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Introduction. For any arcwise connected space B with a base point
bQ> the sequence of homotopy groups of (B, b0):

are defined. These groups except the first one are abelian and are written
additively, while the fundamental group πγ is in general non-abelian and is
written multiplicatively. Among these groups there are two kinds of important
operations defined topologically The first one is the operations of rπι on τrp

with p^>2 (for the definition see § 16 of [17]υ), i e. ΊΓP becomes a τrx-
modules, namely, for w € rτrι and oi € πp, p j> 2, a unique element w CL is
determined and

w1 (w2 ά) = {wγw^ a^ l a = a.

The second one is so-called Whitehead products (for the definition see [24]),
i. e. for a € ΊΓp9 β € *πq with p, q > 2, a bilinear product [cLy β~\ € "π p^q-x is
defined. Hence these products define homomorphisms from 7rpζg)7rQ into wp+β-i,
which will be denoted by WPιQ or WP)Q(B), where the tensor product is taken
over the integer coefficients.

It is well-known that these operations satisfy the following properties
([24], [16]):

(1) The skew symmetric law :

la, /?] = ( - lΓ[/3, ά], or

(2) w[a, β] = \_wa, wβ\ or

(3) The Jacobi identity :

( - lTr-\a, [β, yj] + ( - l)Q<*-\β, [y, a

1) Numbers in brackets refer to the references at the end of the paper.
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+ (- iΓ-'Xy, ia, βj] = o,

where w € 7r1? a € 7rp, β € 7rQ, y € πr, p, q9 r > 2.
We define operations of τrx on ŵ  ® πq by w ( # §ζ) β) = ((w a) ® (w β)),

then the property (2) means that Wp, α preserves operations of 7rl9 i. e. WP} Q is
a TΓi-homomorphism.

The realization problem of Whitehead products is stated as follows. Let
τr1 be a given multiplicative group and rτrv with /> 2^ 2 be given ^-modules,
and TPtQ: τrp ® 7rα —> 7rp+q.1 with p, q > 2 be given 7r1-homomorphisms which
satisfy the properties corresponding to (1) and (3). The realization of this
system 7rn, TVΛ with w i> 1, />, ^ > 2 is to construct an arcwise connected
space B with a base point £0 satisfying the following conditions :

(i) there exists, for each n>l, an isomorphism

hn : πn(B, b0) «TΓn,

(ii) for arbitrary elements w € TΓ^B, b0), a € TΓ/JB, έ0) with p > 2,

hp(w a) = hx(w) hv(a),

(iii) for arbitrary elements α: € TΓXB, έ0), β € ^^(.8, έ0) with p, q > 2,

Ap+β-i([α, £]) = TPιQ(hp(a)®hQ(β)), or

At first J. H. C. Whitehead [25] succeeded to construct a CW-complex
which realizes groups 7rl5 7r2j , 7rn, and operations of τrx on ^ with
/> > 2. Also, S. T. Hu [13] constructed a space £ which realizes this system
such that all Tp,ρ's are trivial.

Recently P. J. Hilton explained in his paper [12] that all identical relations
between Whitehead products follow from the skew symmetric law and the
Jacobi identity by application of the laws of addition and the distributivey
of the Whitehead product. Therefore, the properties which exist between wv
homomorphisms WPQ are essentially (1) and (3). But the properties corres-
ponding to (1) and (3) for Tp α's are not sufficient conditions in order that
this system is realizable. Indeed we shall need to assume that2)

(4) TPiP(a ® a) = 0 for p = 3 or 7 (a € τrp).

Moreover, we shall need to impose other conditions. For this end we shall
consider the composition operations. The composition operation is a map Cr,n :

2) Recently J.F.Adams proved that there is no element of Hopf invariant one in 7t2n-ι(Sn)
unless n -2,4 or 8(cf. Bull. Amer. Math. Soc. 64(1958), 279-282). Therefore necessary
conditions imposed to 7i p(αίg)α) are only (4).
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τrro7rn(Sr) —• rrn for each n, r > 2 which preserves operations of 7rx on 7rr and
7rn, but in general not homomorphic. The right distributivity holds and these
operations are related to Whitehead products by the following formula (cf. [12]) :

(5) (a + βH = a°ξ + βoξ + la, β~\°Hlξ)

+ la, [a, βJjolUξ) + \β, la, /3]>H2(f) + ,

where a, β € *rr, f 6 ir^S") and ί/0: ττn(5r) -> w^S11-1), H,, H2:
wn(*S3r~2),...... are generalizations of Hopf invariants.

Thus there arises a question that "if TPtQ and Cr,w satisfy the conditions
corresponding to (l)? (3), (4) and (5), then is the system ττn, TPίQ realizable ?"
To solve the realization problem of Whitehead products seems to be very
difficult.

As the first step to attack the realization problem of Whitehead products
we shall deal with the realizability of a TPjQ with arbitrary preassigned p
and q (p + q) and that of TP)P for p ^ 8.

In § 1 we shall summarize the method of S. T. Hu by which realization
problems are reduced to construct a simply connected space with τrΛ as trans-
formation group which realizes τrn and TPtq (n, p, q>2). In §§ 2 and 3 we
shall give some topological and algebraic lemmas which will be used in later
sections. Lemmas 1 and 2 in § 2 are generalizations of Lemmas 2 and 3 of
[2] to the case of spaces on which a group operates. Replacing these lemmas
in the construction of fibre space due to Cartan-Serre-G. W. Whitehead ([2],
[22]) by our lemmas, we can give a sufficient condition for the Problem 11
of [15] (see Proposition 2 in § 2). In § 4 we treat with the realization of only
one TV)Q with p =f= q> In this case no condition for Tp,q is needed. Also we
obtain some results concerning the simultaneous realization of some Tp>q's
with p=ή=q. §§5 and 6 are devoted to the realizations of Tpp for p = 2, 4
and § 7 is devoted to the simultaneous realization of T 2 2 and T 2 ) 3 which is
the lowest dimensional case where the Jacobi identity appears. The results
concerning to T6,6 and T7J are stated in § 8 and also that of TPiP for p = 3,
5, 8 are stated in §9.

Except the cases of TP j α for p=ή= q and Tp p for p = 6 or 7, our results
are incomplete in the sense that some additional conditions are assumed. And
it is desirable to remove these conditions.

1. The method of S. T. Hu. Let Y be an arcwise connected space on
which a multiplicative group W operates as a transformation group. Such
space will be called a W-space. By an invariant subspace of a ΐ^-space X we
mean a subspace Xo such that w(XQ) d Xo for any w € W. Hence Xo itself
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will be regarded as a W-space, and if Xo consists of only one point, this will
be called a fixed point. If, for any w € W(w=fcl) and for any x € Xo,
wx 4= x, then we say that W operates freely on Xo.

If X is a simply connected W^space, n-th. homotopy groups τrw(X, x)
relative to every point x £Ξ X form a simple system of local groups (for exam-
ples see § 23 of [4]). Therefore the unique isomorphism Φ(x0, x): π^X, x)
^* πn(X, x0) is defined. Besides, each w € W induces the isomorphism w#:
πn(X, x)^ πn(X, wx0). If we define an isomorphism w : 7rn(X, x0) « πn(X, x0)
by w = ΦCrϋ? ^ o ) ° w f e then πn(X, x0) becomes a W-modules.

Throughout this paper homotopy groups of a simply connected W-space
are understood as W -̂modules in this sense.

Let B be an arcwise connected space with a base point bQ. By B we
denote the universal covering space constructed by usual method (cf. § 23 of

[4]), by έj denote the point of B represented by the constant path 7 —> έo Let

p: B -+ B be the projection. It is well known that B is simply connected and

p induces the isomorphism p* : τrn(B, b0) ̂  7rn(B, b0) for each n >̂ 2. Also

τrχ{B, bg) operates on B as the group of covering transformations. It is easily
seen that p# is an operator isomorphism, i. e. TΓ^-B, bo)-isomorphism.

Let (X, Xo) be a pair of a W-space X and a simply connected invariant
subspace Xo C X. Then operations of W on ττw(X, Xo #o) are similarly de-
fined. In addition, if X is simply connected, then the homomorphism induced
by inclusion j * : 7rn(X9 x0) -> πn(X, Xo Λ:0) and the boundary homomorphism
3 : ττn(X, Xo -#<)) ~^ iΓn-iiXo, Zo) are operator homomorphisms.

Let ( 7r, w) be a pair of a group 7r and an integer n "> 1. For w > 1 we
assume the commutativity of ir. We shall denote by P(τr, n) the Giever-Hu's
geometric realization ([8], [13]) of Eilenberg-MacLane complex K(ΊΓ9 n) ([6]).

We recall some results on -P(τr, w) (cf. [13]). If n > 1 and 7r is a TIV
module, then P(π, n) is a 7Γ!-space and the unique 0-cell is a fixed point,
and τrm(F(7r, n)) = 0 for 1 ^ m =f= w and there exists a natural ^-isomorphism
τrn(P(7r, n))*eir. For PC^, 1), ΊΓ£P(ΊΓ19 1)) ̂  TΓX and TΓJ^TΓ^ 1)) = 0 for
m > 1. We shall identify τrn(P(7r, n)) with 7Γ under this natural TΓi-isomor-
phism for n > 1 and also TΓ-^P^IΓ^ 1)) with TΓ^

Let S = J5, />, X, Y, G\ be a coordinate bundle in the sense of Steenrod
[17]. We assume the following conditions:

(1) X and Y are arcwise connected,

(2) wt(X) = 0 for i > 1, and irx(X) = 1,

(3) the structural group G is totally disconnected.



ON REALIZATIONS OF SOME WHITEHEAD PRODUCTS 5

Let b0 € B be a point and put x0 = p(b0), Yo = P~XXQ). By the exactness
of the homotopy sequence of 25 and the assumption (2), the inclusion map
(Yo, b0) cz (B, bo) induces isomorphisms it: πn(Yθ9 b0)^ πn(B, b0) for n > 1,
and the projection p : B-+ X induces the isomorphism p* : rπ1{B, bo)^^7r1(X, x0).

Let ζ : Yo —> Y be an admissible map and

X : τrx(X, Λ:0) -> G

be the homomorphism of the characteristic class %(25) determined by ζ (for the
definition cf. § 13 of [17]).

Under these assumptions and notations we have following

PROPOSITION 1. For arbitrary elements w € πx{B9 b0), a € τrn(B, b0)
with n > 1, we have

hn(wa) = λi(w) λn(α),

where

K = l * 0 ^ 1 : 7Γw(β, *o)^7Γn(Y, ^θ)? (^ > 1),

hi=χopΐ: *ι(B9 bo)-+G.

This proposition is essentially proved in Theorem 3 and 4 in [13]. In
that proof it is used that Y has a fixed point, but it is easily seen that this
restriction can be removed.

By this proposition, the realization of ττl9 τr2, , 7rn, and Tp,α's is
reduced to construct a simply connected 77vspace with 7r2, 7r3, and Tp%q

9s as
homotopy groups and Whitehead products.

2. Topological lemmas. First we shall prove the following lemmas.

LEMMA I. Let X be a simply connected W-space, and n be a fixed
integer > 1. Let p : τrn(X) -> G be a given W-homomorphism from τrn(X) into
a W-module G. Then there exists a W-space Z such that Z contains X as
an invariant subspace and W operates freely on Z — X, and the inclusion
map i : X d Z induces the W-isomorphisms it: τrr(X) Λ 7rr(Z) for l^r<n
and it is onto and the kernel of it coincides with the kernel of p.

LEMMA 2. Let X be a simply connected W-space. Then, for an integer
n > 1, there exists a W-space Z which contains X as an invariant subspace,
and the inclusion i : X CZ Z induces the W-isomorphisms i* : 7rr(X) » 7rr(Z)
for 1 <Ξ r < n and πr(Z) = 0 for r>n.

PROOF OF LEMMA I. Let Γ be the kernel of the given W-homomor-

phism p: πn(X) -> G, and for each element γ of Γ, let fy : En+ι -> X be a

fixed map which represents the element γ, where En+1 and En+1 denote an
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(n + l)-element and its boundary respectively. For any pair (w, γ) for w € W,
y € Γ, we consider the set E"£γ) = \(x, w, y)\x € 25n+1|. We introduce a
topology to -Eftίvy) such that the map λ(w γ ) : EP(w\) -+ En+1 defined by λ(M,γ)

(x, w, y) = x becomes a homeomorphism. £oJ,ι

7) are mutually disjoint. Define

a map ΨW) 25",̂ ) -* X by (̂«,,y> = w°/γ°λ(Wιy).
Let Z be a space obtained from X by attaching each £^,γ) (w € W,

7 € Γ), by the map ψ{W}y). The operation of W on Z is defined as follows :
For any element v € W9 we shall define a map v: Z -^ Z by

τ<*) = t<s) if * € X,

z O, w, 7) = (x, vw, 7) if O, w9 7) € JS"^).

It is easily verified that the map v is well-defined and continuous and Z becomes
a W-space which contains X as an invariant subspace. The characteristic map

Ψtw.y) E"£*y) -> X represents the element wy of 7rn(X) and the set of elements
w y generates Γ. Therefore, by Theorem 18 of [23], it is onto aαd the kernel
of it = the kernel of p. It is obvious that i* (1 ^ r < n) are W-isomorphisms.
Thus Z has the required properties.

PROOF OF LEMMA 2. Applying Lemma 1 with G = (0|, /o : τrn(X) -* G,
then we obtain a W-space Zn which contains X as an invariant subspace and
if :πr(X) f̂e *τrr(Zn) for r < w and 7rw(Zw) = 0. Next, applying Lemma 1 with
G = {0|, p : τrn+1(Zw) -> G, we have a ΐ^-space Z w + 1 ID Z n such that 7rr(Zn+1)
z*& 7rr(Zn) for r < 72 + 1 and 7^+1^^+!) = 0. If we continue this process, we
have a sequence of W-space X = Zn-τ d Znd Zn+1 d such that Z* is an
invariant subspace of Z i + 1 and i*: 7rr(Zs) ^ 7rr(Zs + 1) for r < $ — 1, and 7rs+1

(Z s + 1) = 0 (5 >. n — 1). Therefore the limit space Z = lim Z% has the required
properties.

As described in the introduction, these lemmas are generalizations of
Lemma 2, 3 of [2]. Replacing lemmas in the construction of fibre spaces due
to Cartan-Serre-G.W.Whitehead ([2], [22]) by the above lemmas, we can give
the following solution for Problem 11 of [15].

PROPOSITION 2. Let X be an (n - l)-connected W-space (n > 2). If X
has a fixed point, there exist an n-connected W-space X' and a fibre map
p: X -+ X such that p commutes with the operations of W, and the induced
homomorphisms p* : 7Γj(X') -+ ir^X) are onto W-isomorphisms for i > n.

We shall need the following lemmas in later sections.

LEMMA 3. For any arcwise connected space X with a base point x0

and for any integer n > 1, there exists a TΓ^X, xo)-space E having the fol-
lowing properties :
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(1) wtCE) is trivial for 1 <; z < n,

(2) £/*<?re exists τrx{X9 xo) isomorphisms ht : τrt(£) » TΓ^X, r0) (Z ̂  w)

WPiAhj,®hq), (p, q>n).

This lemma is easily obtained from the following lemma and Proposition

2.

LEMMA 4. For αwj/ arcwise connected space X with a base point xl9

there exists a simply connected π^X, x-^-space B which satisfies the follow-

ing conditions :

(1) there exists a fixed point b0 € B,

(2) there exist rrr1{X, xτ)~isomorphisms hn : 7rXB, b0) ̂ ^ τrw(X, xτ) (n => 2)

such that hv+q-x°Wv,q(B) = Wp>q(X)o(hp (g) Aα) / o r A g > 1.

PROOF. Let X be the universal covering space of X and p : X -> X be

the projection, and SΊ be a point of X represented by the constant map

I->xτ. X is a 77-̂ X, ^!)-space and /> induces w^X, ̂ J-isomorphisms />*:

τrw(X, S D ^ T Γ ^ X , ^ ) for w > 1.

For any w € w/X, ^ 0 , the covering transformation w: X -> X induces

an isomorphism w# : S -> S, where 5 denotes the total singular complex of X.
Thus τr1(X, ^j) operates on S.

We shall consider a minimal subcomplex Mj of X relative to the base

point xΊ [5], and we define operations of 7Γj(X, ΛTJ) on Mi. The image sub-

complex Mw = w#(M2) is obviously a minimal subcomplex relative to the base

point w(xλ). Since X is simply connected, the isomorphism φw : M w -> Mx

introduced in § 7 of [5] is uniquely determined, i. e. φw is independent upon

the choice of a path joining xΊ and w(5Ί) used in definition of φw.

We define an isomorphism w : Λfj —> Mx by w = ^ϊio <^#, where w# =

j . We shall consider following diagrams:

ψw ψ
Mw >MX Mvw >MV

I ψ
M

\

<Pv

Mvw—: >MV Mx
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where v# = v#\MW9 and φ is the similar isomorphism as φw. By the unique-
ness of maps <p, φv, <pw, φvw, commutativities hold in these diagrams, i. e.

φ°v\ = v#°φw and <pυw = <pv°<P> Since (yw)# = vΊ#°w% we have

Thus, under this definition, π^X, xλ) operates on Mx as a group of isomor-
phisms.

Therefore realization polytopes P(MX) and P(S) are TΓ^X, rj-spaces and
the unique 0-cell b0 of B = P^M^ is a fixed point. Let i: B-+ P(S) be the

map induced by the inclusion Mx CI S and q: P(S) - > ϊ be the projection. It
is well-known that i and q induce isomorphisms i* : wn(J5) ί=^ 7rn(P(S)), q* :
πw(P(S)) ^ 7rn(X) for w > 1. Since ^ is a ^(X, ^^-map, ^ is a TΓ^X,^!)-

isomorphism. We define hn : τrn(B) ^ τrn(X) (n > 1) by Λn = P*oq*oi*-
Let A/? d Mx be the subcomplex consisting of all collapsed simplexes,

then P(MT) is a contractible invariant subspace. Therefore j * : irn{P{Mι)) ->
irn{P{Mι), P(M?)) are TΓ^X, ^^-isomorphisms. On the other hand 7rn(P(Mi)) is
generated by w-cells corresponding to wsimplexes of Mx with collapsed faces.
Therefore, from the definition of φ it is easily seen that i* is a π^X, xλ)-
isomorphism, and by the naturality of Whitehead products, the condition (2)
is satisfied. Thus the proof is complete.

3. Algebraic lemmas. Let W be a multiplicative group, and H be a
Ή^-module. If H is a free abelian group and there exists a set B d H such
that the element w b, for all w € W, b € B, are pair wise distinct and form
a basis for H, then ί/ is said to be W-free. This set B is called a W-έα f̂̂ .

By the same way as the proof of Lemma 6. 3 of [7] we have the fol-
lowing

LEMMA 5. If Ho is a submodule of W-module H and the factor W-
module H/Ho is W-free, then Ho is a direct summand of H.

LEMMA 6. Let H be an abelian group and Ho be a subgroup of H
such that H/Ho is decomposed to a direct sum F -f A, where F is a free
group and A is a direct sum of finite cyclic groups. For any abelian group
G, in order that any homomorphism θ: Ho —> G is extendable to a homomor-
phism θ* : H —> G, it is necessary and sufficient that for any element h € H
and for any integer m such that mh € Ho, the element θ(mh) is divisible
by m.

PROOF. The necessity is obvious, so we shall prove the sufficiency. By
the assumption,
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H/HQ = F + Σ A a (direct sum decomposition),

where Aa is a finite cyclic group of order r α ( > 1) with a generator aa.

Let Hi be a subgroup of H such that H/Hx = F. Then, by Lemma 5,

Hi is a direct summand of H, hence any homomorphism Hi —> G is exten-

dable over H. Thus we may assume that F = 0, H/Ho = Σ ^«

Let />: i f —> H/Ho be the projections and for each aa we select an ele-
ment ha € H such that />AΛ = aΛ. Since raAa> € iί), by the assumption for 0,
there exists an element g Λ € G such that 0(rαAα) = r α # α .

Now, any element h oί H can be written as

h = ho + Σ ^ A ;

where ho £ ί/0

 a n d ^ α are integers which are zero except finite numbers. We
define a map

θ*: H-+G

by

First we must show that 0* is a well defined homomorphism. If h has

another representation /ι = h'o + 2Z w«^α, then

ho — h'o = J2 (n* — ™>cϊ)ha.

Hence 0 = p(h0 — h'o) = ]>Z («β — ma)ph* = ^ (w* — ma)acύ, thus we have

nΛ — ma = Tat a (r* : integers).

Therefore Λo — ό̂ = ΣZ rat*ha, and we have

- βCO = 0 ( Σ rβf β λ β ) = Σ tΛr*ha)

= Σ ie^«^ = Σ (w* "" mcdgc*.

Thus we have 0(AO) + Σ m » ^ = (̂Aό) + Σ ^α^*? which shows that θ* is

well-defined. In virtue of the definition of 0*, it is obvious that 0* is a homo-

morphism and an extension of 0. Thus the proof is complete.

LEMMA 7. Let H and Ho be the same groups as in Lemma 6. If, for
any element A € H and for any interger m such that mh € Ho, the element
mh is divisible by m in Ho, then Hύ is a direct summand of H.
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PROOF. By Lemma 6, the identity H} —> HQ is extendable to a homo-
morphism ψ : H-+Ho. Therefore we have H = H} -f kernel of ψ, which
proves the lemma.

In the Lemma 7, the assumptions for H/Ho can be removed. Namely we
have the following

LEMMA 8. Let H be any abelian group and Ho be any subgroup of H.
If for any element h € H and for any integer m such that mh € Ho, the
element mh is divisible by m in Hθ9 then Ho is a direct summand of H.

PROOF. Let F = {fa } be a set of generators of H, and we consider the
family © of all finite subsets of F. For S € @, let Hs denote the subgroup
of H generated by Ho and elements of S. Then Hs/H0 is finitely generated.
Therefore all assumptions in Lemma 7 is satisfied for Hs and Ho. Hence there
exists a subgroup Vs C H such that Hs Π Vs = 0 and Hs = Ho + Vs. Let V
be the smallest subgroup which contains Vs for all 5 6 @. Then it is easily
verified that V Π Ho = 0 and H = Ho + V. Therefore Ho is a direct sum-
mand of H.

LEMMA 9. Let π be an abelian group and TΓ* be a free abelian group
with generators σ(a) corresponding to each element a of iτ. Then the kernel
of the homomorphism θ: nr* -> π defined by θ(cr(a)) = a is generated by
elements of the form σ(a + β) — σ(a) — σ(β) for a, β € ir.

PROOF. Let Γ C 7r* be a subgroup generated by elements <r(a + β) —
o (a) — o (β) (a, β € 7r), It is obvious that Γ d kernel of θ, and it remains to
show that Γ 3 kernel of θ.

n n

To show it, we shall first prove that ^ <r(ct() ~ σ ( Σ Λ ί ^ ^ (#« ^ 7Γ)
ί = l M = l '

For n = 1 and n = 2, this fact is true. We assume that our assertion is true
for n — 1. If we put

- σ ( Σ a*) - τ

then T 6 Γ and

2^ σ{a£) -σ ( ^ aiJ = 2^

Therefore, by the assumption that ^ <r(cέi) ~ & ( Σ Λ *) ^ ^ ' w e know that
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n

Now, if a = Σ r% σ{at) (rt : integers) belongs to the kernel of θ, then
1 = 1

n

ri&ι = 0. By the above fact, rtσ'κch) ~ σ\TιCtι) € Γ for each £, hence a — T^.

€ Γ. On the other hand, it is easily seen that

Σ

hence ^ σi7ΊCcd ^ ^ Therefore α € Γ.

- σ(0) + σ(0)l

ί = l

4. The realization of T : irp ® irq -+ 7rp+q^ι for 1 < p < q. In this sec-

tion we prove the following

THEOREM I. Let iΓγ be any multiplicative group and τrn {n ^ 2) be any

iΓy-modules. For fixed integers p, q with 1 < p < q, let T: irp ® τrq -> 7rp+q^1

be an arbitrary given irv-homomorphism. Then the system iru 7r2, , τrn,...

..., T is realizable. Namely, there exist a space (β, b0) and isomorphisms

hn : 7rn(B. bs) » 7rn(w > 1) w/ίΛ the following properties :

(1) hn(w a) = hi(w) hn(ά) for a € 7rXB, £0) (^ ^ 2), w € TΓ^B, έ s),

(2) Λp+β-, o TΓp, β(S) = To(/^ (g) ΛQ),

(3) if one of integers p, q > 1 £5 different from p and q, then

Wp;q(B) = 0.

PROOF. We put Pp = P(ττp, />), Pq = P(τrα, ςr) and let P = Pp\ί Pq be

a space obtained from the union Pp U Pq by identifying 0-cells of Pp and P g

to a point />0. Since 0-cells of Pp and P g are fixed points, P is naturally a

7Γi-space. By a theorem of Whitehead-Chang ([11])

0 iίi<p or p<i<q or q<i<p + q — 1

7ΓP if £ = p

TΓq if £ = q

7rp&)7rq if £ = p + q — 1,

where ^(Pj) ( = 7Γi) for i — p or q is embedded in TΓ/P) by the inclusion

map Pi CI P, and τrp(g)irq = πp(Pp) (g) 7rg(Pg) is embedded in TΓp+^CP) by the

Whitehead product. Also these embedding isomorphisms commute with opera-

tions Of 7Γ1#
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Let (Sp+Q~1, s0) be a pair of a (p + q — l)-sphere Sp+Q~1 and a point s0

on it. For each pair (zυ, a) with w € irl9 a € πp+q-l9 let (iSfw,9*")1, s(M>jΛ)) be

disjoint copies of (Sp+Q~τ

9 s0) and we attach these spheres to P by identifying
5(w,α) with Po. The space thus obtained will be denoted by Q. As in the

proof of Lemma 1, this space Q may be regarded as a iτι -space. Obviously

Q has the same homotopy groups as P in dimensions < p + q — 1, and πp+q- L

(Q) = TΓp® TΓQ + τr*+Q-i, where TrJ+g-i is the free abelian group generated by

the elements t{wa) represented by S^ά)1. And operations of τrι on π^+q-j is

such as v 0(vfjβ)) = Hvw,*y

We define a Tr^homomorphism λ from τr?,+g-i(Q) onto rτrVΛ.q-ι by

( (̂M;)QJ)) = w a for a generator 4(Wjβ) of w ; + Q . i .

We apply Lemma 1 with G = iΓp+q-^Q), p = λ, then there exists a 7rx-space

Q* such that Q^ contains Q as an invariant subspace, and

i* •• τ P ( Q ) * IΓΛQ ) for r < /> + q - 1,

and the kernel of z'*+5-i = the kernel of λ. Hence there exists a TΓj-isomomor-

phism hp+q-ι : Wp+e-iCQ*)^ Wp+g-i such that Λ2)+7_iθ£*+q_1 = λ. Since πp(g)7Γq

is embedded in τrp+<ι_i(Q) by the Whitehead product which is natural, we have

the following commutative diagram :

W

7Γp

where ht : w<(Q*) ^5 τr4 for i = p or q are the inverses of isomorphisms in-

duced by the inclusion maps Pt CZ Q*9 and W denotes the Whitehead product

in Q*. Therefore the space Q* is a TΓJ-space which realizes ir1 -modules 7rp, τrq,

7rp+q_ι and TΓj-homomorphism T. Hence, by Lemma 2, there exists a ^-space

Yo which realizes 7rp, τrq, τrp+g_i, T and Wi(Yo) = 0 for i =f= Λ ^? /> + # ~~ 1.

From now we proceed in the same way as § β of [13]. We construct the

product space

Y=Y0 xCΠP,),

where Pt = P(πt9 ΐ) and in the product Π Pt of Pt indices / run over integers

i > 1, /+/>, <7, /> + # — 1. This space F is naturally a ^-space and wt(Y)

are TΓi-isomorphic to TΓI for i > 1.

Let 7rJ be the subgroup of 7r2 consisting of all elements which operate on
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Y as the identity. Let %: τrι -» irι/τr\ = G be the projection. Let SS = (B, P,

X, Y, G) be a fibre bundle such that the base space X is Pi^i, 1) and the

fibre is Y and the structure group is G with the discrete topology, and the

characteristic map is %: WiQO = iτi -» G. Such a bundle certainly exists by

Theorem in § 13. 8 of [17]. It is easily seen by Proposition 1 that the total

space B is the required one (cf. [13]).

We next give the following

THEOREM 2. Let τrx be a multiplicative group and τrn(n > 2) be 7rr

modules. Let *π ̂ homomorphisms TP)Q: τrp ® irq -» TΓp+g., wife p, q > 1, P + q

— 1 <Ξ r <zw<i T : τrΛ Cg) 7Γg0-* Wpo+βo-i w ^ l < f t < g o f e given. If πϊ9 7r2,...

..., 7r,. and TP)Q for p + q — 1 <i r are realizable, then πl9 7r2, , aw<i TPiQ

/or p + £ ~ 1 < min (g0? ^ + 1), i> + ^ - 1 + Λ and T are simultaneously

realizable in a space B such that all Whitehead products vanish except

WPθ)Qo, WQO)Po and WP,Q forp + q - l < min (qθ9 r + 1), p + q - 1 =+=/>0.

PROOF. Case (i) : r < />0 By the assumption there exists an arcwise

connected space A which realizes iru τr2, , τrr and Tp>q for p + q — 1 < r

(p, q > 1). By Lemma 2 we can assume that TΓ^A) = 0 for i > r. On the

other hand, by Theorem 1, there exists a simply connected 7Γj-space C which

realizes *πPo, πQo, Wpo+βo-i and T such that w4(C) = 0 for 1 < i ψ p0, q0, Po +

qo ~ 1.
We construct the product space

y = A x C x ( Π ? , ) ,

where A is the universal covering space of A and in the product ΊΊ Pt the

index i runs over integers i > r except p0, q0, p0 + q0 — 1. Then Y is the

simply connected iτrι-space which realizes 7r2, 7r3? , and T, TP)Q for p + q

— 1 5J r, and the other Whitehead products vanish. Thus by the same process

as the last step in the proof of Theorem 1, we obtain a required space.

Case (ii): p0 ^ r. Let A be a space which realizes 7r1? , πr and TP,q

for p + q — 1 ̂  r. We apply Lemma 3 with X = A, w = p0, then we know

that there exists a ^-space A1 having a fixed point such that TΓ^AX) = 0 for

i < />o and Aι realizes 7ΓPQ, , τrr and Tp>q for p + q — 1 ̂  r (p, q ^ p0).

Hence again by Lemma 2 there exists a τrι-space A2 having a fixed point <z0

such that π^Az) = 0 for / < p0 and i > s and A2 realizes τrPo, 7rs_1? TP>Q for

ί + g - l < 5 ( p , ( [ ^ A)? where 5 = min (q0, r + 1),.

We construct the τrι -space A2 V P(TΓQO5 ^O)? where only the fixed point

a0 € A2 and the fixed point of P(7rQo, q0) are identified. Hence this is a 77V
space. For this TΓX -space we can apply the same process used in the first step

in the proof of Theorem 1 and we obtain a ^-space A3 such that ^(Ag) = 0
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for i < p0 and i =Ξ> s, (z =f= q0, p0 + q0 — 1) and A3 realizes πPθ9 , 7rS9 7rβ0,

TΓpo+̂ .x and T, TPfQ for p -f # — 1 < 5 (/>, g > />0).

Also, let ΰ be a space which realizes πl9 , Wpo-i> TPιQ ίoτ p + q — 1 <

POJ (P, Q > 1), and τrt(β) = 0 for i > />„. We construct Y = A, x J5 X (ΠP t),

where the index z in the product Π Pt runs over integers ^ 5, =$=p0, q0, Po +

q0 — 1. Then in the same way as in (i), we have a required space. Thus the

proof is complete.

By repeated applications of Theorem 2 we directly obtain some results

concerning the simultaneous realization of some TΓ1 -homomorphisms of type

Tp q : 7rp ® iΓq -> 7rp+Q_ι with p =+= ^ To formulate these we need following

terminologies.

Pairs of integers (pθ9 q0) and (/>!, g j will be called distinct if any two

of integers ρθ9 q0, pu qu p0 + q0 ~ 1, pγ + qγ — 1 are distinct. Pairs of inte-

gers (5, tx) and (5, £2) such that 5 < tx < t2 will be called to be separated if

5 + tγ — 1 < *2.

COROLLARY I. Let πn(n > I) be TΓ^modules. Let A'= | O i ? g4)} έe α

given set of pairs of integers (pi, g4) 5wc/i that 1 < /^ < gέ. For αwy jf>αzr

(A? Qi) ^ 4̂.J ̂  T*i : ^Pi ® ^ "^ '7Γ

P.+qi_1 be a given ir^homomorphism. If
any two elements of A are distinct, then the system irl9 7r2, and [Ti\

is realizable.

COROLLARY 2. Let τrn(n > 1) be τrrmodules. Let B = {(5, t3)\ be a

given set of pairs of integers (s, ί4) such that 1 < s < tx < t2 For any

pair (s, t0) € B, let Ύ)\ rτrs®
ΊTti~^ηr^ti'\ be the given ir^homomorphism.

If any two elements of B are separated then the system 7r1? 7r2, and

\T'j} is realizable.

COROLLARY 3. Let A, B, Ti9 T'} be the same as in Corollaries 1 and

2. If any (s, t3) and (pu qt) are distinct, then the system τrl9 7r2 and

\T ) , [Tj] is realizable.

5. The realization of T2: 7Γ 2®7Γ 2->7Γ 3. If a € τrn(5r) and βl9β2€ 7rr(B)

and if 1 < n < 3 r ~ 3, then by a theorem due to G. Whitehead we have

where ° denotes the composition operation and H(a) is the Hopf invariant
of a (cf. § 5 of [20]).

Let η € 7r3(/S
2) + Z3) be the element represented by Hopf fibre map, then

H(η) = 1. Thus we have

3) In the following Z denotes the group of integers, and for an integer m > l , Zm denotes
the cyclic group of the order m.
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\θL, β] = (a + β)oη — a°η — β?η,

where a, β € τr2(B).

This formula was also proved by H. Whitney in [26] and he showed that
<χoη = (— a)oη. Since [α, β~\ is bilinear, <x°η satisfies the relation

(a + β + γ)°ί? - (a + β)°η — (β + 7)077

— (γ + αθ°?7 -1- a°η + /3o?7 + 7077 = 0.

From this relation, using a°η = (— αθ°?7, we have

(2 a)0?; = &(a°η).

Therefore we have

[ Λ , tfl = 2(0:097).

Also the correspondence a -* Λ0^ preserves operations of ^
Now we state the following theorems.

THEOREM 3. Let πn(n > I) be given ΊT^-modules and Ί\ : 7r2 0 7r2 -> 7τ3

be a given nτ\-homomorphism. We assume that there exists an exact sequence
of TΓ^modules and ΊΓ\-homomorphisms

Φ
0 -> F o -> F1 -> τr2 -> 0

ί̂ cA /A<2/ FQ β^^? ^1 a r e TΓrfree. In order that the system τrly 7r2j and
T2 is realizable^', ίί w necessary and sufficient that there exists a
η : 7Γ2 — > 7Γ 3

= ?̂( — a) for a, β ^ 7r2.

THEOREM 3'. -L ί̂ 7rn(r/ > I) be given IT ̂ modules and we assume that
rτrι operates trivially on ΊΓ2 and 7r3. Let T2 : τr2 ® τr2 —> 7r3 έ^ 2̂ given homo-
morphism. In order that the system 7rl9 7r2, and T2 is realizable^, it is
necessary and sufficient that there exists a map η : ir2 —> 7r3 5z/c/ι that

77(α + /β) - ^(α) - i7(/β),

α) for a, β € 7r2.

PROOF OF THEOREM 3. The necessity is stated above. To prove the
sufficiency, by Proposition 1 and Theorem 2, it is sufficient to show the exis-
tence of a simply connected 7τvspace realizing 7r2, 7r3 and T2.

Let Bo be a 7rx-basis for F 1 ? and we put S = \wb\w € τr1? δ € BQ}.

4) This system is realizable in a space B such that Wp.q(B)=0 if />Φ2 or gφ2.
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For each element a <Ξ B, let (SI, sa) be a topological image of the pair
(S2, s0) of a 2-sphere S2 and its point s0, and we assume that (Si, sa) are
mutually disjoint. Let fa : (S2, s0) -> (£«, sα) be fixed homeomorphisms. We
consider a CW-complex

iC2 = V Si

which is obtained from the union U SI by identifying points sa to a point p0.
deJi

For any element w € irl9 we define a map w: K2 -* K2 by
w^l^Uaofl1 (a£ B),

then iC2 is a simply connected TTX-space on which rπι operates freely. The
group πziK2) is a free abelian group generated by elements ι>a represented by
maps fa for a € B and τrι operates on TΓziK2) so that w (ιa) = ι>w.a for w € TΓ^
Therefore τr2(K2) is TΓj-isomorphic to Fj under the correspondence ι>a -> Λ
(<z C J5), and these groups are identified by this 77visomorphism.

We assume the axiom of choice, and may therefore suppose thai the
elements of B are well ordered. Then, by Theorem A of [12]

a,brB
a<b

where τr3(Sl) is embedded in 7Γ3(K2) by the inclusion map Si d K2 and hence
is the free group generated by ιa°η, and Z(a, b) is the free group with the
generator z(a, b) = [>α, ιb].

Since [/α, ia"] = 2(ιa°v)> the Whitehead product

is represented as follows :

(α, b) a < b,

W2(ca ®ιb)=\ z(b, a) a>b, (a, b € B).

^ 2(ιaoη) a = b,

We define a homomorphism λ : τr3(K2) -> 7r3 by

\(z(a, b)) = T2(φ a®φb) ίor a, b € B, a<b.

It is easily seen that λ is a 77vh.omomorph.ism. We notice that since TJV
map η : 7τ2 -> 7r3 satisfies η(ά) ~ η(~ a) and ^(α: + β + 7) — ̂ (Λ + β) — η
(β + 7) - 17(7 + a) + *7(α) + (̂/S) -f η(y) = 0, we have T2(a ® Λ) = 2 */(αO
Thus we have the following commutative diagram :
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W,

P ® P

TΓl @ 7Γ2 >7Γ3

where p: π^K2) -» 7r2 is an onto 77vhomomorphism defined by ρ(ι>a) = Φ(a).

Now we apply Lemma 1 with X = K2, G = 7r3, then we have a πvspace
K3 obtained by attaching 3-cells to K2 so that τr1 operates freely on K3 and
the kernel of i2 coincides the kernel of p and i2 is onto, where i2 : ir2(K2)
—> 7Γ2(K3) is the 77vhomoniorphisin induced by the inclusion map K2 d K3.
Hence there exists a τrτ-isomorphism h2 : π2(K3)^π2 such that Jι2°i2 = p.

Next, we shall show that there exists a TΓx-homomorphism λ*: 7r3(i^3) -* 7r3

such that λ*oz3 = λ? where z3: πJ^K?) -* 7Γ3{K3) is the 7rrhomomorphism
induced by the inclusion map K2 d K3. We set Γ = z3 π3(K*) and consider
the exact sequence

±~ vlK?, K?) — 7Γ2(^) - X 7Γ2(^3) — 0.

Since ί X O ) ^ ^ ^ , by the assumption, z'ί3(0) is TΓx-free, hence 337r3(K3,
(^ίXO)) is Tivίree. Since ^ ( / P , K2)/jsτr3(K3)^d37r3(K3, K2), by Lemma 5,
j37r3(Kό) is a direct summand of the ^-module π3(K3, K2). On the other hand,
since irx operates freely on K3, τr3(K3, K2) is 77vfree. It is obvious that a
direct summand of a ^-free module is wvfree. Therefore j3(π3(K3)) is 7r!-free.
Since π3{K3)/i3π3(K2) ^ j3*7r3(K3), again by Lemma 5, i37r3(K2) is a direct

summand of π3(K3).
Therefore to show the existence of λ*, it is sufficient to show the exis-

tence of λ ' : Γ -> 7r3 such that λ'oz3 = λ. To show this we prove λ (kernel
of i3) = 0. To this end we consider a CtF-complex Kl = V SI. Then π2(K2)

is the free group generated by £Λ for <x € 7r2. Therefore, by Lemma 9, the
kernel of the homomorphism p0: 7r2(Kn)->7r2 defined by po(*«) = α: is generated
by the elements of the form Λ̂ — ιβ + ŷ for a, β, γ € 7r2, a — /β + γ = 0.

For each ι* — ιβ + v̂ (Λ — β + γ = 0), we attach a 3-cell E3 to iCu by a
map E3 -+ K\ which represents the element £α —

 L

β + *γ. Then we have a
CW-complex ^ such that τr2(Kl) = τr2. Define a map g0: K2 -> Kt by go\Sa
= fφ(a)°fά\a € B). Then #0 can be extended to a map g : K3 -> Kl. iVnd we
shall consider the following diagram :
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9*

where λ 0 is defined in the same way as λ, and g# and z3}0 are the homomor-

phisms induced by g and the inclusion map Kl Cl ^ o respectively. It is easily

verified that commutativities hold in this diagram. Thus, to show that λCzϊXO))

= 0, it is sufficient to show that λo(^J(O)) = 0.

By Theorem 4 of [24] the kernel of z3)0 is generated by elements of the

forms fog and [/, K\ where / € 7r2(K
2) is an element represented by the

characteristic map of an attaching 3-cell of K] and g € TΓ^S2), h £Ξ τr3(Kl).

Therefore it is sufficient to show that λo(G« — Lβ + fcy)o??) — 0 and λo([^Λ — ιβ

+ S hi) = 0 for a, β, γ, 8 € τr2, a — β + y = 0. Since 0* — ιβ + Λy)o^

= Λαo?7 + /̂3°̂ 7 + Λyo?7 — [ta, ίβ] + [^? Ay] — \_iβ, LΊ\ this is verified by straight-

forward computations using corresponding properties of η : τr-i —> ΊΓ3 and the

definition of λ0.

T h u s we have a Trrhomomorphism λ : 7Γ3(^3) -> τr3 such that λ*o/ 3 = λ.

Again we construct a Cίί^-complex

where *S| is a copy of 3-sphere corresponding to each I € 7r3. and only one

point of S\ is attached to the fixed point p0 of K3. Hence L is naturally a

and τr,(L) = τr,(iC3), τr3(L) = τr3(/C3) + £ Z(f), where Z(?) is the in-

finite cyclic group with the generators z(ξ) represented by 5 | . T h e operations

of 7Γi on 2Z Z(ξ) a 7r3(L) is such as w : ^ ( | ) -> z(w ξ). Hence we can define
£e*3

an onto TΓi-homomorphism μ : 7Γ3(L) -> 7r3 by

ξ for I € τr3.

We apply Lemma 1 with X = L, G = 7r3, p = μ and we obtain a simply

connected ^ - s p a c e L * which contains L as an invariant subspace and has

following propert ies :

τr2(L*), 4* :

is onto, and the kernel of z* = the kernel of μ. Therefore there exists a TΓΓ

isomorphism h3: 7r3(L*)^&π3 such that Λ3

ozΐ = /Λ. By the naturality of Whi-
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tehead product, this simply connected 77vspace L* realizes 7r2, 7r3, T2. Hence

the theorem is proved.

We note that the proof of Theorem 3' is essentially contained in that of

Theorem 3.

Combining Theorem 3 with Theorem 2 we have the following

COROLLARY 4. Let nτn{n <; 2) be ^-modules. Let A = {(ρt9 qt)}9 B =

\(s9 tj)} and C — |(2, rk)\ be given sets of pairs of integers such that 2 <

Pι< qu 2 < s < tτ < U < , and rτ = 2, 4 < r2 < r3 < Let Tt :

Wpi ® 7Γq. -* TΓ^+Q,-!, T j I 7Γ5 ® 7Γ^ - * 7Γs + ί j - i , Tfc' : 7Γ2 ® 7Γrfc ~» TΓr̂  + 1 έ ^ 7Γ1-hθmθ'

morphisms. If any two elements of A are distinct and any two elements of

B {and C) are separated, and any element of A and any element of B or C

are distinct, and if Tΐ satisfies the condition of Theorem 3, then the system

7ru τr>, and ( T t | , fT/(, {Tk\ is realizable.

6. The realization of T±: 7r4 (g) 7r4 -> 7r7. First we formulate necessary

conditions for T4. For a, β e TΓ^B) and I € τr7(5'4),

holds. By J. P. Serre [18] and H. Toda [19], τ r 7 ( S 4 ) ^ Z + ZVz and its gene-

rators are v and a, where v is the element represented by the so-called Hopf

fibre map S7 —> S4 and a is the suspension E(a3) of the generator a3 6 7r6(53)

which is defined by Blakers and Massey. Also it is shown that \_ι9 t] = 2 v — a

for the element ι € 7τ4(/Sf4) represented by the identity map 5 4 -> S4. Since

H(y) = 1, we have

(i) [tf, /β] = (Λ + /3)oz; - Λ O 3 f, - ^o^ for a, β e ττ4(B).

From [*, ί] = 2 z/ - a, by the naturality of Whitehead products and the de-

finition of the composition operation, we have

(ϋ) \CL, a] = 2(a°v) — a°a for a € 7Γ4(JB).

The bilinearity of [a, β] is equivalent to (a + β + ry)°v — (a + β)°v —

(β + γ)o*> — (γ + α:)°^ + α°^ + β°v -f γoz^ = 0 and this relation, using (ii),

implies

(iii) (— a)°v = CL°V — cί°a and

(iv) (2 αθ°j> = 4(< ôι/) — a°a.

The correspondence a,-^ <x°v is not homomorphic, but the correspondence

a -> Λ°β is homomorphic, since β is a suspended element.

We shall prove following

THEOREM 4. Let 7r4, τr7 έ^ given abelian groups and T 4 : 7r4 & τr4 -> τr7
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be a given homomorphism. In order that the system πi9 τr7 and T 4 is reali-

zable^, it is necessary and sufficient that there exist a map v: 7r4-*7r7 and

a homomorphism a: 7r4 -> τrΊ satisfying the following conditions :

(1) Tla ®β) = v(a + β)- v(a) - v(β\

(2) v{- a) •= v(a) - a(a\

(3) 12 a(a) = 0, for a, β € ττ4.

PROOF. We shall prove the sufficiency. We construct a space K* = V S#

in the same way as in § 5. The group 7r4(K4) is a free abelian group and is

generated by generators ιa represented by the inclusion maps Si a KA. We

define a homomorphism p: 7r4(iC
4) -^ 7r4 by p(ιa) = a. By Lemma 9 the kernel

of p is generated by element of the form ιΛ — ιβ + ιγ for a, β, y € 7r4, a — β

+ γ = 0. For each ^ — Lβ + h (ac — β + y = 0), we attach 5-cells to K\ by

a map which represents ιa — iβ + cy. Then we obtain a CW-complex K5

such that z4 is onto and the kernel of z4 = the kernel of p holds, where z4:

τr4(i£4) -> τrA(K5) is the homomorphism induced by the inclusion map. Hence

there exists an isomorphism Λ4: iτ±(K5) ^ irA such that hA°iA — p. By Theorem

A of [12], the group τr7(K4) is

τr7(K
4) = Σ. wτ(5i) + Σ Z{a, /?),

Λ67Γ4 Λ,βeτf4

where TΓ^-SI) is embedded in τrΊ(K*) by an isomorphism induced by the inclu-

sion map. Hence its generators are vΛ = La,°v of infinite order and aΛ = Λα°α

of order 12, and Z(a, β) for a < β is the infinite cyclic group with the

generator z(ct, β) = [ιΛ, iβ].

By (3) we can define a homomorphism λ : τr7(^4) -> τr7 by

for a < β.

We shall consider the following diagram:

(D) P®/>

7Γ 4 QS) 7 Γ 4 -

5) By Theorem 2, this system is realizable in a space B such that τt,.(B) with /<4 or ;>7
are arbitrary given abelian groups, and Wp.q(B)=0 for ρ+q —1<4 or ρ+q —1>7. But it
seems that τti(B) for 4</<7 are not arbitrary. This situation occurs in the cases of the
realizations of TP.q for p^3.
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where WA denotes the homomorphism defined by the Whitehead product. By
assumptions (1) and (2), as we remarked in the first of this section, we have
T4(α ® a) = 2v(a) — a(ct), hence (D) is commutative.

We consider the exact sequence

and put Γ = iΊ(K%
Applying Theorem III of [1] with X = K\ n = 5, X* = K% we know

that τr8(K\ K*) is generated by the subgroup ξ"[τr4(K
4) Cg) τr5(K5, £"4)] and by

elements of the form β°a for β € τr5(K% K% a € τr8(E5, Eb), where ζ ando
denote the generalized Whitehead product and the composition respectively
([14]). Therefore, the kernel of i7 = 387r8(i£"5, K*) is generated by elements of
the forms [ιa — ιβ + ιy, is], (ι* ~~ iβ + h)°v> (ι<* ~ <>β + ^ ) ° ^ for a, β, 7, δ € 7Γ4

and Λ — /β + 7 = 0. It is obvious that λ(£) = 0 if ζ is an element of the first
or the third type stated above. Since ξ = (ιa - ιβ + Ly)°v = i^v + ^oy + ιΊoV

— tβ°<2 — \_ιa, iβ] + [̂ Λ, ^v] — \_iβ, iy] and corresponding formula for v{a — β + y)
holds, it is easily verified that λ(|) = 0. Thus λ(kernel of t7) = 0. Hence
there exists a homomorphism λ': Γ -* 7r7 such that λ'°f7 = λ. If λ' has an
extension λ* : 7r7(K5) -> τr7, then the remaider of the proof is quite similar to
that of Theorem 3.

Thus it remains only to prove that λ' has an extension. In fact we can
prove that Γ is a direct summand of 7Γ7(K5).

By Lemma 8, if the following condition (A) is satisfied, then Γ is a
direct summand of 7Γ7(K5):

(A) for any a € 7r7(Kδ) and any integer m such that m a € Γ, there
exists cέo € Γ such that m cc — m a0-

For such a and m we can find a finite subcomplex ^ CI K\ which has
the property that there exists an element a € π7(Kt) such that l(a) = a and
ma€. iτr7{Kt), where / : τr7{Kb) -> 7Γ7(K5) and i : π7(Kt) -> 7r7(Ko) denote the
homomorphisms induced by the inclusion maps. Hence to prove (A) it is
sufficient to show (A') :

{A') for any finite subcomplex Ko of K5, and for any element cc € τr7(Ko)
and any integer m such that m a € iτrΊ(Kt), there exists an element # 0 € /
7r7(Ko) such that m a = m a0.

Now consider any CW-complex L which has the same homotopy type
as K%. Let λ : K% -> L be a homotopy equivalence and A6 : L —• AΓo be a
homotopy inverse of λ, i. e. \°μ ^ 1, μ°\ ^ 1. We may assume that λ, μ
are cellular maps.

We shall consider the following commutative diagram :
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7Γ7I

λ 4 ;

i-
7 Γ 7 α4)-

λβ

l Ki)

/ " β

where λ i? / (̂z = 4, 5, 6) are homomorphisms induced by λ and μ respectively.
For a € 7rΊ(K% we put 5 = λβ(#). If w α € iτrΊ(Kί\ then / m 5) = >°λΰ

(w α) = \δ°j(m α) = 0. Hence m a €: zτr7(L4). If there exists an α0 € z 7r7(L
4)

such that m 5 = m 50) then α0 = ^δ50 € i*πΊ(Kb), and since μ5

oλ5 = identity,
m a = μ5°\5(in a) = μjjn a) = m 5o Therefore, again by Lemma 8, to show
{A') it is sufficient to prove that for some L of the same homotopy type as
Kl> iπ7(LA) is a direct summand of 7Γ7(L

5). This is shown as follows.
Since Ko is an ^U-polyhedron with n = 3, Ko is of the same homotopy

type as L = Mi V M-λ V V Mk9 where M* are elementary complexes ([3],
[10]). But

τrr(L5) =

and z: 7Γ7(L
4) -» 7Γ7(L

5) is represented under these direct sum decompositions by

where ir> j r are homomorphisms induced by the inclusion maps, and obviously j r

are onto. On the other hand, since Ht{K, G) = 0 for z > 5 and any coefficient
group G, Hi(Lr9 G) = 0 for i > 5. Hence the types of each Mr are 1, 4 or 5
in § 3 of [10].

By Theorem 6. 2, and 6. 3 of [10], zr(τr7(Mί)) is one of the direct sum-
mands of τrΊ(Mb

r) for M\ of types 4 or 5. Thus Γ is a direct summand of
τr7(K5). Hence λ' has an extension λ* : rrr1{Kb) -> 7r7. The proof of Theorem
4 is complete.

7r2 0 7r3 -> 7r4. First we7. The realization of T2: τr2 (g) 7r2 -* τr3 and JΓ3 0

shall formulate necessary conditions for T2 and T3. Let η
element represented by the Hopf fibre map. As stated in § 5

(i) [Λ, β] = (α + /S)oτ; - αoτ; - /3o^

(ϋ) Λo 7̂ = (— a)°η, for α, /S €

holds. For a, β, y €: irJJR), the Jacobi identity

τr3(iS2) be the
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(iii) [y, [a, βj] + la, [β, y]] + [β, [γ, aj] = 0

holds. G. Whitehead proved in [21] that the suspension homomorphism E:

π4(S2) -> 7Γ5(,S
3) is isomorphic, while 2£[ι, η] = 0, hence [*, η] = 0, where * is

a generator of 7r2(*S2). Therefore, for a € TΓ^S)

(iv) la, a°η~] = 0

holds. Further we show that the following relation holds :

(v) [a, la, βj] = - [aoη, /9] for a, β G ττ2(£).

For, if a = β, then both sides are equal to zero. If a =f= /?, we consider

the space Si V SI and let ^ € 7r2 (5? V SI) ^ 7Γ2(51) + 7r2(iS1) be the generator

of 7Γ2(£?). From the Jacobi identity we have 2 [j1 ? [ί1? *J] + [A2, [^, ^j]] = 0,

hence 2 [^, [^, ΛJ] + 2 [^ °̂̂ ?J = 0. By Theorem. A in [12], τrA(Sl V ά l ) ^

w4(5f) + w-4(S?) + τr4(54) + w 4 ( 5 4 ) * Z ! + Z2 + Z + Z while the element [^, [Λl, Λ2]]

+ [ί2, iχ
oιη\ obviously belongs to the free part, hence lcl9 ltl9 &2]] + [^ ^iOί?] = 0,

which proves (v).

Therefore, in order that T2, T 3 are realizable it is necessary that T 2 , T 3

satisfy the conditions correspond to (i) — (v).

Now we can prove the following

THEOREM 5. Let π^modules τr2, 7r3, 7r4, and homomorphisms T 2 :

TΓZ ® 7r2 -> 7r3 <2wJ T 3 : 7r2 ® 7r3 -> 7r4 έ^ given. We assume® that τrx operates

trivially on 7r2, 7r3 αwJ 7r4, and 7r2 Z5 /r^^. /n order that the system 7r1,
rτr-z,...

... and T2, T 3 Z5 realizable1'\ it is necessary and sufficient that there exists a

map η : τr2 —> 7r3 5e/cA ί/ι<2ί T 2 , T 3 «w<i 77 satisfy the following relations :

T2(γ ® α ) ) = 0,

for a, β, y € τr2.

PROOF. The necessity is stated above, so we shall prove the sufficiency.

Let B be a basis for the free group τr2, and introduce an ordering " < " i n

this set B. For each element a € B, let fΛ : (S\ s0) -> (Sϊ, s J be a fixed

homeomorphism. We construct a CW-complex

(1)

(2)

(3)

(4)

(5)

T2(α ® ,

«Kα) = »

T,(α(g>-

fl) = η(ct + β)- η{a) - η(β),

l(- a),

Γ*(a <8> β)) + T3(a <g> Ί\(β (g) γ))

•ϊία)) = 0,

6) It is desired to remove these assumptions.
7) We remark that this system is realized in a space B such that Wp.q(B) =0 except W2.2(B),
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K2 = V SI
cύeB

which is obtained from the disjoint union \J Si by identifying points s* to a

point p0. Then K2 is a simply connected space and 7r2(K2) is the free group
with the basis \ιa\a € B}, where ιΛ is the element represented by the map
fa : Si a K2, We can define an isomorphism h2 TΓ^K2) ^ π i by h J^ia) = (X.
The homotopy groups 7r3(K2) and 7rA(K2) are computed by Theorem A of
[12] as follows :

0ύ,βeB
a<β

αeS Λ,βeΛ cύ:β,y€B
a<β β<y

where Z(a, β) {a < β) is the free group with the generator z(a, β) — \_ιa9 iβ],
and 7r3(Sl) is embedded in 7Γ3(K2) by the inclusion map and so it is the free
group with the generator ia

ov> a n d G(ct, β) (a < β) is the cyclic group of
order 2 with the generator g(a9 β) = [J«, iβ]°ζ (? denotes a generator of 7r4(/S'3)
^^ Z2), and Z(a, β, y) (β < 7) is the free group with the generator z{a, β, y)
= llay [tβ, CγJ].

By properties (i), (ii), (iv), (v), Whitehead products in K2

W2: irlK2) ® τr2(K2) -

Wi: τr2(£2) (g) TΓaC^2) -

are represented as follows :

z(a, β) if a < β

z(β, a) if a>β

2(caoη) if a = β9

- z(β, a, β) if a < β

- z(β, β, a) if α > β

0 if Λ = β

S, y)) = «(α, /β, y) for β < y.

We can define a homomorphism

λ 3 : τr3(K2) -> τr3

by

= T2(α (g) β) for
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Then, we have the following commutative diagram:

W2

25

(A)

I
7JV OO 77V

Next we construct K3 = K% V *Sf. We know by Whitehead-Chang's

theorem that

Γ3( V SI)

where 7r* is the free group with generators cr(ξ) represented by 5|, and 7Γι(K2)
with z = 2, 3, 4 are embedded in 7Γi(K*) by the isomorphisms induced by the
inclusion maps and π^K*)® 7r3(V 5|) is embedded in 7r4(/^3) by the White-
head product.

We define a homomorphism λ? : 7Γ3(K3) -> 7r3 by

λ3 on

p on 7r*

where p: 7r? -> 7τ3 is given by p[p-{ξ)) = | . Then, from ( A ) we have the
following commutative diagram:

(A) hi® hi

I T 2

λ3*

where W2 denotes the Whitehead product in K3. The Whitehead product

W 3 . 7Γ2vx\- y \cjy ?Γ3\Λ ^ * 7Γ4\/v )

is represented in following way under the above direct sum decompositions :

j W3 on 7r2®

I identity on 7r2 ® 7r?.
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We define a homomorphism

λ ( tr2\ ^
4 7Γ4\X»- ^ ^ 7Γ4

by

( Ts(α, Tlβ, 7)) on *(#, & γ) (β < 7),
λ 4 = j _̂

0 on ̂  774(5^) + ^2 G(&9 β)'
oύ^B cύ,β< B

Oύ<β

Then, using the Jacobi identities it is easily verified that in the diagram

(A)

the commutativity λ4o
morphism

by

τ3

λ4

7Γ 3

= T3°(Λ2 £>£) λ3) holds good. We also define a homo-

on

' on w4(S|) (f € τr3),

(α, A 7)) = Tla (g> T2(/? <g) 7)) (/? < 7, α, /β, 7 € 5).

Then, from (Z)3) we have the following commutative diagram:

7Γ3(X3)
Wt

(A)

I
7Γ 2

Now we apply Lemma 1 with X = K\ p = \f, then we obtain KA 3 ^ 3

such that the kernel of λ? = the kernel of z3 and i3 is onto, where z3: τr3(K3)
-> 7Γ3CK4) is the homomorphism induced by the identity map. Therefore there
exists an isomorphism A3: τr3(KA)^7r3 such that A3of3 = λ*. By the naturality
of Whitehead products and the commutativity of the diagram (A)> we have
the following commutative diagram:
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siK')

A3

τ2 i

where W2 denotes the Whitehead product in K*.
We consider the exact sequence:

Since 7Γ4(X"4, X"3) is free, Γ = z"47r4(^
3) is one of the direct summands of

Therefore, if we assume that λ£(kernel of z'4) = 0, then there exists a homo-
morphism

λf * : τr4

such that λ**°z4 = λj. Therefore, from the commutative diagram (D4) we
have the following commutative diagram

7Γ2 (X) 7Γ3

τ 3

λί

Therefore by the same process as in the proof of Theorem 3 we have a
simply connected space which realizes 7r2, 7τ3, 7r4, T2, T3. Thus the proof of
our theorem is complete.

Now we shall prove that λj(kernel of ί4) = 0
By Lemma 4 of [24], the kernel of z4 is generated by subgroups (J'ΓXO))

(g) 7r2(i^3) and (f3"
1(0))θ7r4(53) of τr4(^:3), where 0 and ° mean the Whitehead

product and the composition respectively.
Since z3-

!(0) = λΓXO) and τr3(iC3) = TΓ^K2) + w?, any element T € fΓ^O)
may be represented as T = /) + σ where p € T^K2) C= 7ΓS(K3) and σ € 7r* C
τr3(K3) and λ3f> + />σ = 0. Moreover, the element p is represented as

where mf and ^j are integers, and ai9 βj9 jj € B, β3 < γj#

We consider the element σ = — £ miσ(y(cti)) — Σ njσ(.T2(βj (g) 7 )̂) and

set T' = /> + σ'? σ0 = σ — σ'. Then we have
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T = T + σ0 and cr0 6 />"X0).

Since £ : 7rs(S2) -> 7r4(<S3) is onto, to show that λf(kernel of z4) = 0, it is
sufficient to show that

λί(τ ®τr,(K3)) = 0, XfCr'o^GS8)) = 0,
λK/ΓKO) <g) ̂ (^3)) = 0 ? λ?(/>-χθ)oτr4(53)) = 0,

where τ is an element of the form ιΛ°η — oη(a) or {_cβ, ty] — ir2(j3®γ) (β < 7)
And this is proved by straightforward computations. Thus the proof is complete.

8. The realizations of TQ: 7r6 (g) 7r6 -• wn, and T7: 7r7 ® 7rr -> τr13. By
H. Toda [19], the following results has been obtained:

(0 W i i G S ^ Z

and its generators is [*β, ^β], where Λ6 is a generators of 7r6(SQ), and TΓioCAS6) = 0,

(ii) τ r 1 3 ( 5 7 ) ^ Z 2

and its generator is vΊ°v1Q and 7r12(S7) = 0, where ι̂ w denotes (n — 4)-fold
suspension of the element z>4 € 7r7(»S4) which represented by the Hopf map.

Therefore, for any CW"-complex K such that Kn~Ί consists of only one
0-cell for n = 6 or 7, by Theorem 1. 3 of [10], we have

n+1(Kn+\ Kn)

Hence i: 7r2n-ι(Kn) -> 7r2n-iCKn+1) is onto. Therefore, by the same way as the
proof of Theorem 3, we have the following

THEOREM 6. Let τrβ, τrτl be ir^-modules and T 6 : 7r6 ® 7r6 -> TΓH be an
arbitrary 7rγ-homomorphism such that TQ(a®β) = TQ(β^a)8) for a, β € 7rβ.
Then, the system τrx, 7r6, TΓH β/Zίi Tβ z*5 realizable.

THEOREM 7. Let 7r7, τr13 fe τr1-modules and T7: 7τ7 ® 7τ7-> 7Γ! 3 έtf β«

arbitrary TΓi'homomorphisπi such that TΊ(ct ® ct) = 08) /br <# € 7r7. Then the
system 7rt, 7r7, 7r13 ΛWίί T 7 Z5 realizable.

9. The realizations of 7^ : ^ ® 7rp -> 7r22?-i for p — 3, 5, 8. For T 3 :
τr3 ® 7r3 -> 7r5, since [̂ , ϊ\ — 0 (̂  € τr3(53)) it is necessary that T3(α: ® α) = 0
for α € 7r3. For the elementary complex S3 U ̂ 4

? where ^4 attached by a map of
degree 2, i(π b(S3)) is not a direct summand of TΓ̂ AS3 U £4)([9]). Therefore, for a
2-connected CW-complex K, z(τr5(^3)) is not necessarily a direct summand of

4), but irlK")/iirlK") C 7Γ5(iΓ, X

8) Of course this is a necessary condition.
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Therefore we can state the following

THEOREM 8. Let 7r3, 7τ5 be finitely generated abelian groups and T 3 :

τr3 @ 7Γ3 -» 7r5 έe <z homomorphism such that Tz(cc ® a) — § and T3(7Γ3 ® 7Γ3)

CI 2 7r5

9). Then, the system π3, /r5, T 3 zs realizable.

With respect to the readability of T6 ? since π9(S5) is the group of order

2 generated by [t, t] for a generator 1 € ^(iS5) and τr8(S5) ^ Z S 4 , we have the

following

THEOREM 9. Let 7r5, 7τ9 be finitely generated abelian groups and T 5 :

7τ5 ® 7τ5 —• 7r9 έ^ α homomorphism such that 2T 5 (α:®α:) = 0 αwίi T5(7Γ5®7r5)

c: 24 7r9

10). Then, the system 7r5, 7r9 α«(i T 5 z*5 realizable.

H. Toda proved that ^5(5 8 ) ^? Z + Z 1 2 0 , and TΓUC-S8) ^ Z 2 (see Appendix

p. 66 of [27]). Z and Z120 have generators p and Λ such that [ι8, Λ8] = 2/0 — α.

Therefore we have the following

THEOREM lO. Let 7r8, 7r15 be given finitely generated abelian groups

and T 8 : τr8 ® 7r8 —>• 7Γi5 έe Λ given homomorphism. If there exist a map p :

7r8 -> 7Γi5 (2wJ a homomorphism a: π8-+ 7r15 5^c/ι that

(1) Tf£

(2) K -

(3) 120 α(α) = 0,

(4)Π ) p(τr8) CZ 2 τr15, α(τr8) CZ 2τr15, / o r α, β € τr8,

ίA /̂2, ί/ie system π8, 7r15 αw<i T 8 is realizable.

In the proofs of Theorems stated in this section, Lemma 6 is used, but

proofs are similar to that of theorems of preceding sections and so we shall

omit the details.
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