view of the uniform con-

W->oo

vergence of {fsn(X)} together with the continuity of f(X), it follows that X0 =

ίitnJϋtδn) is a fixed point of ~f.

Hence, the problem is reduced to show that /δ has a fixed point. Noting

that every coordinate of fs, the regularisation of/, has partial derivatives of

the n-th order and replacing f& by /for simplicity of notation, we may assume,
without loss of generality, that

f is a continwus mapping from an n space R" into the unit sphere \\X\\
<; 1, and every coordinate yt of f(X) has partial derivatives of the n-th order,

consequently — — = yi holds.

We proceed to the next step of our proof. For every X such that X =t=
ξf(X) where \€\ < 1.5, we define flX\6) by

The f unction f(X \ £) has evidently derivatives of the n-th order and is con-
tinuous with respect to (X, 6) whenever it is defined. Moreover it is a regular
function of £ .

Since X — ξf(X) does not 'vanish on the surface of the cube K\ \XL\ ^2,
. . . ., \Xn\ S 2, f(X\£) is continuous there. Take a point Xt = (xlt ---- , Xn)
and consecutive n — 1 points
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Xj = fa, . . . . , Xj + dXh . . . . , X*) C/=l , ..;.,|-.l, /-f 1, . . . .,«)

lying on the surface & of K defined by Xi = 2. We calculate the limit of
the ratio of the volume of a tetrahedron with vertices /CXΊ|£), , f(Xn\e)
and 0, to that of another tetrahedron with vertices Xlt , Xn and 0. If
we put/(;$fl£) = OΊ, .. ..9yn) and D&jjx*) = dyjfiXk, this limit is given by

yn
yn

1 Xl -f Xι

xn + dxn

7*0

D(yn/xι)

We define for every X such that

D(yι.

(* = 2).

D(ynι

yι

y

D&IXJ

D(yn,

(2)

As the height of the latter tetrahedron is 2, Fi(X\S\i=,ι is just the ratio
by which the area element at 'Xt on Si is magnified under the mapping

f(X\S), f(X\£) being regarded as a mapping from Si on the surface of the
unit sphere. In a similar manner, — F'(3Γ| £),,,,=_2 is the corresponding
magnifing ratio for area elements under the mapping f(X\8) from S'L defined
by Xi = —2 on the surface of the unit sphere.

Since /(X\0) = JΓ/||JC|| maps homeomorphically the surface of K on that

of unit sphere and, as is easily shown, f*(JΓ| 0) .̂2 ?>2/(2^n)n and — F*(X\
OJ^.-a >2/(2v/w)w hold, F'(X|£)*t=2 and - FKXΊθU—2 are also positive for £
sufficiently near 0, and consequently for such a small £, /(^Γ|£) is a homeo-
morphism from the surface of K on that of the unit sphere. For every image
point is an inner point and the set of all image points must be closed as the
image of a compact set, and therefore the image of the surface of K is the
surface of the unit sphere. Therefore we have for small £

2 I .. I \ dxt-idxn-i dx» = const. (3)

where the constant equals to the area of the surface of the unit sphere.
If we use a complex number ξ instead of real number £, f(X\ξ) can be

defined by the same formula as (1) whenever X*ξf(X), where \\X- ξf(X)\\
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denotes a complex number -j >; (xι — ξfi(X)Y\ . Though we must determine,

in a precise consideration, which value H >] (#* — ξfi(X)Y\ represents, We

define the value only for X and ξ such that \\X\\ > 1. 8 and \ξ | < 1. 7, because
we use X near the surface of K. For any X such that ||X|| > 1. 8, we define

in such a way that it represents a regular function

which takes a positive number at ξ = 0. Thus if ||X"|| > 1. 8 holds, coordinates
y5 = y j ( X \ ξ ) of f ( X \ ξ ) are, as is easily seen, regular in a circle \ξ\ < 1.7 and
continuous with respect to (X,ξ) in this region. Moreover y j ( X \ ξ ) has, as

is easily shown by our assumption, partial derivatives D(yj/Xk\ζ) = -̂ -4 — —oxk

continuous with respect to (X, ξ) in the same region.
Now, we will show that D(yj/xlΰ\ξ) is analytic. Denoting X = fa, ---- ,

xn) and Y = (#ι, . . . . , #& 4- ΔΛ*, . . . .Λn), the Cauchy's integral formula gives us,
for every £ such that \ξ\ < 1. 6,

= _! Γ 1 yj(Y\ζ) -j *
2ττί J ζ-ξ b

c

where C denotes a circle with a center 0 and radius 1. 6. When Δxk tends

to zero, the integrand of the right side tends to ~~γ'l uniformly with
b ~~ ζ"

respect to ξ on C. Therefore we have

Hence D(yJ/x1s\ξ) is a regular function of ξ ( \ ξ \ < 1.6), as was to be shown.
Thus D(y3lx k\ξ) is continuous with respect to (X,ξ) and regular with

respect to ξ. Replacing D(yj/xk) by Dtyj/xk\ξ) in (2), we define Fl(X\ξ) in
the same way. Then F f ( X \ ξ ) is continuous with respect to (X,ξ) on the

region defined by |1X|| > 1. 8 and \ξ\ < 1. 6, and regular in \ξ\ < 1. 6.
Therefore F* (X \ζ)Xi=* is also regular in \ξ\ < 1.6 and continuous with
respect to (X, ξ) when X" ranges on the surface Si of Tϊf. By an analogous
method as above which depends only on the Cauchy's integral formula
and on the theory of uniform convergence, we can show that

1 .. I Fi(X\ξ)!0l^2dXι ---- dXi-ιdXi+Ί ----

is regular in | f | < l . 5, integral domain being — 2 < Xj <Ξ 2, y = l , 2, ,
i — 1, / 4- 1, . . . , n. By the similar consideration, we know that

:)»i=-%} dxι - "dXi-i dXi+ι.. ..dxn (4)
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is regular in a circle \ξ\ < 1.5.
Since (3) holds for every real 8 sufficiently small, the representation (4)

equals to a constant in \ξ\ < 1.5 by a well-known property of analytic
functions. Putting ξ = 1 in (4), we have

{F(X\ΐ)Λt.* - F(X\ΐ)Λtm.^dxl... .da-, dxi+l... .dxn Φ 0 . (5)

It Will be shown that, if/has no fixed point, the left side of (5) is zero.
In fact, if / has no fixed point, then F(X\ 1) is defined and has continuous
derivatives everywhere by our assumption. Therefore the left side of the
representation (5) equals to

" Γ Γ
2J -J

_ Γ Γ 4
~ J

3F*(X\ T) _ Γ Γ 4, 3F(X\ 1)
—- ~ - —

Denote Δ} the determinant which is obtained by differentiating the j-th column
of F(X\l) with respect to Xt, then we have

= = - =

because / Φ j implies ΔJ = — Δf as is easily shown. Since y\ + ---- +^ = 1
implies Δ{ = 0, we have

Hence if / has no fixed point, the left side of the representation (5)
vanishes. This contradicts (5). Therefore / has a fixed point.
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