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1. Introduction. A series 2 an * s s a*d to be absolutely summable (A)

or briefly summable \A\ if the series 2 anχn * s convergent for 0 < ; # < 1
and its sum-function φ(x) satisfies that

\φ\x)\dx<<χ>. (1.1)

This summability has been studied by many writers. Recently T. M. Flett
introduced an extension of this summability for # > 1 replacing the condition
(1.1) by the condition

I (1 — xf-^φXx)^ dx< oo, (1.2)

o

which has an important significance as well as (1.1) in the theory of Fourier
series (cf. [1] where references are given). T. M. Flett called this summability
"summability \A\k" where k > 1. At the same time he gave an extension
for summability \C\ the absolute Cesaro summability , that is, the

series 2 #» * s called summable \C, a\h, where k > 1 , a > —1, if the series

Σ^-M^-σ- i* (1.3)

is convergent, σ% being the n th Cesaro mean of order a of the series 2 <*«•

The summability \C,a\τ is the ordinary absolute summability |C,a\.

Among the many theorems on the absolute summability, one of the most

interesting is the so-called high-indices theorem. By the Zygmund high-

indices theorem [5], if the series 2 an * s lacunary, that is, its terms are

all zero except for the terms with indices n0 = 0 < nx < n2 < such that
nj+ι]nj>q>l{j—l,2, ), and if the series is summable \A\, then it

turns out to be absolutely convergent or summable |C,0|. Flett [2] studied

an extension of this result to the summability \A\h and gave an inequality

corresponding to that of the Zygmund theorem [5]. But he has left open the

problem: If the series 2 a» * s lacunary and summable \A\k, then is it

summable |C, 1 - I/A|* where k > 1 ?
The main purpose of this paper is to give a negative answer to this

problem. Therefore the Flett inequality ([2] Theorem 1) is the best possible
one of this sense.
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2. Our answer to the Flett problem is :

THEOREM 1. For any [k >1 there exists a lacunary series 2 c* which is

summable \A\h but is not summable \C, 1 — l/k\h.

For the proof of this theorem we shall establish some preliminary
theorems concerning the absolute summabilities of the Rademacher series.

Let us denote the Rademacher system by ψo(x), ψι(x), ψz(x), (0g
x <Ξ 1). The following theorem is a generalization of the Zygmund theorem
[5] where k = 1.

THEOREM 2. Let k^l. For the Rademacher series

Σ (2 D
.HO

if the series
oo 2 n + 1 - l vfc

2 ( 2 «} ) (2.2)

is convergent, then the series (2.1) is summable \A\k almost everywhere. And,
if the series (2.2) is divergent, then the series (2.1) is summable |A| f c almost
nowhere.

PROOF. Suppose that the series (2. 2) is convergent and that k > 2. We
shall prove the convergence of the integral

1 1

r1 r1

I dxj (1-pY-1
(2.3)

which leads us to the summability \A\h almost everywhere of the series
(2.1). By the Khinchin inequality (cf. [3] p. 131, [4] Lemma 1) the integral
(2.3) is not greater than

r1

K
o

r1 / ~
o n = 1

= /f2^ (2 4 )

say, where /?ί = 1 — 2"' (/ = 0,1,2, ). Now easily we have

1) K, Kr are positive constants not necessarily the same in every occurrence.
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(2.5)

say. We put for brevity

2 ^ - 1

Aj= 2 β*n (7 = 0,1,2,....).

Then, a s p t S l for z = 0,1,2, ....,",

-o

and as £ > 2 by the Holder inequality with indices k/2 and k/(k — 2), we get

fc 2

Hence, we have

Σ A £ * Σ -55JΪ Σ 2*^" '2 As

2H/2
ί-,/4

^ir2^ f c . (2.6)

On the other hand,

since ^ = ( l - -ψ+ϊ)**1 **~% - *•''"'. Let us put ξm = 2*me-*m, then by

the Holder inequality with the same indices as above,
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fr/2

Hence we get

J-0 ί « 0

(2.7)

From (2.4), (2.5), (2.6) and (2.7) we can conclude the convergence of
the integral (2.3).

The case k > 2 was proved. The case l ^ j ^ S 2 will be proved by showing
the convergence of (2.3) with suitable application of the Holder inequality
along the similar way as above. But in this case the more will be proved
in the next theorem, and we omit the proof here.

For the proof of the latter half of the theorem let us suppose that the
series (2.1) is summable | A\k for all x € E, \E\ > 0. We may suppose that
the summability is uniform in the set E. Hence we may suppose that

E 0

By the Khinchin inequlity

K > I (1 — pf -ι dp

nψn(x)pn-1 I dp I
J >

< K.

dx

/

I

{l-

fc/2

We put pj - 1 — 2 - ί and /, = (/>.!, />J+i) then

f
/

^) J ( 2 *-
W 2 J
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(Σ «

Therefore the series (2. 2) is convergent. The theorem was proved.
Since the summability \C,oc\k implies the summability |A|fc, where k 2̂  1,

α: > — 1 (Flett [1] Theorem 2), the following theorem is a refinement of the
first part of theorem 2 if the summability index k is restricted such as 1 ^

THEOREM 3. Let {φn(x)} be an orthonormal system. If 1 <; k <i 2, a > 1/2

s/ the series (2. 2) /s convergent, then the orthonormal series 2 **» ^»(*)

is summable |C, α| fc almost everywhere.

For the convenience we shall prove this theorem after the proof of the
next two theorems.

THEOREM 4. Let k^l and a > —1. For the Rademacher series (2.1), if
the series

^ j Γ + Σ̂&ϊ <2 8>
is converegent, then the series (2.1) /s summable \C,a\k almost everywhere.
And if the series (2.8) is divergent the series (2.1) is summable \C, a\k almost
nowhere.

Since the second term of (2.8) is a necessary condition for the summability
\C,a\k in a set of positive measure ([1] Theorem 3), it seems to us that the
first term of (2.8) should play an important role for the summability \C,cc\h
if a Φ 0.

PROOF OF THEOREM 4. Let us denote by σ%(x) the n-th Cesaro mean of
order a of the series (2.1). Then by the well known formula we have

' έ;
where E* — ( n ) ~ ri*. Hence by the Khinchin inequality we get

J ?" 1|σ"+l(*)~<
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fc/2

fc/2

2
aj

which is easily majorated by K times the sum of the series (2.8). Hence the
first part of Theorem was proved.

Now let us suppose that the \C,a\k sum of the series (2.1) is uniformly
bounded for xζE, \E\ > 0 . We have

K ί 2

«
aj

+

Let N be a positive integer and replace au a2, , aπ-ι in the series (2.1) by
zeros. This replacement has no influence on the summability, since

which is convergent. Therefore we may suppose that

where iV = N(E) is determined by the Khinchin inequality:

dx,

(2.9)

fc/2

From (2.9) and (2.10) we get immediately the convergence of the series (2.8),
since the integer N may be replaced by 1 repeating the similar argument
as above.
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Thus the theorem was proved.

THEOREM 5. Let 1 <; & <i 2 and a > —1. If the series (2. 8) is convergent,

then the orthonormaί series 2 <*n<pn(x) is summable \C,a\k almost everywhere.

The proof is immediate by the same line as the proof of the first part
of the preceding theorem using the Holder inequality ,and the Parseval
relation in place of using the Khinchin inequality. The detail may be
omitted.

Now we are in a position to prove Theorem 3. For this purpose it is
sufficient, by Theorem 5, to show that if one of the series (2.2) and (2.8) is
convergent, so is the other under the condition 1 fS k <; 2 and a > 1/2.

Suppose that the series (2.2)jis convergent. For the second term in (2.8),

4 M I ΛΛ^Λ — JC + I -^—I Jmrnt ΛΛkCύ — Jc+1

< v — - — y. \an\k

^ M A O (JCOCI — fc + 1 ) *mmΛ
3 = 0 W = 2 3

which is convergent a s « > 1/2. For the first term in (2. 8),

= ϋΓ A + iΓ β (2.12)

say. Then by easy consideration

•12] kί*

,1 = 1 " v M
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.,i fc/2

1 Z " 1 2 1

-k(ΈΈ M

fc/2

i=o

/-I

w Σ 2 ω A" <as x s A = 2 )

έτ=ϊ| Σ (n-J

m + i - i ?ι

Σ î m.| Σ

2 1

^ Ϊ Γ Σ ] Σ
W = 2

.J.vι.-i-α_1

At. . (2.13)
1=0

On the other hand, we get

j =.}t

(by the Holder inequality)

2./ 2 -l 2+1-l fc/2
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say. We have
2 m - l 2.1

2 a)"Σ(n-j+ l)^-

βj^ " 1 (as *

-«(Ai_1 + Ai), (2.15)

= 2 β5 2 (w-y+i)1*-1'

i>Ai. (2.16)
Hence from (2.14), (2.15) and (2.16) we obtain

= #Σ^» (2.17)
m=0

which is also convergent.
Thus we get from (2.12), (2.13) and (2.17) the convergence of the first term
inv(2.8), that is, the convergence of (2.2) implies that of (2.8).

Now suppose that the series (2.8) is convergent. Then we have

00 > Σ - ^ Ϊ Γ Σ (« - / + v(β"1? ^ *'
n - l J = l

W/21+1 fc

2 «2(β-1)iί«5
jml >
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2 m + 1 - i in/?]+l

^ Σ ( Σ **,
fc/2

Jfc/2

)

j=2w

Therefore the convergence of the series (2.8) implies the convergence of the
series (2.2). The proof of Theorem 3 was completed.

Finally we shall give a proof of Theorem 1. Let us define

ca» = Λ-a'* for Λ = 1,2,3,....,

and Cj = 0 if j is not of the form 2n.

The series

is lacunary for every ΛΓ. The series (2.18) is summable |A|* (£^1) almost
everywhere by Theorem 2, since we have

e. 2 - 1 /

Σ(2 C0 -2*-Σ«
which is convergent And by Theorem 4 the series (2.18) is summable
|C, 1 — 1/&U almost nowhere for £ > 1, since

- n ' * / .

ft/2

2 m + l _ 1 fc/2

L Σ .'{(»-2"+'ϊ.
n = 0 n = 2 T O
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-1;- log 2-

which is divergent, and a fortiori the series (2.8) is divergent for the indices
a = 1 - l/£, and k > 1.
Therefore there exists a value of # such that the series (2.18) is summable
IAU but not \C,l-llkU (k>l).
This proved the theorem.

REFERENCES

[1] T. M. FLETT, On an extension of absolute summability and some theorems of
Littlewood and Paley, Proc. London Math. Soc. (3) 7 (1957), 113-141.

[2] T.M. FLETT, A high-indices theorem, Proc. London Math. Soc. (3) 7 (1957),
142-149.

[3] S. KACZMARZ-H. STEINHAUS, Orthogonalreihen (Warszawa-Lwow) 1935.
[4] T. TSUCHIKURA, Absolute Cesaro summability of orthogonal series, Tόhoku

Math. J. (2) 5 (1953), 52-66; II, ibid. (2) 5 (1954), 302-312.
[5] A.ZYGMUND, On certain integrals, Trans. Amer. Math. Soc. 55(1944), 170-204.

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY.




