ON REALIZATIONS OF SOME WHITEHEAD PRODUCTS

Hiroshi Miyazaki

(Received June 20, 1959)

Introduction. For any arcwise connected space B with a base point b_{0}, the sequence of homotopy groups of (B, b_{0}):

$$
\pi_{1}, \pi_{2}, \ldots \ldots, \pi_{n}, \ldots \ldots
$$

are defined. These groups except the first one are abelian and are written additively, while the fundamental group π_{1} is in general non-abelian and is written multiplicatively. Among these groups there are two kinds of important operations defined topologically. The first one is the operations of π_{1} on π_{p} with $p \geqq 2$ (for the definition see $\S 16$ of $[17]^{1}$), i. e. π_{p} becomes a $\pi_{1}{ }^{-}$ modules, namely, for $w \in \pi_{1}$ and $\alpha \in \pi_{p}, p \geqq 2$, a unique element $w \cdot \alpha$ is determined and

$$
\begin{gathered}
w \cdot\left(\alpha_{1}+\alpha_{2}\right)=w \cdot \alpha_{1}+w \cdot \alpha_{2}, \\
w_{1} \cdot\left(w_{2} \cdot \alpha\right)=\left(w_{1} w_{2}\right) \cdot \alpha, \quad 1 \cdot \alpha=\alpha .
\end{gathered}
$$

The second one is so-called Whitehead products (for the definition see [24]), i. e. for $\alpha \in \pi_{p}, \beta \in \pi_{q}$ with $p, q \geqq 2$, a bilinear product $[\alpha, \beta] \in \pi_{p+q-1}$ is defined. Hence these products define homomorphisms from $\pi_{p} \otimes \pi_{q}$ into π_{p+q-1}, which will be denoted by $W_{p, q}$ or $W_{p, q}(B)$, where the tensor product is taken over the integer coefficients.

It is well-known that these operations satisfy the following properties ([24], [16]) :
(1) The skew symmetric law:
(2)

$$
\begin{aligned}
{[\alpha, \beta] } & =(-1)^{p q}[\beta, \alpha], \text { or } \\
W_{p, q}(\alpha \otimes \beta) & =(-1)^{p q} W_{q, p}(\beta \otimes \alpha), \\
w \cdot[\alpha, \beta] & =[w \cdot \alpha, w \cdot \beta], \text { or } \\
w \cdot W_{p, q}(\alpha \otimes \beta) & =W_{p, q}((w \cdot \alpha) \otimes(w \cdot \beta)),
\end{aligned}
$$

(3) The Jacobi identity :

$$
(-1)^{p(r-1)}[\alpha,[\beta, \gamma]]+(-1)^{q(p-1)}[\beta,[\gamma, \alpha]]
$$

1) Numbers in brackets refer to the references at the end of the paper.

$$
+(-1)^{r(\alpha-1)}[\gamma,[\alpha, \beta]]=0
$$

where $w \in \pi_{1}, \alpha \in \pi_{p}, \beta \in \pi_{q}, \gamma \in \pi_{r}, p, q, r \geqq 2$.
We define operations of π_{1} on $\pi_{p} \otimes \pi_{q}$ by $w \cdot(\alpha \otimes \beta)=((w \cdot \alpha) \otimes(w \cdot \beta))$, then the property (2) means that $W_{p, q}$ preserves operations of π_{1}, i. e. $W_{p, q}$ is a π_{1}-homomorphism.

The realization problem of Whitehead products is stated as follows. Let π_{1} be a given multiplicative group and π_{p} with $p \geqq 2$ be given π_{1}-modules, and $T_{p, q}: \pi_{p} \otimes \pi_{q} \rightarrow \pi_{p+q-1}$ with $p, q \geqq 2$ be given π_{i}-homomorphisms which satisfy the properties corresponding to (1) and (3). The realization of this system $\pi_{n}, T_{p, q}$ with $n \geqq 1, p, q \geqq 2$ is to construct an arcwise connected space B with a base point b_{0} satisfying the following conditions:
(i) there exists, for each $n \geqq 1$, an isomorphism

$$
h_{n}: \pi_{n}\left(B, b_{0}\right) \approx \pi_{n}
$$

(ii) for arbitrary elements $w \in \pi_{1}\left(B, b_{0}\right), \alpha \in \pi_{p}\left(B, b_{0}\right)$ with $p \geqq 2$,

$$
h_{p}(w \cdot \alpha)=h_{1}(w) \cdot h_{p}(\boldsymbol{\alpha}),
$$

(iii) for arbitrary elements $\alpha \in \pi_{p}\left(B, b_{0}\right), \beta \in \pi_{q}\left(B, b_{0}\right)$ with $p, q \geqq 2$,

$$
\begin{aligned}
& h_{p+q-1}([\alpha, \beta])=T_{p, q}\left(h_{p}(\alpha) \otimes h_{q}(\beta)\right), \text { or } \\
& h_{p+q-1} \circ W_{p, q}(B)=T_{p, q} \circ\left(h_{p} \otimes h_{q}\right) .
\end{aligned}
$$

At first J. H. C. Whitehead [25] succeeded to construct a $C W$-complex which realizes groups $\pi_{1}, \pi_{2}, \ldots \ldots, \pi_{n}, \ldots \ldots$ and operations of π_{1} on π_{p} with $p \geqq 2$. Also, S . T. Hu [13] constructed a space B which realizes this system such that all $T_{p, q}$'s are trivial.

Recently P. J. Hilton explained in his paper [12] that all identical relations between Whitehead products follow from the skew symmetric law and the Jacobi identity by application of the laws of addition and the distributivity of the Whitehead product. Therefore, the properties which exist between $\pi_{1}-$ homomorphisms $W_{p, q}$ are essentially (1) and (3). But the properties corresponding to (1) and (3) for T_{p} 's are not sufficient conditions in order that this system is realizable. Indeed we shall need to assume that ${ }^{2)}$

$$
\begin{equation*}
T_{p, p}(\alpha \otimes \alpha)=0 \quad \text { for } p=3 \text { or } 7\left(\alpha \in \pi_{p}\right) \tag{4}
\end{equation*}
$$

Moreover, we shall need to impose other conditions. For this end we shall consider the composition operations. The composition operation is a map $C_{r, n}$:

[^0]$\pi_{r} \circ \pi_{n}\left(S^{r}\right) \rightarrow \pi_{n}$ for each $n, r \geqq 2$ which preserves operations of π_{1} on π_{r} and π_{n}, but in general not homomorphic. The right distributivity holds and these operations are related to Whitehead products by the following formula (cf. [12]) :
\[

$$
\begin{align*}
& (\alpha+\beta) \circ \xi=\alpha \circ \xi+\beta \circ \xi+[\alpha, \beta] \circ H_{u}(\xi) \tag{5}\\
& \quad+[\alpha,[\alpha, \beta]] \circ H_{1}(\xi)+[\beta,[\alpha, \beta]] \circ H_{2}(\xi)+\cdots \cdots
\end{align*}
$$
\]

where $\alpha, \beta \in \pi_{r}, \xi \in \pi_{n}\left(S^{r}\right)$ and $H_{0}: \pi_{n}\left(S^{r}\right) \rightarrow \pi_{n}\left(S^{2 r-1}\right), H_{1}, H_{2}: \pi_{n}\left(S^{r}\right) \rightarrow$ $\pi_{n}\left(S^{3 r-2}\right), \ldots \ldots$ are generalizations of Hopf invariants.

Thus there arises a question that "if $T_{p, q}$ and $C_{r, n}$ satisfy the conditions corresponding to (1), (3), (4) and (5), then is the system $\pi_{n}, T_{p, q}$ realizable ?" To solve the realization problem of Whitehead products seems to be very difficult.

As the first step to attack the realization problem of Whitehead products we shall deal with the realizability of a $T_{p, q}$ with arbitrary preassigned p and $q(p \neq q)$ and that of $T_{p, p}$ for $p \leqq 8$.

In $\S 1$ we shall summarize the method of S . T. Hu by which realization problems are reduced to construct a simply connected space with π_{1} as transformation group which realizes π_{n} and $T_{p, q}(n, p, q \geqq 2)$. In $\S \S 2$ and 3 we shall give some topological and algebraic lemmas which will be used in later sections. Lemmas 1 and 2 in $\S 2$ are generalizations of Lemmas 2 and 3 of [2] to the case of spaces on which a group operates. Replacing these lemmas in the construction of fibre space due to Cartan-Serre-G. W. Whitehead ([2], [22]) by our lemmas, we can give a sufficient condition for the Problem 11 of [15] (see Proposition 2 in $\S 2$). In $\S 4$ we treat with the realization of only one $T_{p, q}$ with $p \neq q$. In this case no condition for $T_{p, q}$ is needed. Also we obtain some results concerning the simultaneous realization of some $T_{p, q}$'s with $p \neq q$. $\S \S 5$ and 6 are devoted to the realizations of $T_{p, p}$ for $p=2,4$ and $\S 7$ is devoted to the simultaneous realization of $T_{2,2}$ and $T_{2,3}$ which is the lowest dimensional case where the Jacobi identity appears. The results concerning to $T_{6,6}$ and $T_{7,7}$ are stated in $\S 8$ and also that of $T_{p, p}$ for $p=3$, 5,8 are stated in § 9 .

Except the cases of $T_{p, q}$ for $p \neq q$ and $T_{p, p}$ for $p=6$ or 7 , our results are incomplete in the sense that some additional conditions are assumed. And it is desirable to remove these conditions.

1. The method of S. T. Hu. Let Y be an arcwise connected space on which a multiplicative group W operates as a transformation group. Such space will be called a W-space. By an invariant subspace of a W-space X we mean a subspace X_{0} such that $w\left(X_{0}\right) \subset X_{0}$ for any $w \in W$. Hence X_{0} itself
will be regarded as a W-space, and if X_{0} consists of only one point, this will be called a fixed point. If, for any $w \in W(w \neq 1)$ and for any $x \in X_{0}$, $w x \neq x$, then we say that W operates freely on X_{0}.

If X is a simply connected W-space, n-th homotopy groups $\pi_{n}(X, x)$ relative to every point $x \in X$ form a simple system of local groups (for examples see $\S 23$ of [4]). Therefore the unique isomorphism $\phi\left(x_{0}, x\right): \pi_{n}(X, x)$ $\approx \pi_{n}\left(X, x_{0}\right)$ is defined. Besides, each $w \in W$ induces the isomorphism w_{*} : $\pi_{n}(X, x) \approx \pi_{n}\left(X, w x_{0}\right)$. If we define an isomorphism $w: \pi_{n}\left(X, x_{0}\right) \approx \pi_{n}\left(X, x_{0}\right)$ by $w=\phi^{\prime}\left(x_{0}, w x_{0}\right) \circ w_{*}$, then $\pi_{n}\left(X, x_{0}\right)$ becomes a W-modules.

Throughout this paper homotopy groups of a simply connected W-space are understood as W-modules in this sense.

Let B be an arcwise connected space with a base point b_{0}. By \widetilde{B} we denote the universal covering space constructed by usual method (cf. § 23 of [4]), by \widetilde{b}_{j} denote the point of \widetilde{B} represented by the constant path $I \rightarrow b_{0}$. Let $p: \widetilde{B} \rightarrow B$ be the projection. It is well known that \widetilde{B} is simply connected and p induces the isomorphism $p_{*}: \pi_{n}\left(\widetilde{B}, \widetilde{b}_{0}\right) \approx \pi_{n}\left(B, b_{0}\right)$ for each $n \geqq 2$. Also $\pi_{1}\left(B, b_{0}\right)$ operates on \widetilde{B} as the group of covering transformations. It is easily seen that p_{*} is an operator isomorphism, i. e. $\pi_{1}\left(B, b_{0}\right)$-isomorphism.

Let (X, X_{0}) be a pair of a W-space X and a simply connected invariant subspace $X_{0} \subset X$. Then operations of W on $\pi_{n}\left(X, X_{0} ; x_{0}\right)$ are similarly defined. In addition, if X is simply connected, then the homomorphism induced by inclusion $j_{*}: \pi_{n}\left(X, x_{0}\right) \rightarrow \pi_{n}\left(X, X_{0} ; x_{0}\right)$ and the boundary homomorphism $\partial: \pi_{n}\left(X, X_{0} ; x_{0}\right) \rightarrow \pi_{n-1}\left(X_{0}, x_{0}\right)$ are operator homomorphisms.

Let (π, n) be a pair of a group π and an integer $n \geqq 1$. For $n>1$ we assume the commutativity of π. We shall denote by $P(\pi, n)$ the Giever-Hu's geometric realization ([8], [13]) of Eilenberg-MacLane complex $K(\pi, n)$ ([6]).

We recall some results on $P(\pi, n)$ (cf. [13]). If $n>1$ and π is a π_{1} module, then $P(\pi, n)$ is a π_{1}-space and the unique 0 -cell is a fixed point, and $\pi_{m}(P(\pi, n))=0$ for $1 \leqq m \neq n$ and there exists a natural π_{1}-isomorphism $\pi_{n}(P(\pi, n)) \approx \pi$. For $P\left(\pi_{1}, 1\right), \pi_{1}\left(P\left(\pi_{1}, 1\right)\right) \approx \pi_{1}$ and $\pi_{m}\left(P\left(\pi_{1}, 1\right)\right)=0$ for $m>1$. We shall identify $\pi_{n}(P(\pi, n))$ with π under this natural π_{1}-isomorphism for $n>1$ and also $\pi_{1}\left(P^{\prime}\left(\pi_{1}, 1\right)\right)$ with π_{1}.

Let $\mathfrak{B}=\{B, p, X, Y, G\}$ be a coordinate bundle in the sense of Steenrod [17]. We assume the following conditions:
(1) X and Y are arcwise connected,
(2) $\pi_{i}(X)=0$ for $i>1$, and $\pi_{1}(Y)=1$,
(3) the structural group G is totally disconnected.

Let $b_{0} \in B$ be a point and put $x_{0}=p\left(b_{0}\right), Y_{0}=p^{-1}\left(x_{0}\right)$. By the exactness of the homotopy sequence of \mathfrak{B} and the assumption (2), the inclusion map $\left(Y_{0}, b_{0}\right) \subset\left(B, b_{0}\right)$ induces isomorphisms $i_{n}^{*}: \pi_{n}\left(Y_{0}, b_{0}\right) \approx \pi_{n}\left(B, b_{0}\right)$ for $n>1$, and the projection $p: B \rightarrow X$ induces the isomorphism $p_{1}^{*}: \pi_{1}\left(B, b_{0}\right) \approx \pi_{1}\left(X, x_{0}\right)$.

Let $\xi: Y_{0} \rightarrow Y$ be an admissible map and

$$
\chi: \pi_{1}\left(X, x_{0}\right) \rightarrow G
$$

be the homomorphism of the characteristic class $\chi(\mathfrak{B})$ determined by ξ (for the definition cf. § 13 of [17]).

Under these assumptions and notations we have following
PROPOSITION 1. For arbitrary elements $w \in \pi_{1}\left(B, b_{0}\right), \alpha \in \pi_{n}\left(B, b_{0}\right)$ with $n>1$, we have

$$
h_{n}(w \cdot \alpha)=h_{1}(w) \cdot h_{n}(\alpha),
$$

where

$$
\begin{aligned}
& h_{n}=\xi_{n}^{*} \circ i_{n}^{*-1}: \pi_{n}\left(B, b_{0}\right) \approx \pi_{n}\left(Y, y_{0}\right),(n>1), \\
& h_{1}=\chi \circ p_{1}^{*}: \pi_{1}\left(B, b_{0}\right) \rightarrow G .
\end{aligned}
$$

This proposition is essentially proved in Theorem 3 and 4 in [13]. In that proof it is used that Y has a fixed point, but it is easily seen that this restriction can be removed.

By this proposition, the realization of $\pi_{1}, \pi_{2}, \ldots \ldots, \pi_{n}, \ldots \ldots$ and $T_{p, q}$'s is reduced to construct a simply connected π_{1}-space with π_{2}, π_{3}, and $T_{p, q}$'s as homotopy groups and Whitehead products.
2. Topological lemmas. First we shall prove the following lemmas.

LEMMA 1. Let X be a simply connected W-space, and n be a fixed integer >1. Let $\rho: \pi_{n}(X) \rightarrow G$ be a given W-homomorphism from $\pi_{n}(X)$ into a W-module G. Then there exists a W-space Z such that Z contains X as an invariant subspace and W operates freely on $Z-X$, and the inclusion map $i: X \subset Z$ induces the W-isomorphisms $i_{r}^{*}: \pi_{r}(X) \approx \pi_{r}(Z)$ for $1 \leqq r<n$ and i_{n}^{*} is onto and the kernel of i_{n}^{*} coincides with the kernel of ρ.

LEMMA 2. Let X be a simply connected W-space. Then, for an integer $n>1$, there exists a W-space Z which contains X as an invariant subspace, and the inclusion $i: X \subset Z$ induces the W-isomorphisms $i_{r}^{*}: \pi_{r}(X) \approx \pi_{r}(Z)$ for $1 \leqq r<n$ and $\pi_{r}(Z)=0$ for $r \geqq n$.

PRoof of Lemma 1. Let Γ be the kernel of the given W-homomorphism $\rho: \pi_{n}(X) \rightarrow G$, and for each element γ of Γ, let $f_{\gamma}: \dot{E}^{n+1} \rightarrow X$ be a fixed map which represents the element γ, where E^{n+1} and \dot{E}^{n+1} denote an
$(n+1)$-element and its boundary respectively. For any pair (w, γ) for $w \in W$, $\gamma \in \Gamma$, we consider the set $E_{(w, \gamma)}^{n+1}=\left\{(x, w, \gamma) \mid x \in E^{n+1}\right\}$. We introduce a topology to $E_{(w, \gamma)}^{n+1}$ such that the map $\lambda_{(w, \gamma)}: E_{(w, \gamma)}^{n+1} \rightarrow E^{n+1}$ defined by $\lambda_{(w, \gamma)}$ $(x, w, \gamma)=x$ becomes a homeomorphism. $E_{(w, \gamma)}^{n+1}$ are mutually disjoint. Define a map $\psi_{(w, \gamma)}: \dot{E}_{(w, \gamma)}^{n+1} \rightarrow X$ by $\psi_{(w, \gamma)}=w \circ f_{\gamma} \circ \lambda_{(w, \gamma)}$.

Let Z be a space obtained from X by attaching each $E_{(w, \gamma)}^{n+1}(w \in W$, $\gamma \in \Gamma)$, by the map $\psi_{(w, \gamma)}$. The operation of W on Z is defined as follows: For any element $v \in W$, we shall define a map $v: Z \rightarrow Z$ by

$$
\begin{aligned}
& v(z)=v(z) \quad \text { if } z \in X, \\
& v(x, w, \gamma)=(x, v w, \gamma) \quad \text { if }(x, w, \gamma) \in E_{(w, \gamma)}^{n+1} .
\end{aligned}
$$

It is easily verified that the map v is well-defined and continuous and Z becomes a W-space which contains X as an invariant subspace. The characteristic map $\psi_{(w, \gamma)}: \dot{E}_{(\omega, \gamma)}^{n+1} \rightarrow X$ represents the element $w \cdot \gamma$ of $\pi_{n}(X)$ and the set of elements $w \cdot \gamma$ generates Γ. Therefore, by Theorem 18 of [23], i_{n}^{*} is onto and the kernel of $i_{n}^{*}=$ the kernel of ρ. It is obvious that $i_{r}^{*}(1 \leqq r<n)$ are W-isomorphisms. Thus Z has the required properties.

Proof of Lemma 2. Applying Lemma 1 with $G=\{0\}, \rho: \pi_{n}(X) \rightarrow G$, then we obtain a W-space Z_{n} which contains X as an invariant subspace and $i_{r}^{*}: \pi_{r}(X) \approx \pi_{r}\left(Z_{n}\right)$ for $r<n$ and $\pi_{n}\left(Z_{n}\right)=0$. Next, applying Lemma 1 with $G=\{0\}, \rho: \pi_{n+1}\left(Z_{n}\right) \rightarrow G$, we have a W-space $Z_{n+1} \supset Z_{n}$ such that $\pi_{r}\left(Z_{n+1}\right)$ $\approx \pi_{r}\left(Z_{n}\right)$ for $r<n+1$ and $\pi_{n+1}\left(Z_{n+1}\right)=0$. If we continue this process, we have a sequence of W-space $X=Z_{n-1} \subset Z_{n} \subset Z_{n+1} \subset \ldots \ldots$ such that Z_{i} is an invariant subspace of Z_{i+1} and $i_{r}^{*}: \pi_{r}\left(Z_{s}\right) \approx \pi_{r}\left(Z_{s+1}\right)$ for $r<s-1$, and π_{s+1} $\left(Z_{s+1}\right)=0(s \geqq n-1)$. Therefore the limit space $Z=\lim Z_{i}$ has the required properties.

As described in the introduction, these lemmas are generalizations of Lemma 2, 3 of [2]. Replacing lemmas in the construction of fibre spaces due to Cartan-Serre-G.W.Whitehead ([2], [22]) by the above lemmas, we can give the following solution for Problem 11 of [15].

PROPOSITION 2. Let X be an $(n-1)$-connected W-space ($n \geqq 2$). If X has a fixed point, there exist an n-connected W-space X^{\prime} and a fibre map $p: X^{\prime} \rightarrow X$ such that p commutes with the operations of W, and the induced homomorphisms $p_{*}: \pi_{i}\left(X^{\prime}\right) \rightarrow \pi_{i}(X)$ are onto W-isomorphisms for $i>n$.

We shall need the following lemmas in later sections.
LEmma 3. For any arcwise connected space X with a base point x_{0} and for any integer $n>1$, there exists a $\pi_{1}\left(X, x_{0}\right)$-space E having the following properties:
(1) $\pi_{i}(E)$ is trivial for $1 \leqq i<n$,
(2) there exists $\pi_{1}\left(X, x_{0}\right)$-isomorphisms $h_{i}: \pi_{i}(E) \approx \pi_{i}\left(X, x_{0}\right)(i \geqq n)$
such that

$$
h_{p+q-1} \circ W_{p, q}(E)=W_{p, q} \circ\left(h_{p} \otimes h_{q}\right),(p, q \geqq n) .
$$

This lemma is easily obtained from the following lemma and Proposition 2.

Lemma 4. For any arcwise connected space X with a base point x_{1}, there exists a simply connected $\pi_{1}\left(X, x_{1}\right)$-space B which satisfies the following conditions :
(1) there exists a fixed point $b_{0} \in B$,
(2) there exist $\pi_{1}\left(X, x_{1}\right)$-isomorphisms $h_{n}: \pi_{n}\left(B, b_{0}\right) \approx \pi_{n}\left(X, x_{1}\right)(n \geqq 2)$ such that $h_{p+q-1} \circ W_{p, q}(B)=W_{p, q}(X) \circ\left(h_{p} \otimes h_{q}\right)$ for $p, q>1$.

PROOF. Let \tilde{X} be the universal covering space of X and $p: \widetilde{X} \rightarrow X$ be the projection, and \widetilde{x}_{1} be a point of \tilde{X} represented by the constant map $I \rightarrow x_{1} . \tilde{X}$ is a $\pi_{1}\left(X, x_{1}\right)$-space and p induces $\pi_{1}\left(X, x_{1}\right)$-isomorphisms p_{*} : $\pi_{n}\left(\tilde{X}, \widetilde{x}_{1}\right) \approx \pi_{n}\left(X, x_{1}\right)$ for $n>1$.

For any $w \in \pi_{1}\left(X, x_{1}\right)$, the covering transformation $w: \widetilde{X} \rightarrow \widetilde{X}$ induces an isomorphism $w_{\text {\# }}: S \rightarrow S$, where S denotes the total singular complex of \widetilde{X}. Thus $\pi_{1}\left(X, x_{1}\right)$ operates on S.

We shall consider a minimal subcomplex M_{1} of \tilde{X} relative to the base point \widetilde{x}_{1} [5], and we define operations of $\pi_{1}\left(X, x_{1}\right)$ on M_{1}. The image subcomplex $M_{w}=w_{\text {\# }}\left(M_{1}\right)$ is obviously a minimal subcomplex relative to the base point $w\left(\widetilde{x}_{1}\right)$. Since \widetilde{X} is simply connected, the isomorphism $\boldsymbol{\phi}_{w}: M_{w} \rightarrow M_{1}$ introduced in $\S 7$ of [5] is uniquely determined, i. e. $\boldsymbol{\varphi}_{w}$ is independent upon the choice of a path joining $\widetilde{x_{1}}$ and $w\left(\widetilde{x_{1}}\right)$ used in definition of $\boldsymbol{\varphi}_{w}$.

We define an isomorphism $w: M_{1} \rightarrow M_{1}$ by $w=\boldsymbol{\varphi}_{u} \circ w_{\# \#}^{0}$, where $w_{\#}^{0}=$ $w_{\text {音 }} \mid M_{1}$. We shall consider following diagrams:

where $v_{\#}^{1}=v_{\#} \mid M_{w}$, and φ is the similar isomorphism as $\boldsymbol{\varphi}_{w}$. By the uniqueness of maps $\boldsymbol{\varphi}, \boldsymbol{\varphi}_{v}, \boldsymbol{\varphi}_{w}, \boldsymbol{\varphi}_{v w}$, commutativities hold in these diagrams, i. e.
$\boldsymbol{\varphi} \circ v_{\#}^{1}=\boldsymbol{v}_{\#} \circ \boldsymbol{\varphi}_{w}$ and $\boldsymbol{\varphi}_{v w}=\boldsymbol{\varphi}_{v} \circ \boldsymbol{\varphi}$. Since $(v w)_{\#}^{1}=v_{\#}^{1} \circ w_{\#}^{0}$ we have

$$
\boldsymbol{\varphi}_{v w} \circ\left(v w^{\prime}\right)_{\#}^{0}=\boldsymbol{\varphi}_{v} \circ \boldsymbol{\varphi} \circ v_{\# \#}^{1} \circ w_{\#}^{0}=\left(\boldsymbol{\varphi}_{v} \circ v_{\#}^{0}\right) \circ\left(\boldsymbol{\varphi}_{w} \cdot w_{\#}^{0}\right) .
$$

Thus, under this definition, $\pi_{1}\left(X, x_{1}\right)$ operates on M_{1} as a group of isomorphisms.

Therefore realization polytopes $P\left(M_{1}\right)$ and $P(S)$ are $\pi_{1}\left(X, x_{1}\right)$-spaces and the unique 0 -cell b_{0} of $B=P\left(M_{1}\right)$ is a fixed point. Let $i: B \rightarrow P(S)$ be the map induced by the inclusion $M_{1} \subset S$ and $q: P(S) \rightarrow \widetilde{X}$ be the projection. It is well-known that i and q induce isomorphisms $i_{*}: \pi_{n}(B) \approx \pi_{n}(P(S)), q_{*}$: $\pi_{w}(P(S)) \approx \pi_{n}(X)$ for $n>1$. Since q is a $\pi_{1}\left(X, x_{1}\right)$-map, q_{*} is a $\pi_{1}\left(X, x_{1}\right)$ isomorphism. We define $h_{n}: \pi_{n}(B) \approx \pi_{n}(X)(n>1)$ by $h_{n}=p_{*} \circ q_{*} \circ i_{*}$.

Let $M_{1}^{0} \subset M_{1}$ be the subcomplex consisting of all collapsed simplexes, then $P\left(M_{1}^{0}\right)$ is a contractible invariant subspace. Therefore $j_{*}: \pi_{n}\left(P\left(M_{1}\right)\right) \rightarrow$ $\pi_{n}\left(P\left(M_{1}\right), P\left(M_{1}^{0}\right)\right)$ are $\pi_{1}\left(X, x_{1}\right)$-isomorphisms. On the other hand $\pi_{n}\left(P\left(M_{1}^{0}\right)\right)$ is generated by n-cells corresponding to n-simplexes of M_{1} with collapsed faces. Therefore, from the definition of φ it is easily seen that i_{*} is a $\pi_{1}\left(X, x_{1}\right)$ isomorphism, and by the naturality of Whitehead products, the condition (2) is satisfied. Thus the proof is complete.
3. Algebraic lemmas. Let W be a multiplicative group. and H be a W-module. If H is a free abelian group and there exists a set $B \subset H$ such that the element $w \cdot b$, for all $w \in W, b \in B$, are pairwise distinct and form a basis for H, then H is said to be W-free. This set B is called a W-basis.

By the same way as the proof of Lemma 6.3 of [7] we have the following

LEMMA 5. If H_{0} is a submodule of W-module H and the factor W module H / H_{0} is W-free, then H_{0} is a direct summand of H.

LEmma 6. Let H be an abelian group and H_{0} be a subgroup of H such that H / H_{0} is decomposed to a direct sum $F+A$, where F is a free group and A is a direct sum of finite cyclic groups. For any abelian group G, in order that any homomorphism $\theta: H_{0} \rightarrow G$ is extendable to a homomorphism $\theta^{*}: H \rightarrow G$, it is necessary and sufficient that for any element $h \in H$ and for any integer m such that $m h \in H_{0}$, the element $\theta(m h)$ is divisible by m.

Proof. The necessity is obvious, so we shall prove the sufficiency. By the assumption,

$$
H / H_{0}=F+\sum A_{\alpha} \quad \text { (direct sum decomposition), }
$$

where A_{α} is a finite cyclic group of order $r_{\alpha}(>1)$ with a generator a_{α}.
Let H_{1} be a subgroup of H such that $H / H_{1}=F$. Then, by Lemma 5, H_{1} is a direct summand of H, hence any homomorphism $H_{1} \rightarrow G$ is extendable over H. Thus we may assume that $F=0, H / H_{0}=\sum A_{\alpha}$.

Let $p: H \rightarrow H / H_{0}$ be the projections and for each a_{a} we select an element $h_{\alpha} \in H$ such that $p h_{\alpha}=a_{\alpha}$. Since $r_{\alpha} h_{\alpha} \in H_{0}$, by the assumption for θ, there exists an element $g_{\alpha} \in G$ such that $\theta\left(r_{\alpha} h_{\alpha}\right)=r_{\alpha} g_{\alpha}$.

Now, any element h of H can be written as

$$
h=h_{0}+\sum m_{\alpha} h_{x}
$$

where $h_{0} \in H_{0}$ and m_{a} are integers which are zero except finite numbers. We define a map

$$
\theta^{*}: H \rightarrow G
$$

by

$$
\theta^{*}(h)=\theta^{\prime}\left(h_{0}\right)+\sum m_{\alpha} g_{\alpha} .
$$

First we must show that θ^{*} is a well defined homomorphism. If h has another representation $h=h_{0}^{\prime}+\sum n_{\alpha} h_{\alpha}$, then

$$
h_{0}-h_{0}^{\prime}=\sum\left(n_{\alpha}-m_{\alpha}\right) h_{\alpha} .
$$

Hence $0=p\left(h_{0}-h_{0}^{\prime}\right)=\sum\left(n_{\alpha}-m_{\alpha}\right) p h_{\alpha}=\sum\left(n_{\alpha}-m_{\alpha}\right) a_{\alpha}$, thus we have

$$
n_{\alpha}-m_{\alpha}=r_{\alpha} t_{\alpha} \quad\left(r_{\alpha}: \text { integers }\right)
$$

Therefore $h_{0}-h_{0}^{\prime}=\sum r_{\alpha} t_{\alpha} h_{\alpha}$, and we have

$$
\begin{aligned}
\theta\left(h_{0}\right)-\theta\left(h_{0}^{\prime}\right) & =\theta\left(\sum r_{\alpha} t_{\alpha} h_{\alpha}\right)=\sum t_{\alpha} \theta\left(r_{\alpha} h_{\alpha}\right) \\
& =\sum t_{\alpha} r_{\alpha} g_{\alpha}=\sum\left(n_{\alpha}-m_{\alpha}\right) g_{\alpha}
\end{aligned}
$$

Thus we have $\theta\left(h_{0}\right)+\sum m_{\alpha} g_{\alpha}=\theta\left(h_{0}^{\prime}\right)+\sum n_{\alpha} g_{\alpha}$, which shows that θ^{*} is well-defined. In virtue of the definition of θ^{*}, it is obvious that θ^{*} is a homomorphism and an extension of θ. Thus the proof is complete.

LEMMA 7. Let H and H_{0} be the same groups as in Lemma 6. If, for any element $h \in H$ and for any interger m such that $m h \in H_{0}$, the element $m h$ is divisible by m in H_{0}, then H_{0} is a direct summand of H.

Proof. By Lemma 6, the identity $H, \rightarrow H_{0}$ is extendable to a homomorphism $\psi: H \rightarrow H_{0}$. Therefore we have $H=H,+$ kernel of ψ, which proves the lemma.

In the Lemma 7, the assumptions for H / H_{0} can be removed. Namely we have the following

LEMMA 8. Let H be any abelian group and H_{0} be any subgroup of H. If, for any element $h \in H$ and for any integer m such that $m h \in H_{0}$, the element $m h$ is divisible by m in H_{0}, then H_{0} is a direct summand of H.

Proof. Let $F=\left\{f_{\alpha}\right\}$ be a set of generators of H, and we consider the family \mathfrak{S} of all finite subsets of F. For $S \in \mathbb{S}$, let H_{s} denote the subgroup of H generated by H_{0} and elements of S. Then H_{s} / H_{0} is finitely generated. Therefore all assumptions in Lemma 7 is satisfied for H_{s} and H_{0}. Hence there exists a subgroup $V_{s} \subset H$ such that $H_{s} \cap V_{s}=0$ and $H_{s}=H_{0}+V_{s}$. Let V be the smallest subgroup which contains V_{s} for all $S \in \mathbb{S}$. Then it is easily verified that $V \cap H_{0}=0$ and $H=H_{0}+V$. Therefore H_{0} is a direct summand of H.

LEMMA 9. Let π be an abelian group and π^{*} be a free abelian group with generators $\sigma(\alpha)$ corresponding to each element α of π. Then the kernel of the homomorphism $\theta: \pi^{*} \rightarrow \pi$ defined by $\theta(\sigma(\alpha))=\alpha$ is generated by elements of the form $\sigma(\alpha+\beta)-\sigma(\alpha)-\sigma(\beta)$ for $\alpha, \beta \in \pi$.

PROOF. Let $\Gamma \subset \pi^{*}$ be a subgroup generated by elements $\sigma(\alpha+\beta)-$ $\sigma(\alpha)-\sigma(\beta)(\alpha, \beta \in \pi)$. It is obvious that $\Gamma \subset$ kernel of θ, and it remains to show that $\Gamma \supset$ kernel of θ.

To show it, we shall first prove that $\sum_{i=1}^{n} \sigma\left(\alpha_{i}\right)-\sigma\left(\sum_{i=1}^{n} \alpha_{i}\right) \in \Gamma, \quad\left(\alpha_{i} \in \pi\right)$. For $n=1$ and $n=2$, this fact is true. We assume that our assertion is true for $n-1$. If we put

$$
\boldsymbol{\tau}=\sigma\left(\sum_{i=1}^{n} \alpha_{i}\right)-\sigma\left(\sum_{i=1}^{n-1} \alpha_{i}\right)-\sigma\left(\alpha_{n}\right),
$$

then $\tau \in \Gamma$ and

$$
\sum_{i=1}^{n} \sigma\left(\alpha_{i}\right)-\sigma\left(\sum_{i=1}^{n} \alpha_{i}\right)=\sum_{i=1}^{n-1} \sigma\left(\alpha_{i}\right)-\sigma\left(\sum_{i=1}^{n-1} \alpha_{i}\right)-\tau
$$

Therefore, by the assumption that $\sum_{i=1}^{n-1} \sigma\left(\alpha_{i}\right)-\sigma\left(\sum_{i=1}^{n-1} \alpha_{i}\right) \in \Gamma$, we know that $\sum_{i=1}^{n} \sigma\left(\alpha_{i}\right)-\sigma\left(\sum_{i=1}^{n} \alpha_{i}\right) \in \Gamma$.

Now, if $a=\sum_{i=1}^{n} r_{i} \sigma\left(\alpha_{i}\right)\left(r_{i}:\right.$ integers $)$ belongs to the kernel of θ, then $\sum_{i=1}^{n} r_{i} \alpha_{i}=0$. By the above fact, $r_{i} \sigma_{(}^{\prime}\left(\alpha_{i}\right)-\sigma_{(}^{\prime}\left(r_{i} \alpha_{i}\right) \in \Gamma$ for each i, hence $a-\sum_{i=1}^{n}$ $\sigma\left(r_{i} \alpha_{i}\right) \in \Gamma$. On the other hand, it is easily seen that

$$
\begin{aligned}
\Gamma \ni \sum_{i=1}^{n} \sigma^{\prime}\left(r_{i} \alpha_{i}\right) & \left.-\sigma\left(\sum_{i=1}^{n} r_{i} \alpha_{i}\right)=\sum_{i=1}^{n} \sigma_{(}^{\prime} r_{i} \alpha_{i}\right)-\sigma(0) \\
& \left.=\sum_{i=1}^{u} \sigma_{(}^{\prime} r_{i} \alpha_{i}\right)-[\sigma(0)-\sigma(0)+\sigma(0)]
\end{aligned}
$$

hence $\sum_{i=1}^{n} \sigma\left(r_{i} \alpha_{i}\right) \in \Gamma$. Therefore $a \in \Gamma$.
4. The realization of $\boldsymbol{T}: \boldsymbol{\pi}_{p} \otimes \pi_{q} \rightarrow \boldsymbol{\pi}_{p+q-1}$ for $\mathbf{1}<\boldsymbol{p}<\boldsymbol{q}$. In this section we prove the following

THEOREM 1. Let π_{1} be any multiplicative group and $\pi_{n}(n \geqq 2)$ be any $\pi_{1}-$ modules. For fixed integers p, q with $1<p<q$, let $T: \pi_{p} \otimes \pi_{q} \rightarrow \pi_{p+q-1}$ be an arbitrary given π_{1}-homomorphism. Then the system $\pi_{1}, \pi_{2}, \ldots \ldots, \pi_{n}, \ldots$ \ldots, T is realizable. Namely, there exist a space (B, b_{0}) and isomorphisms $h_{n}: \pi_{n}\left(B: b_{s}\right) \approx \pi_{n}(n \geqq 1)$ with the following properties:
(1) $h_{n}(w \cdot \alpha)=h_{1}(w) \cdot h_{n}(\alpha)$ for $\alpha \in \pi_{n}\left(B, b_{0}\right)(n \geqq 2), w \in \pi_{1}\left(B, b_{s}\right)$,
(2) $h_{p+q-1} \circ W_{p, q}(B)=T \circ\left(h_{p} \otimes h_{q}\right)$,
(3) if one of integers $p^{\prime}, q^{\prime}>1$ is different from p and q, then $W_{p^{\prime} q^{\prime}}(B)=0$.

Proof. We put $P_{p}=P\left(\pi_{p}, p\right), P_{q}=P\left(\pi_{q}, q\right)$ and let $P=P_{p} \vee P_{q}$ be a space obtained from the union $P_{p} \cup P_{q}$ by identifying 0 -cells of P_{p} and P_{q} to a point p_{0}. Since 0 -cells of P_{p} and P_{q} are fixed points, P is naturally a π_{1}-space. By a theorem of Whitehead-Chang ([11])

$$
\pi_{i}(P)= \begin{cases}0 & \text { if } i<p \text { or } p<i<q \text { or } q<i<p+q-1 \\ \pi_{p} & \text { if } i=p \\ \pi_{q} & \text { if } i=q \\ \pi_{p} \otimes \pi_{q} & \text { if } i=p+q-1\end{cases}
$$

where $\pi_{i}\left(P_{i}\right)\left(=\pi_{i}\right)$ for $i=p$ or q is embedded in $\pi_{i}(P)$ by the inclusion map $P_{i} \subset P$, and $\pi_{p} \otimes \pi_{q}=\pi_{p}\left(P_{p}\right) \otimes \pi_{q}\left(P_{q}\right)$ is embedded in $\pi_{p+q-1}(P)$ by the Whitehead product. Also these embedding isomorphisms commute with operations of $\boldsymbol{\pi}_{1}$.

Let $\left(S^{p+q-1}, s_{0}\right)$ be a pair of a $(p+q-1)$-sphere S^{p+q-1} and a point s_{0} on it. For each pair (w, α) with $w \in \pi_{1}, \alpha \in \pi_{p+q-1}$, let $\left(S_{(w, \alpha)}^{p+q-1}, s_{(w, \alpha)}\right)$ be disjoint copies of (S^{p+q-1}, s_{0}) and we attach these spheres to P by identifying $s_{(v, \alpha)}$ with P_{0}. The space thus obtained will be denoted by Q. As in the proof of Lemma 1 , this space Q may be regarded as a π_{1}-space. Obviously Q has the same homotopy groups as P in dimensions $<p+q-1$, and π_{p+q-1} $(Q)=\pi_{p} \otimes \pi_{q}+\pi_{p+q-1}^{*}$, where π_{p+q-1}^{*} is the free abelian group generated by the elements $\iota_{(w, \alpha)}$ represented by $S_{(w, \alpha)}^{p+q-1}$. And operations of π_{1} on π_{p+q-1}^{*} is such as $\left.v \cdot \iota_{(w, \alpha)}\right)=\iota_{(v v, \alpha)}$.

We define a π_{1}-homomorphism λ from $\pi_{p+q-1}(Q)$ onto π_{p+q-1} by

$$
\left\{\begin{array}{l}
\lambda \mid \pi_{p} \otimes \pi_{q}=T, \\
\lambda\left(\iota_{(w, \alpha)}\right)=w \cdot \alpha
\end{array}\right.
$$

for a generator $\iota_{(w, \alpha)}$ of π_{p+q-1}^{*}.
We apply Lemma 1 with $G=\pi_{p+q-1}(Q), \rho=\lambda$, then there exists a π_{1}-space Q^{*} such that Q^{*} contains Q as an invariant subspace, and

$$
i_{r}^{*}: \pi_{r}(Q) \approx \pi_{r}\left(Q^{*}\right) \text { for } r<p+q-1
$$

and the kernel of $i_{p+q-1}^{*}=$ the kernel of λ. Hence there exists a π_{1}-isomomorphism $h_{p+q-1}: \pi_{p+q-1}\left(Q^{*}\right) \approx \pi_{p+q-1}$ such that $h_{p+q-1} i_{p+q-1}^{*}=\lambda$. Since $\pi_{p} \otimes \pi_{q}$ is embedded in $\pi_{p+q-1}(Q)$ by the Whitehead product which is natural, we have the following commutative diagram :

where $h_{i}: \pi_{i}\left(Q^{*}\right) \approx \pi_{i}$ for $i=p$ or q are the inverses of isomorphisms induced by the inclusion maps $P_{i} \subset Q^{*}$, and W denotes the Whitehead product in Q^{*}. Therefore the space Q^{*} is a π_{1}-space which realizes π_{1}-modules π_{p}, π_{q}, π_{p+q-1} and π_{1}-homomorphism T. Hence, by Lemma 2, there exists a π_{1}-space Y_{0} which realizes $\pi_{p}, \pi_{q}, \pi_{p+q-1}, T$ and $\pi_{i}\left(Y_{0}\right)=0$ for $i \neq p, q, p+q-1$.

From now we proceed in the same way as $\S 6$ of [13]. We construct the product space

$$
Y=Y_{0} \times\left(\Pi P_{i}\right)
$$

where $P_{i}=P\left(\pi_{i}, i\right)$ and in the product ΠP_{i} of P_{i} indices i run over integers $i>1, i \neq p, q, p+q-1$. This space Y is naturally a π_{1}-space and $\pi_{i}(Y)$ are π_{i}-isomorphic to π_{i} for $i>1$.

Let π_{1}^{0} be the subgroup of π_{1} consisting of all elements which operate on
Y as the identity. Let $\chi: \pi_{1} \rightarrow \pi_{1} / \pi_{1}^{0}=G$ be the projection. Let $\mathfrak{B}=(B, P$, $X, Y, G)$ be a fibre bundle such that the base space X is $P\left(\pi_{1}, 1\right)$ and the fibre is Y and the siructure group is G with the discrete ropology, and the characteristic map is $\chi: \pi_{1}(X)=\pi_{1} \rightarrow G$. Such a bundle certainly exists by Theorem in § 13. 8 of [17]. It is easily seen by Proposition 1 that the total space B is the required one (cf. [13]).

We next give the following
THEOREM 2. Let π_{1} be a multiplicative group and $\pi_{n}(n \geqq 2)$ be $\pi_{1}-$ modules. Let π_{1}-homomorphisms $T_{p, q}: \pi_{p} \otimes \pi_{q} \rightarrow \pi_{p+q-1}$ with $p, q>1, p+q$ $-1 \leqq r$ and $T: \pi_{p_{0}} \otimes \pi_{q_{0}} \rightarrow \pi_{p_{0}+g_{0}-1}$ with $1<p_{0}<q_{0}$ be given. If π_{1}, π_{2}, \ldots \ldots, π_{r} and $T_{p, q}$ for $p+q-1 \leqq r$ are realizable, then $\pi_{1}, \pi_{2}, \ldots \ldots$, and $T_{p, q}$ for $p+q-1<\min \left(q_{0}, r+1\right), p+q-1 \neq p_{0}$ and T are simultaneously realizable in a space B such that all Whitehead products vanish except $W_{p_{0}, q_{0}}, W_{q_{0}, p_{0}}$ and $W_{p, q}$ for $p+q-1<\min \left(q_{0}, r+1\right), p+q-1 \neq p_{0}$.

Proof. Case (i): $r<p_{0}$. By the assumption there exists an arcwise connected space A which realizes $\pi_{1}, \pi_{2}, \ldots \ldots, \pi_{r}$ and $T_{p, q}$ for $p+q-1<r$ ($p, q>1$). By Lemma 2 we can assume that $\pi_{i}(A)=0$ for $i>r$. On the other hand, by Theorem 1 , there exists a simply connected π_{1}-space C which realizes $\pi_{p_{0}}, \pi_{q_{0}}, \pi_{p_{0}+q_{0}-1}$ and T such that $\pi_{i}(C)=0$ for $1<i \neq p_{0}, q_{0}, p_{0}+$ $q_{0}-1$.

We construct the product space

$$
Y=\widetilde{A} \times C \times\left(\Pi P_{i}\right)
$$

where \widetilde{A} is the universal covering space of A and in the product ΠP_{i} the index i runs over integers $i>r$ except $p_{0}, q_{0}, p_{0}+q_{0}-1$. Then Y is the simply connected π_{1}-space which realizes $\pi_{2}, \pi_{3}, \ldots \ldots$, and $T, T_{p, q}$ for $p+q$ $-1 \leqq r$, and the other Whitehead products vanish. Thus by the same process as the last step in the proof of Theorem 1, we obtain a required space.

Case (ii) : $p_{0} \leqq r$. Let A be a space which realizes $\pi_{1}, \ldots \ldots, \pi_{r}$ and $T_{p, q}$ for $p+q-1 \leqq r$. We apply Lemma 3 with $X=A, n=p_{0}$, then we know that there exists a π_{1}-space A_{1} having a fixed point such that $\pi_{i}\left(A_{1}\right)=0$ for $i<p_{0}$ and A_{1} realizes $\pi_{p_{0}}, \ldots \ldots, \pi_{r}$ and $T_{p, q}$ for $p+q-1 \leqq r\left(p, q \geqq p_{0}\right)$. Hence again by Lemma 2 there exists a π_{1}-space A_{2} having a fixed point a_{0} such that $\pi_{i}\left(A_{2}\right)=0$ for $i<p_{0}$ and $i \geqq s$ and A_{2} realizes $\pi_{p_{0}}, \pi_{s-1}, T_{p, q}$ for $p+q-1<s\left(p, q \geqq p_{0}\right)$, where $s=\min \left(q_{0}, r+1\right)$,.

We construct the π_{1}-space $A_{2} \vee P\left(\pi_{90}, q_{0}\right)$, where only the fixed point $a_{0} \in A_{2}$ and the fixed point of $P\left(\pi_{q_{0}}, q_{0}\right)$ are identified. Hence this is a $\pi_{1}-$ space. For this π_{1}-space we can apply the same process used in the first step in the proof of Theorem 1 and we obtain a π_{1}-space A_{3} such that $\pi_{i}\left(A_{3}\right)=0$
for $i<p_{0}$ and $i \geqq s,\left(i \neq q_{0}, p_{0}+q_{0}-1\right)$ and A_{3} realizes $\pi_{p_{0}}, \ldots \ldots, \pi_{s}, \pi_{q_{0}}$, $\pi_{p_{0}+q_{0}-1}$ and $T, T_{p, q}$ for $p+q-1<s\left(p, q \geqq p_{0}\right)$.

Also, let B be a space which realizes $\pi_{1}, \ldots \ldots, \pi_{p_{0}-1}, T_{p, q}$ for $p+q-1<$ $p_{0},(p, q>1)$, and $\pi_{i}(B)=0$ for $i \geqq p_{0}$. We construct $Y=A_{3} \times \widetilde{B} \times\left(\Pi P_{i}\right)$, where the index i in the product ΠP_{i} runs over integers $\geqq s, \neq p_{0}, q_{0}, p_{0}+$ $q_{0}-1$. Then in the same way as in (i), we have a required space. Thus the proof is complete.

By repeated applications of Theorem 2 we directly obtain some results concerning the simultaneous realization of some π_{1}-homomorphisms of type $T_{p, q}: \pi_{p} \otimes \pi_{q} \rightarrow \pi_{p+q-1}$ with $p \neq q$. To formulate these we need following terminologies.

Pairs of integers (p_{0}, q_{0}) and (p_{1}, q_{1}) will be called distinct if any two of integers $p_{0}, q_{0}, p_{1}, q_{1}, p_{0}+q_{0}-1, p_{1}+q_{1}-1$ are distinct. Pairs of integers (s, t_{1}) and (s, t_{2}) such that $s<t_{1}<t_{2}$ will be called to be separated if $s+t_{1}-1<t_{2}$.

Corollary 1. Let $\pi_{n}(n>1)$ be π_{1}-modules. Let $A=\left\{\left(p_{i}, q_{i}\right)\right\}$ be a given set of pairs of integers $\left(p_{i}, q_{i}\right)$ such that $1<p_{i}<q_{i}$. For any pair $\left(p_{i}, q_{i}\right) \in A$, let $T_{i}: \pi_{p_{t}} \otimes \pi_{q_{i}} \rightarrow \pi_{p_{i}+q_{i}-1}$ be a given π_{1}-homomorphism. If any two elements of A are distinct, then the system $\pi_{1}, \pi_{2}, \ldots .$. and $\left\{T_{i}\right\}$ is realizable.

COROLLARY 2. Let $\pi_{n}(n>1)$ be π_{1}-modules. Let $B=\left\{\left(s, t_{j}\right)\right\}$ be a given set of pairs of integers $\left(s, t_{i}\right)$ such that $1<s<t_{1}<t_{2} \ldots \ldots$. For any pair $\left(s, t_{j}\right) \in B$, let $T_{j}^{\prime}: \pi_{s} \otimes \pi_{t_{j}} \rightarrow \pi_{s+t_{j}-1}$ be the given π_{1}-homomorphism. If any two elements of B are separated then the system $\pi_{1}, \pi_{2}, \ldots .$. and $\left\{T_{j}^{\prime}\right\}$ is realizable.

Corollary 3. Let $A, B, T_{i}, T_{j}^{\prime}$ be the same as in Corollaries 1 and 2. If any $\left(s, t_{j}\right)$ and $\left(p_{i}, q_{i}\right)$ are distinct, then the system $\pi_{1}, \pi_{2}, \ldots \ldots$ and $\{T\},\left\{T_{j}^{\prime}\right\}$ is realizable.
5. The realization of $\boldsymbol{T}_{2}: \pi_{2} \otimes \pi_{2} \rightarrow \pi_{3}$. If $\alpha \in \pi_{n}\left(S^{r}\right)$ and $\beta_{1}, \beta_{2} \in \pi_{r}(B)$ and if $1<n<3 r-3$, then by a theorem due to G. Whitehead we have

$$
\left(\beta_{1}+\beta_{2}\right) \circ \alpha=\beta_{1} \circ \alpha+\beta_{2} \circ \alpha+\left[\beta_{1}, \beta_{2}\right] \circ H(\alpha)
$$

where \circ denotes the composition operation and $H(\alpha)$ is the Hopf invariant of α (cf. §5 of [20]).

Let $\eta \in \pi_{3}\left(S^{2}\right)+Z^{3)}$ be the element represented by Hopf fibre map, then $H(\eta)=1$. Thus we have

[^1]$$
[\alpha, \beta]=(\alpha+\beta) \circ \eta-\alpha \circ \eta-\beta \circ \eta,
$$
where $\alpha, \beta \in \pi_{2}(B)$.
This formula was also proved by H. Whitney in [26] and he showed that $\alpha \circ \eta=(-\alpha) \circ \eta$. Since $[\alpha, \beta]$ is bilinear, $\alpha \circ \eta$ satisfies the relation
\[

$$
\begin{aligned}
(\alpha+\beta+\gamma) \circ \eta & -(\alpha+\beta) \circ \eta-(\beta+\gamma) \circ \eta \\
& -(\gamma+\alpha) \circ \eta+\alpha \circ \eta+\beta \circ \eta+\gamma \circ \eta=0 .
\end{aligned}
$$
\]

From this relation, using $\alpha \circ \eta=(-\alpha) \circ \eta$, we have

$$
(2 \alpha) \circ \eta=4(\alpha \circ \eta) .
$$

Therefore we have

$$
[\alpha, \alpha]=2(\alpha \circ \eta)
$$

Also the correspondence $\alpha \rightarrow \alpha \circ \eta$ preserves operations of π_{1}.
Now we state the following theorems.
THEOREM 3. Let $\pi_{n}(n>1)$ be given $\pi_{1}-$ modules and $T_{2}: \pi_{2} \otimes \pi_{2} \rightarrow \pi_{3}$ be a given π_{1}-homomorphism. We assume that there exists an exact sequence of π_{1}-modules and π_{1}-homomorphisms

$$
0 \rightarrow F_{0} \rightarrow F_{1} \xrightarrow{\phi} \pi_{2} \rightarrow 0
$$

such that F_{0} and F_{1} are π_{1}-free. In order that the system $\pi_{1}, \pi_{2}, \ldots \ldots$ and T_{2} is realizable ${ }^{4}$, it is necessary and sufficient that there exists a $\pi_{1}-m a p$ $\eta: \pi_{2} \rightarrow \pi_{3}$ such that

$$
\left\{\begin{array}{l}
T_{2}(\alpha \otimes \beta)=\eta(\alpha+\beta)-\eta(\alpha)-\eta(\beta) \\
\eta(\alpha)=\eta(-\alpha) \quad \text { for } \alpha, \beta \in \pi_{2}
\end{array}\right.
$$

THEOREM 3'. Let $\pi_{n}(n>1)$ be given π_{1}-modules and we assume that π_{1} operates trivially on π_{2} and π_{3}. Let $T_{2}: \pi_{2} \otimes \pi_{2} \rightarrow \pi_{3}$ be a given homomorphism. In order that the system $\pi_{1}, \pi_{2}, \ldots \ldots$ and T_{2} is realizable ${ }^{4}$, it is necessary and sufficient that there exists a map $\eta: \pi_{2} \rightarrow \pi_{3}$ such that

$$
\left\{\begin{array}{l}
T_{2}(\alpha \otimes \beta)=\eta(\alpha+\beta)-\eta(\alpha)-\eta(\beta), \\
\eta(\alpha)=\eta(-\alpha) \quad \text { for } \alpha, \beta \in \pi_{2} .
\end{array}\right.
$$

PROOF OF ThEOREM 3. The necessity is stated above. To prove the sufficiency, by Proposition 1 and Theorem 2, it is sufficient to show the existence of a simply connected π_{1}-space realizing π_{2}, π_{3} and T_{2}.

Let B_{0} be a π_{1}-basis for F_{1}, and we put $B=\left\{w \cdot b \mid w \in \pi_{1}, b \in B_{0}\right\}$.
4) This system is realizable in a space B such that $W_{p . q}(B)=0$ if $p \neq 2$ or $q \neq 2$.

For each element $a \in B$, let $\left(S_{a}^{2}, s_{a}\right)$ be a topological image of the pair (S^{2}, s_{0}) of a 2 -sphere S^{2} and its point s_{0}, and we assume that (S_{a}^{2}, s_{a}) are mutually disjoint. Let $f_{a}:\left(S^{2}, s_{0}\right) \rightarrow\left(S_{a}^{2}, s_{a}\right)$ be fixed homeomorphisms. We consider a $C W$-complex

$$
K^{2}=\underset{a b B}{\vee} S_{a}^{3}
$$

which is obtained from the union $\bigcup_{a \in B} S_{a}^{2}$ by identifying points s_{a} to a point p_{0}.
For any element $w \in \pi_{1}$, we define a map $w: K^{2} \rightarrow K^{2}$ by

$$
w \mid S_{a}^{\prime}=f_{w \cdot a^{\circ}} f_{a}^{-1} \quad(a \in B),
$$

then K^{2} is a simply connected π_{1}-space on which π_{1} operates freely. The group $\pi_{2}\left(K^{2}\right)$ is a free abelian group generated by elements ι_{a} represented by maps f_{a} for $a \in B$ and π_{1} operates on $\pi_{2}\left(K^{2}\right)$ so that $w \cdot\left(\iota_{a}\right)=\iota_{w \cdot a}$ for $w \in \pi_{1}$. Therefore $\pi_{2}\left(K^{2}\right)$ is π_{1}-isomorphic to F_{1} under the correspondence $\iota_{a} \rightarrow a$ ($a \in B$), and these groups are identified by this π_{1}-isomorphism.

We assume the axiom of choice, and may therefore suppose that the elements of B are well ordered. Then, by Theorem A of [12]

$$
\pi_{3}\left(K^{2}\right)=\sum_{a \in B} \pi_{3}\left(S_{a}^{2}\right)+\sum_{\substack{a, b, B \\ a<b}} Z(a, b)
$$

where $\pi_{3}\left(S_{a}^{2}\right)$ is embedded in $\pi_{3}\left(K^{2}\right)$ by the inclusion map $S_{a}^{2} \subset K^{2}$ and hence is the free group generated by $t_{a} \circ \eta$, and $Z(a, b)$ is the free group with the generator $z(a, b)=\left[\iota_{a}, \iota_{b}\right]$.

Since $\left[\iota_{a}, \iota_{a}\right]=2\left(\iota_{a} \circ \eta\right)$, the Whitehead product

$$
W_{2}: \pi_{2}\left(K^{2}\right) \otimes \pi_{2}\left(K^{2}\right) \rightarrow \pi_{3}\left(K^{2}\right)
$$

is represented as follows:

$$
W_{2}\left(\iota_{a} \otimes \iota_{b}\right)= \begin{cases}z(a, b) & a<b, \\ z(b, a) & a>b,(a, b \in B) . \\ 2\left(\iota_{a} \circ \eta\right) & a=b,\end{cases}
$$

We define a homomorphism $\lambda: \pi_{3}\left(K^{2}\right) \rightarrow \pi_{3}$ by

$$
\left\{\begin{array}{l}
\lambda\left(\iota_{a} \circ \eta\right)=\eta(\phi a), \\
\lambda(z(a, b))=T_{2}(\phi a \otimes \phi b) \quad \text { for } a, b \in B, a<b .
\end{array}\right.
$$

It is easily seen that λ is a π_{1}-homomorphism. We notice that since $\pi_{1}{ }^{-}$ map $\eta: \pi_{2} \rightarrow \pi_{3}$ satisfies $\eta(\alpha)=\eta(-\alpha)$ and $\eta(\alpha+\beta+\gamma)-\eta(\alpha+\beta)-\eta$ $(\beta+\gamma)-\eta(\gamma+\alpha)+\eta(\alpha)+\eta(\beta)+\eta(\gamma)=0$, we have $T_{2}(\alpha \otimes \alpha)=2 \eta(\alpha)$. Thus we have the following commutative diagram:

where $\rho: \pi_{2}\left(K^{2}\right) \rightarrow \pi_{2}$ is an onto π_{1}-homomorphism defined by $\rho\left(\iota_{a}\right)=\phi(a)$.
Now we apply Lemma 1 with $X=K^{2}, G=\pi_{3}$, then we have a π_{1}-space K^{3} obtained by attaching 3 -cells to K^{2} so that π_{1} operates freely on K^{3} and the kernel of i_{2} coincides the kernel of ρ and i_{2} is onto, where $i_{2}: \pi_{2}\left(K^{2}\right)$ $\rightarrow \pi_{2}\left(K^{3}\right)$ is the π_{1}-homomorphism induced by the inclusion map $K^{2} \subset K^{3}$. Hence there exists a π_{1}-isomorphism $h_{2}: \pi_{2}\left(K^{3}\right) \approx \pi_{2}$ such that $h_{2} \circ i_{2}=\rho$.

Next, we shall show that there exists a π_{1}-homomorphism $\lambda^{*}: \pi_{3}\left(K^{3}\right) \rightarrow \pi_{3}$ such that $\lambda^{*} \circ i_{3}=\lambda$, where $i_{3}: \pi_{3}\left(K^{2}\right) \rightarrow \pi_{3}\left(K^{3}\right)$ is the π_{1}-homomorphism induced by the inclusion map $K^{2} \subset K^{3}$. We set $\Gamma=i_{3} \pi_{3}\left(K^{2}\right)$ and consider the exact sequence

$$
\pi_{3}\left(K^{2}\right) \xrightarrow{i_{3}} \pi_{3}\left(K^{3}\right) \xrightarrow{j_{3}} \pi_{3}\left(K^{3}, K^{2}\right) \xrightarrow{\partial_{3}} \pi_{2}\left(K^{2}\right) \xrightarrow{i_{2}} \pi_{2}\left(K^{3}\right) \longrightarrow 0 .
$$

Since $i_{2}^{-1}(0) \approx F_{0}$, by the assumption, $i_{2}^{-1}(0)$ is π_{1}-free, hence $\partial_{3} \pi_{3}\left(K^{3}, K^{2}\right)$ $\left(\approx i_{2}^{-1}(0)\right)$ is π_{1}-free. Since $\pi_{3}\left(K^{3} . K^{2}\right) / j_{3} \pi_{3}\left(K^{3}\right) \approx \partial_{3} \pi_{3}\left(K^{3}, K^{2}\right)$, by Lemma 5 , $j_{3} \pi_{3}\left(K^{s}\right)$ is a direct summand of the π_{1}-module $\pi_{3}\left(K^{3}, K^{2}\right)$. On the other hand, since π_{1} operates freely on $K^{3}, \pi_{3}\left(K^{3}, K^{2}\right)$ is π_{1}-free. It is obvious that a direct summand of a π_{1}-free module is π_{1}-free. Therefore $j_{3}\left(\pi_{3}\left(K^{3}\right)\right)$ is π_{1}-free. Since $\pi_{3}\left(K^{3}\right) / i_{3} \pi_{3}\left(K^{2}\right) \approx j_{3} \pi_{3}\left(K^{3}\right)$, again by Lemma $5, i_{3} \pi_{3}\left(K^{2}\right)$ is a direct summand of $\pi_{3}\left(K^{3}\right)$.

Therefore to show the existence of λ^{*}, it is sufficient to show the existence of $\lambda^{\prime}: \Gamma \rightarrow \pi_{3}$ such that $\lambda^{\prime} \circ i_{3}=\lambda$. To show this we prove λ (kernel of $\left.i_{3}\right)=0$. To this end we consider a $C W$-complex $K_{0}^{2}=\underset{\alpha \propto \pi_{2}}{\bigvee} S_{\alpha}^{2}$. Then $\pi_{2}\left(K^{2}\right)$ is the free group generated by ι_{α} for $\alpha \in \pi_{2}$. Therefore, by Lemma 9, the kernel of the homomorphism $\rho_{0}: \pi_{2}\left(K_{0}^{2}\right) \rightarrow \pi_{2}$ defined by $\rho_{0}\left(\iota_{\alpha}\right)=\alpha$ is generated by the elements of the form $\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}$ for $\alpha, \beta, \gamma \in \pi_{2}, \alpha-\beta+\gamma=0$.

For each $\iota_{\alpha}-\iota_{9}+\iota_{\gamma}(\alpha-\beta+\gamma=0)$, we attach a 3 -cell E^{3} to K_{0}^{2} by a map $E^{3} \rightarrow K^{2}$, which represents the element $\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}$. Then we have a
 $=f_{\phi(a)}^{\circ} f^{-1}(a \in B)$. Then g_{0} can be extended to a map $g: K^{3} \rightarrow K_{0}^{3}$. And we shall consider the following diagram:

where λ_{0} is defined in the same way as λ, and g_{*} and $i_{3,0}$ are the homomorphisms induced by g and the inclusion map $K_{0}^{2} \subset K_{0}^{3}$ respectively. It is easily verified that commutativities hold in this diagram. Thus, to show that $\lambda\left(i_{3}^{-1}(0)\right)$ $=0$, it is sufficient to show that $\lambda_{0}\left(i_{3,0}^{-1}(0)\right)=0$.

By Theorem 4 of [24] the kernel of $i_{3,0}$ is generated by elements of the forms $f \circ g$ and $[f, h]$ where $f \in \pi_{2}\left(K^{2}\right)$ is an element represented by the characteristic map of an attaching 3 -cell of K_{3}^{3} and $g \in \pi_{3}\left(S^{2}\right), h \in \pi_{3}\left(K_{0}^{2}\right)$. Therefore it is sufficient to show that $\lambda_{0}\left(\left(\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}\right) \circ \eta\right)=0$ and $\lambda_{0}\left(\left[\iota_{\alpha}-\iota_{\beta}\right.\right.$ $\left.\left.+\iota_{\gamma}, \iota_{\delta}\right]\right)=0$ for $\alpha, \beta, \gamma, \delta \in \pi_{2}, \alpha-\beta+\gamma=0$. Since $\left(\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}\right) \circ \eta$ $=\iota_{\alpha} \circ \eta+\iota_{\beta} \circ \eta+\iota_{\gamma} \circ \eta-\left[\iota_{\alpha}, \iota_{\beta}\right]+\left[\iota_{\alpha}, \iota_{\gamma}\right]-\left[\iota_{\beta}, \iota_{\gamma}\right]$, this is verified by straightforward computations using corresponding properties of $\eta: \pi_{2} \rightarrow \pi_{3}$ and the definition of λ_{0}.

Thus we have a π_{1}-homomorphism $\lambda: \pi_{3}\left(K^{3}\right) \rightarrow \pi_{3}$ such that $\lambda^{*} \circ i_{3}=\lambda$.
Again we construct a $C W$-complex

$$
L=K_{\xi \in \pi \mathrm{s}}^{3} \bigvee_{\xi} S_{\xi}^{3},
$$

where S_{ξ}^{3} is a copy of 3 -sphere corresponding to each $\xi \in \pi_{3}$. and only one point of S_{ξ}^{3} is attached to the fixed point p_{0} of K^{3}. Hence L is naturally a π_{1}-space and $\pi_{2}(L)=\pi_{2}\left(K^{3}\right), \pi_{3}(L)=\pi_{3}\left(K^{3}\right)+\sum_{\xi \in \pi_{3}} Z(\xi)$, where $Z(\xi)$ is the infinite cyclic group with the generators $z(\xi)$ represented by S_{ξ}^{3}. The operations of π_{1} on $\sum_{\xi \in \pi_{3}} Z(\xi) \subset \pi_{3}(L)$ is such as $w: \quad z(\xi) \rightarrow z(w \cdot \xi)$. Hence we can define an onto π_{1}-homomorphism $\mu: \pi_{3}(L) \rightarrow \pi_{3}$ by

$$
\left\{\begin{array}{l}
\mu \mid \pi_{3}\left(K^{3}\right)=\lambda^{*} \\
\mu(z(\xi))=\xi \quad \text { for } \xi \in \pi_{3} .
\end{array}\right.
$$

We apply Lemma 1 with $X=L, G=\pi_{3}, \rho=\mu$ and we obtain a simply connected π_{1}-space L^{*} which contains L as an invariant subspace and has following properties:

$$
i_{2}^{*}: \pi_{2}(L) \approx \pi_{2}\left(L^{*}\right), \quad i_{3}^{*}: \pi_{3}(L) \rightarrow \pi_{3}\left(L^{*}\right)
$$

is onto, and the kernel of $i_{3}^{*}=$ the kernel of μ. Therefore there exists a $\pi_{1}{ }^{-}$ isomorphism $h_{3}: \pi_{3}\left(L^{*}\right) \approx \pi_{3}$ such that $h_{3} \circ i_{3}^{*}=\mu$. By the naturality of Whi-
tehead product, this simply connected π_{1}-space L^{*} realizes π_{2}, π_{3}, T_{2}. Hence the theorem is proved.

We note that the proof of Theorem 3^{\prime} is essentially contained in that of Theorem 3.

Combining Theorem 3 with Theorem 2 we have the following
Corollary 4. Let $\pi_{n}(n \leqq 2)$ be π_{1}-modules. Let $A=\left\{\left(p_{i}, q_{i}\right)\right\}, B=$ $\left\{\left(s, t_{j}\right)\right\}$ and $C=\left\{\left(2, r_{k}\right)\right\}$ be given sets of pairs of integers such that $2<$ $p_{i}<q_{i}, \quad 2<s<t_{1}<t_{2}<\ldots \ldots$, and $r_{1}=2,4<r_{2}<r_{3}<\ldots \ldots$ Let T_{i} : $\pi_{p_{i}} \otimes \pi_{q_{i}} \rightarrow \pi_{p_{i}+q_{i}-1}, T_{j}^{\prime}: \pi_{s} \otimes \pi_{t_{j}} \rightarrow \pi_{s+t_{j}-1}, T_{k}^{\prime \prime}: \pi_{2} \otimes \pi_{r_{k}} \rightarrow \pi_{r_{k}+1}$ be $\pi_{1}-$ homomorphisms. If any two elements of A are distinct and any two elements of B (and C) are separated, and any element of A and any element of B or C are distinct, and if $T_{1}^{\prime \prime}$ satisfies the condition of Theorem 3, then the system $\pi_{1}, \pi_{i}, \ldots \ldots$ and $\left\{T_{i}\right\},\left\{T_{j}^{\prime}\right\},\left\{T_{k}^{\prime \prime}\right\}$ is realizable.
6. The realization of $T_{4}: \pi_{4} \otimes \pi_{4} \rightarrow \pi_{7}$. First we formulate necessary conditions for T_{4}. For $\alpha, \beta \in \pi_{4}(B)$ and $\xi \in \pi_{7}\left(S^{4}\right)$,

$$
(\alpha+\beta) \circ \xi=\alpha \circ \xi+\beta \circ \xi+[\alpha, \beta] \circ H(\xi)
$$

holds. By J. P. Serre [18] and H. Toda [19], $\pi_{7}\left(S^{4}\right) \approx Z+Z_{12}$ and its generators are ν and a, where ν is the element represented by the so-called Hopf fibre map $S^{7} \rightarrow S^{4}$ and a is the suspension $E\left(a_{3}\right)$ of the generator $a_{3} \in \pi_{6}\left(S^{3}\right)$ which is defined by Blakers and Massey. Also it is shown that $[\iota, \iota]=2 \nu-a$ for the element $\iota \in \pi_{4}\left(S^{4}\right)$ represented by the identity map $S^{4} \rightarrow S^{4}$. Since $H(\nu)=1$, we have
(i) $\quad[\alpha, \beta]=(\alpha+\beta) \circ \nu-\alpha \circ \nu-\beta \circ \nu \quad$ for $\alpha, \beta \in \pi_{4}(B)$.

From $[\iota, l]=2 \nu-a$, by the naturality of Whitehead products and the definition of the composition operation, we have

$$
\begin{equation*}
[\alpha, \alpha]=2(\alpha \circ \nu)-\alpha \circ a \quad \text { for } \alpha \in \pi_{4}(B) \tag{ii}
\end{equation*}
$$

The bilinearity of $[\alpha, \beta]$ is equivalent to $(\alpha+\beta+\gamma) \circ \nu-(\alpha+\beta) \circ \nu-$ $(\beta+\gamma) \circ \nu-(\gamma+\alpha) \circ \nu+\alpha \circ \nu+\beta \circ \nu+\gamma \circ \nu=0$ and this relation, using (ii), implies
(iii) $\quad(-\alpha) \circ \nu=\alpha \circ \nu-\alpha \circ a \quad$ and
(iv) $\quad(2 \alpha) \circ \nu=4(\alpha \circ \nu)-\alpha \circ a$.

The correspondence $\alpha \rightarrow \alpha{ }^{\circ}$ is not homomorphic, but the correspondence $\alpha \rightarrow \alpha \circ a$ is homomorphic, since a is a suspended element.

We shall prove following
THEOREM 4. Let π_{4}, π_{7} be given abelian groups and $T_{4}: \pi_{4} \otimes \pi_{4} \rightarrow \pi_{7}$
be a given homomorphism. In order that the system π_{4}, π_{7} and T_{4} is reali$z a b l e^{5)}$, it is necessary and sufficient that there exist a map $\nu: \pi_{4} \rightarrow \pi_{7}$ and a homomorphism $a: \pi_{4} \rightarrow \pi_{7}$ satisfying the following conditions:
(1) $T_{4}(\alpha \otimes \beta)=\nu(\alpha+\beta)-\nu(\alpha)-\nu(\beta)$,
(2) $\nu(-\alpha)=\nu(\alpha)-a(\alpha)$,
(3) $12 a(\alpha)=0, \quad$ for $\alpha, \beta \in \pi_{4}$.

PROOF. We shall prove the sufficiency. We construct a space $K^{4}=\underset{\alpha \in \pi / 4}{ } S_{\alpha}^{4}$ in the same way as in $\S 5$. The group $\pi_{4}\left(K^{4}\right)$ is a free abelian group and is generated by generators ι_{α} represented by the inclusion maps $S_{\alpha}^{4} \subset K^{4}$. We define a homomorphism $\rho: \pi_{4}\left(K^{4}\right) \rightarrow \pi_{4}$ by $\rho\left(\iota_{\alpha}\right)=\alpha$. By Lemma 9 the kernel of ρ is generated by element of the form $\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}$ for $\alpha, \beta, \gamma \in \pi_{4}, \alpha-\beta$ $+\gamma=0$. For each $\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}(\alpha-\beta+\gamma=0)$, we attach 5 -cells to K^{4}, by a map which represents $\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}$. Then we obtain a $C W$-complex K^{j} such that i_{4} is onto and the kernel of $i_{4}=$ the kernel of ρ holds, where i_{4} : $\pi_{4}\left(K^{4}\right) \rightarrow \pi_{4}\left(K^{5}\right)$ is the homomorphism induced by the inclusion map. Hence there exists an isomorphism $h_{4}: \pi_{4}\left(K^{5}\right) \approx \pi_{4}$ such that $h_{4} \circ i_{4}=\rho$. By Theorem A of [12], the group $\pi_{7}\left(K^{4}\right)$ is

$$
\pi_{7}\left(K^{4}\right)=\sum_{\alpha \in \pi} \pi_{7}\left(S_{\alpha}^{4}\right)+\sum_{\substack{\alpha, \beta \in \pi_{4} \\ \alpha<\beta}} Z(\alpha, \beta),
$$

where $\pi^{7}\left(S_{\alpha}^{4}\right)$ is embedded in $\pi_{7}\left(K^{4}\right)$ by an isomorphism induced by the inclusion map. Hence its generators are $\nu_{\alpha}=\iota_{\alpha} \circ \nu$ of infinite order and $a_{\alpha}=\iota_{\alpha} \circ a$ of order 12 , and $Z(\alpha, \beta)$ for $\alpha<\beta$ is the infinite cyclic group with the generator $z(\alpha, \beta)=\left[\iota_{\alpha}, \iota_{\beta}\right]$.

By (3) we can define a homomorphism $\lambda: \pi_{7}\left(K^{4}\right) \rightarrow \pi_{7}$ by

$$
\begin{cases}\lambda\left(\nu_{\alpha}\right)=\nu(\alpha), \quad \lambda\left(a_{\alpha}\right)=a(\alpha), \\ \lambda(z(\alpha, \beta))=T_{4}(\alpha \otimes \beta) & \text { for } \alpha<\beta\end{cases}
$$

We shall consider the following diagram:

[^2]where W_{4} denotes the homomorphism defined by the Whitehead product. By assumptions (1) and (2), as we remarked in the first of this section, we have $T_{4}(\alpha \otimes \alpha)=2 \nu(\alpha)-a(\alpha)$, hence (D) is commutative.

We consider the exact sequence

$$
\pi_{8}\left(K^{5}, K^{4}\right) \xrightarrow{\partial_{8}} \pi_{7}\left(K^{4}\right) \xrightarrow{i_{7}} \pi_{7}\left(K^{5}\right) \xrightarrow{j_{7}} \pi_{7}\left(K^{5}, K^{4}\right)
$$

and put $\Gamma=i_{7}\left(K^{4}\right)$.
Applying Theorem III of [1] with $X=K^{4}, n=5, X^{*}=K^{5}$, we know that $\pi_{8}\left(K^{5}, K^{4}\right)$ is generated by the subgroup $\zeta\left[\pi_{4}\left(K^{4}\right) \otimes \pi_{5}\left(K^{5}, K^{4}\right)\right]$ and by elements of the form $\beta \circ \alpha$ for $\beta \in \pi_{5}\left(K^{5}, K^{4}\right), \alpha \in \pi_{8}\left(E^{5}, \dot{E}^{5}\right)$, where ζ and。 denote the generalized Whitehead product and the composition respectively ([14]). Therefore, the kernel of $i_{7}=\partial_{8} \pi_{8}\left(K^{5}, K^{4}\right)$ is generated by elements of the forms $\left[\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}, \iota_{\delta}\right],\left(\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}\right) \circ \nu,\left(\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}\right) \circ a$ for $\alpha, \beta, \gamma, \delta \in \pi_{4}$ and $\alpha-\beta+\gamma=0$. It is obvious that $\lambda(\xi)=0$ if ξ is an element of the first or the third type stated above. Since $\xi=\left(\iota_{\alpha}-\iota_{\beta}+\iota_{\gamma}\right) \circ \nu=\iota_{\alpha} \circ \nu+\iota_{\beta} \circ \nu+\iota_{\gamma} \circ \nu$ $-\iota_{\beta} \circ a-\left[\iota_{\alpha}, \iota_{\beta}\right]+\left[\iota_{\alpha}, \iota_{\gamma}\right]-\left[\iota_{\beta}, \iota_{\gamma}\right]$ and corresponding formula for $\nu(\alpha-\beta+\gamma)$ holds, it is easily verified that $\lambda(\xi)=0$. Thus $\lambda\left(\right.$ kernel of $\left.i_{7}\right)=0$. Hence there exists a homomorphism $\lambda^{\prime}: \Gamma \rightarrow \pi_{7}$ such that $\lambda^{\prime} \circ i_{7}=\lambda$. If λ^{\prime} has an extension $\lambda^{*}: \pi_{7}\left(K^{5}\right) \rightarrow \pi_{7}$, then the remaider of the proof is quite similar to that of Theorem 3.

Thus it remains only to prove that λ^{\prime} has an extension. In fact we can prove that Γ is a direct summand of $\pi_{7}\left(K^{5}\right)$.

By Lemma 8, if the following condition (A) is satisfied, then Γ is a direct summand of $\pi_{7}\left(K^{5}\right)$:
(A) for any $\alpha \in \pi_{7}\left(K^{5}\right)$ and any integer m such that $m \alpha \in \Gamma$, there exists $\alpha_{0} \in \Gamma$ such that $m \alpha=m \alpha_{0}$.

For such α and m we can find a finite subcomplex $K_{0}^{5} \subset K^{5}$, which has the property that there exists an element $\bar{\alpha} \in \pi_{7}\left(K_{0}^{5}\right)$ such that $l(\bar{\alpha})=\alpha$ and $m \bar{\alpha} \in i \pi_{7}\left(K_{0}^{4}\right)$, where $l: \pi_{7}\left(K^{5}\right) \rightarrow \pi_{7}\left(K^{5}\right)$ and $i: \pi_{7}\left(K_{0}^{4}\right) \rightarrow \pi_{7}\left(K_{0}^{5}\right)$ denote the homomorphisms induced by the inclusion maps. Hence to prove (A) it is sufficient to show (A^{\prime}):
(A^{\prime}) for any finite subcomplex K_{0}^{5} of K^{5}, and for any element $\alpha \in \pi_{7}\left(K_{0}^{5}\right)$ and any integer m such that $m \alpha \in i \pi_{7}\left(K_{0}^{t}\right)$, there exists an element $\alpha_{0} \in i$ $\pi_{7}\left(K_{0}^{4}\right)$ such that $m \alpha=m \alpha_{0}$.

Now consider any $C W$-complex L which has the same homotopy type as K_{0}^{5}. Let $\lambda: K_{0}^{5} \rightarrow L$ be a homotopy equivalence and $\mu: L \rightarrow K_{0}^{5}$ be a homotopy inverse of λ, i. e. $\lambda \circ \mu \simeq 1, \mu \circ \lambda \simeq 1$. We may assume that λ, μ are cellular maps.

We shall consider the following commutative diagram :

where $\lambda_{i}, \mu_{i}(i=4,5,6)$ are homomorphisms induced by λ and μ respectively.
For $\alpha \in \pi_{7}\left(K^{5}\right)$, we put $\bar{\alpha}=\lambda_{5}(\alpha)$. If $m \alpha \in i \pi_{7}\left(K_{0}^{t}\right)$, then $j(m \bar{\alpha})=j \circ \lambda_{5}$ $(m \alpha)=\lambda_{8} \circ j(m \alpha)=0$. Hence $m \bar{\alpha} \in i \pi_{7}\left(L^{4}\right)$. If there exists an $\bar{\alpha}_{0} \in i \pi_{7}\left(L^{4}\right)$ such that $m \bar{\alpha}=m \bar{\alpha}_{0}$, then $\alpha_{0}=\mu_{5} \bar{\alpha}_{0} \in i \pi_{7}\left(K^{5}\right)$, and since $\mu_{5} \circ \lambda_{5}=$ identity, $m \alpha=\mu_{5} \circ \lambda_{5}(m \alpha)=\mu_{5}(m \bar{\alpha})=m \bar{\alpha}_{0}$. Therefore, again by Lemma 8 , to show (A^{\prime}) it is sufficient to prove that for some L of the same homotopy type as $K_{0}^{5}, i \pi_{7}\left(L^{4}\right)$ is a direct summand of $\pi_{7}\left(L^{5}\right)$. This is shown as follows.

Since K_{0}^{5} is an A_{n}^{2}-polyhedron with $n=3, K_{0}^{5}$ is of the same homotopy type as $L=M_{1} \vee M_{2} \vee \ldots \ldots \vee M_{k}$, where M_{i} are elementary complexes ([3], [10]). But

$$
\begin{aligned}
& \pi_{7}\left(L^{4}\right)=\sum_{1 \leqq r \leqq k} \pi_{7}\left(M_{r}^{4}\right)+\sum_{1 \leqq r<s \leqq t} \pi_{4}\left(M_{r}^{4}\right) \otimes \pi_{4}\left(M_{s}^{4}\right), \\
& \pi_{7}\left(L^{5}\right)=\sum_{1 \leqq r \leq k} \pi_{7}\left(M_{r}^{5}\right)+\sum_{1 \leqq r<s \leqq t} \pi_{4}\left(M_{5}^{r}\right) \otimes \pi_{4}\left(M_{5}^{r}\right),
\end{aligned}
$$

and $i: \pi_{7}\left(L^{4}\right) \rightarrow \pi_{7}\left(L^{5}\right)$ is represented under these direct sum decompositions by

$$
\begin{aligned}
& i_{r}: \pi_{7}\left(M_{r}^{4}\right) \rightarrow \pi_{7}\left(M_{r}^{5}\right), \\
& j_{r} \otimes j_{s}: \pi_{4}\left(M_{r}^{4}\right) \otimes \pi_{4}\left(M_{s}^{4}\right) \rightarrow \pi_{4}\left(M_{r}^{5}\right) \otimes \pi_{4}\left(M_{s}^{5}\right),
\end{aligned}
$$

where i_{r}, j_{r} are homomorphisms induced by the inclusion maps, and obviously j_{r} are onto. On the other hand, since $H_{i}(K, G)=0$ for $i>5$ and any coefficient group $G, H_{i}\left(L_{r}, G\right)=0$ for $i>5$. Hence the types of each M_{r} are 1,4 or 5 in § 3 of [10].

By Theorem 6. 2, and 6. 3 of [10], $i_{r}\left(\pi_{7}\left(M_{r}^{4}\right)\right)$ is one of the direct summands of $\pi_{7}\left(M_{r}^{5}\right)$ for M_{r}^{5} of types 4 or 5 . Thus Γ is a direct summand of $\pi_{7}\left(K^{5}\right)$. Hence λ^{\prime} has an extension $\lambda^{*}: \pi_{7}\left(K^{5}\right) \rightarrow \pi_{7}$. The proof of Theorem 4 is complete.
7. The realization of $T_{2}: \pi_{2} \otimes \pi_{2} \rightarrow \pi_{3}$ and $T_{3}: \pi_{2} \otimes \pi_{3} \rightarrow \pi_{4}$. First we shall formulate necessary conditions for T_{2} and T_{3}. Let $\eta \in \pi_{3}\left(S^{2}\right)$ be the element represented by the Hopf fibre map. As stated in $\S 5$
(ii) $\quad \alpha \circ \eta=(-\alpha) \circ \eta, \quad$ for $\alpha, \beta \in \pi_{2}(B)$
holds. For $\alpha, \beta, \gamma \in \pi_{-}(B)$, the Jacobi identity
(iii)

$$
[\gamma,[\alpha, \beta]]+[\alpha,[\beta, \gamma]]+[\beta,[\gamma, \alpha]]=0
$$

holds. G. Whitehead proved in [21] that the suspension homomorphism E : $\pi_{4}\left(S^{2}\right) \rightarrow \pi_{5}\left(S^{3}\right)$ is isomorphic, while $E[\iota, \eta]=0$, hence $[\iota, \eta]=0$, where ι is a generator of $\pi_{2}\left(S^{2}\right)$. Therefore, for $\alpha \in \pi_{2}(B)$

$$
\begin{equation*}
[\alpha, \alpha \circ \eta]=0 \tag{iv}
\end{equation*}
$$

holds. Further we show that the following relation holds :

$$
\begin{equation*}
[\alpha,[\alpha, \beta]]=-[\alpha \circ \eta, \beta] \quad \text { for } \alpha, \beta \in \pi_{2}(B) \tag{v}
\end{equation*}
$$

For, if $\alpha=\beta$, then both sides are equal to zero. If $\alpha \neq \beta$, we consider the space $S_{1}^{2} \vee S_{2}^{2}$ and let $\iota_{i} \in \pi_{2}\left(S_{1}^{2} \vee S_{2}^{2}\right) \approx \pi_{2}\left(S_{1}^{2}\right)+\pi_{2}\left(S_{2}^{2}\right)$ be the generator of $\pi_{2}\left(S_{i}^{z}\right)$. From the Jacobi identity we have $2\left[\iota_{1},\left[\iota_{1}, \iota_{2}\right]\right]+\left[\iota_{2},\left[\iota_{1}, \iota_{1}\right]\right]=0$, hence $2\left[\iota_{1},\left[\iota_{1}, \iota_{2}\right]\right]+2\left[\iota_{2}, \iota_{1} \circ \eta\right]=0$. By Theorem A in [12], $\pi_{4}\left(S_{1}^{2} \vee S_{2}^{2}\right) \approx$ $\pi_{4}\left(S_{1}^{2}\right)+\pi_{4}\left(S_{1}^{2}\right)+\pi_{4}\left(S^{4}\right)+\pi_{4}\left(S^{4}\right) \approx Z_{2}+Z_{2}+Z+Z$ while the element $\left[\iota_{1},\left[\iota_{1}, \iota_{2}\right]\right]$ $+\left[\iota_{2}, \iota_{1} \circ \eta\right]$ obviously belongs to the free part, hence $\left[\iota_{1},\left[\iota_{1}, \iota_{2}\right]\right]+\left[\iota_{2}, \iota_{1} \circ \eta\right]=0$, which proves (v).

Therefore, in order that T_{2}, T_{3} are realizable it is necessary that T_{2}, T_{3} satisfy the conditions correspond to (i) - (v).

Now we can prove the following
THEOREM 5. Let π_{1}-modules $\pi_{2}, \pi_{3}, \pi_{4}, \ldots \ldots$ and homomorphisms T_{2} : $\pi_{2} \otimes \pi_{2} \rightarrow \pi_{3}$ and $T_{3}: \pi_{2} \otimes \pi_{3} \rightarrow \pi_{4}$ be given. We assume ${ }^{6)}$ that π_{1} operates trivially on π_{2}, π_{3} and π_{4}, and π_{2} is free. In order that the system π_{1}, π_{2}, \ldots \ldots and T_{2}, T_{3} is realizable ${ }^{7}$, it is necessary and sufficient that there exists a map $\eta: \pi_{2} \rightarrow \pi_{3}$ such that T_{2}, T_{3} and η satisfy the following relations:
(1) $T_{2}(\alpha \otimes \beta)=\eta(\alpha+\beta)-\eta(\alpha)-\eta(\beta)$,
(2) $\eta(\alpha)=\eta(-\alpha)$,
(3) $T_{3}\left(\gamma \otimes T_{2}(\alpha \otimes \beta)\right)+T_{3}\left(\alpha \otimes T_{2}(\beta \otimes \gamma)\right)+T_{3}\left(\beta \otimes T_{2}(\gamma \otimes \alpha)\right)=0$,
(4) $\left.T_{3}\left(\alpha \otimes \eta^{\prime}, \alpha\right)\right)=0$,
(5) $\quad T_{3}\left(\alpha \otimes T_{2}(\alpha \otimes \beta)\right)=-T_{3}(\beta \otimes \eta(\alpha)) \quad$ for $\alpha, \beta, \gamma \in \pi_{2}$.

PROOF. The necessity is stated above, so we shall prove the sufficiency. Let B be a basis for the free group π_{2}, and introduce an ordering " $<$ " in this set B. For each element $\alpha \in B$, let $f_{\alpha}:\left(S^{2}, s_{0}\right) \rightarrow\left(S_{\alpha}^{2}, s_{u}\right)$ be a fixed homeomorphism. We construct a $C W$-complex

[^3]$$
K^{2}=\bigvee_{\alpha \in B} S_{\alpha}^{2}
$$
which is obtained from the disjoint union $\bigcup_{\alpha \in B} S_{a}^{2}$ by identifying points s_{α} to a point p_{0}. Then K^{2} is a simply connected space and $\pi_{2}\left(K^{2}\right)$ is the free group with the basis $\left\{\iota_{\alpha} \mid \alpha \in B\right\}$, where ι_{α} is the element represented by the map $f_{\alpha}: S_{\alpha}^{2} \subset K^{2}$. We can define an isomorphism $h_{2}: \pi_{2}\left(K^{2}\right) \approx \pi_{2}$ by $h_{2}\left(\iota_{\alpha}\right)=\alpha$. The homotopy groups $\pi_{3}\left(K^{2}\right)$ and $\pi_{4}\left(K^{2}\right)$ are computed by Theorem A of [12] as follows:
\[

$$
\begin{aligned}
& \pi_{3}\left(K^{2}\right)=\sum_{\alpha \in B} \pi_{3}\left(S_{\alpha}^{2}\right)+\sum_{\substack{\alpha, \beta \in B \\
\alpha<\beta}} Z(\alpha, \beta), \\
& \pi_{4}\left(K^{2}\right)=\sum_{\alpha \in B} \pi_{4}\left(S_{\alpha}^{2}\right)+\sum_{\substack{\alpha, \beta \in \beta \\
\alpha<\beta}} G(\alpha, \beta)+\sum_{\substack{\alpha, \beta, \gamma, \gamma \in \\
\beta<\gamma}} Z(\alpha, \beta, \gamma),
\end{aligned}
$$
\]

where $Z(\alpha, \beta)(\alpha<\beta)$ is the free group with the generator $z(\alpha, \beta)=\left[\iota_{\alpha}, \iota_{\beta}\right]$, and $\pi_{3}\left(S_{\alpha}^{2}\right)$ is embedded in $\pi_{3}\left(K^{2}\right)$ by the inclusion map and so it is the free group with the generator $\iota_{\alpha} \circ \eta$, and $G(\alpha, \beta)(\alpha<\beta)$ is the cyclic group of order 2 with the generator $g(\alpha, \beta)=\left[\iota_{\alpha}, \iota_{\beta}\right] \circ \zeta$ (ζ denotes a generator of $\pi_{4}\left(S^{3}\right)$ $\left.\approx Z_{2}\right)$, and $Z(\alpha, \beta, \gamma)(\beta<\gamma)$ is the free group with the generator $z(\alpha, \beta, \gamma)$ $=\left[\iota_{\alpha},\left[\iota_{\beta}, \iota_{\gamma}\right]\right]$.

By properties (i), (ii), (iv), (v), Whitehead products in K^{2}

$$
\begin{aligned}
& W_{2}: \pi_{2}\left(K^{2}\right) \otimes \pi_{2}\left(K^{2}\right) \rightarrow \pi_{3}\left(K^{2}\right) \\
& W_{3}: \pi_{2}\left(K^{2}\right) \otimes \pi_{3}\left(K^{2}\right) \rightarrow \pi_{4}\left(K^{2}\right)
\end{aligned}
$$

are represented as follows:

$$
\begin{gathered}
W_{2}\left(\iota_{\alpha} \otimes \iota_{\beta}\right)=\left\{\begin{array}{l}
z(\alpha, \beta) \text { if } \alpha<\beta \\
z(\beta, \alpha) \text { if } \alpha>\beta \\
2\left(\iota_{\alpha} \circ \eta\right) \text { if } \alpha=\beta,
\end{array}\right. \\
\left\{\begin{array}{l}
W_{3}\left(\iota_{\alpha} \otimes\left(\iota_{\beta} \circ \eta\right)\right)=\left\{\begin{array}{l}
-z(\beta, \alpha, \beta) \text { if } \alpha<\beta \\
-z(\beta, \beta, \alpha) \text { if } \alpha>\beta \\
0
\end{array}\right. \\
W_{3}\left(\iota_{\alpha} \otimes z(\beta, \gamma)\right)=z(\alpha, \beta, \gamma) \quad \text { for } \beta<\gamma .
\end{array}\right.
\end{gathered}
$$

We can define a homomorphism

$$
\lambda_{3}: \pi_{3}\left(K^{2}\right) \rightarrow \pi_{3}
$$

by

$$
\left\{\begin{array}{l}
\lambda_{3}\left(\iota_{\alpha} \circ \eta\right)=\eta(\alpha), \\
\lambda_{3}(z(\alpha, \beta))=T_{2}(\alpha \otimes \beta) \quad \text { for } \alpha<\beta .
\end{array}\right.
$$

Then, we have the following commutative diagram:

Next we construct $K^{3}=K_{2} \bigvee_{\xi \in \pi_{\mathrm{s}}} S_{\xi}^{3}$. We know by Whitehead-Chang's theorem that

$$
\begin{aligned}
\pi_{2}\left(K^{3}\right) & =\pi_{2}\left(K^{2}\right) \approx \pi_{2} \\
\pi_{3}\left(K^{3}\right) & =\pi_{3}\left(K^{2}\right)+\pi_{3}\left(\bigvee_{\xi \in \pi_{3}} S_{\xi}^{3}\right)=\pi_{3}\left(K^{2}\right)+\pi_{3}^{*} \\
\pi_{4}\left(K^{3}\right) & =\pi_{4}\left(K^{2}\right)+\sum_{\xi \in \pi_{3}} \pi_{4}\left(S_{\xi}^{3}\right)+\pi_{2}\left(K^{3}\right) \otimes \pi_{3}\left(\bigvee_{\xi \in \pi_{3}} S_{\xi}^{3}\right) \\
& =\pi_{4}\left(K^{2}\right)+\sum_{\xi \in \pi_{3}} \pi_{4}\left(S_{\xi}^{3}\right)+\pi_{2} \otimes \pi_{3}^{*},
\end{aligned}
$$

where π_{3}^{*} is the free group with generators $\sigma(\xi)$ represented by S_{ξ}^{3}, and $\pi_{i}\left(K^{2}\right)$ with $i=2,3,4$ are embedded in $\pi_{i}\left(K^{3}\right)$ by the isomorphisms induced by the inclusion maps and $\pi_{2}\left(K^{3}\right) \otimes \pi_{3}\left(\vee S_{\xi}^{3}\right)$ is embedded in $\pi_{4}\left(K^{3}\right)$ by the Whitehead product.

We define a homomorphism $\lambda_{3}^{*}: \pi_{3}\left(K^{3}\right) \rightarrow \pi_{3}$ by

$$
\lambda_{3}^{*}= \begin{cases}\lambda_{3} & \text { on } \pi_{3}\left(K^{2}\right) \\ p & \text { on } \pi_{3}^{*}\end{cases}
$$

where $p: \quad \pi_{s}^{*} \rightarrow \pi_{3}$ is given by $\left.p^{\prime} \sigma^{\prime}(\xi)\right)=\xi$. Then, from $\left(D_{1}\right)$ we have the following commutative diagram :

where W_{2} denotes the Whitehead product in K^{3}. The Whitehead product

$$
W_{3}^{*}: \pi_{2}\left(K^{3}\right) \otimes \pi_{3}\left(K^{3}\right) \rightarrow \pi_{4}\left(K^{3}\right)
$$

is represented in following way under the above direct sum decompositions:

$$
W_{3}^{*}= \begin{cases}W_{3} & \text { on } \pi_{2} \otimes \pi_{3}\left(K^{2}\right) \\ \text { identity on } \pi_{2} \otimes \pi_{3}^{*}\end{cases}
$$

We define a homomorphism

$$
\lambda_{4}: \pi_{4}\left(K^{2}\right) \rightarrow \pi_{4}
$$

by

$$
\lambda_{4}= \begin{cases}T_{3}\left(\alpha, T_{2}(\beta, \gamma)\right) & \text { on } z(\alpha, \beta, \gamma) \quad(\beta<\gamma), \\ 0 & \text { on } \sum_{\alpha-B} \pi_{4}\left(S_{\alpha}^{2}\right)+\sum_{\substack{\alpha, \beta \in B \in B \\ \alpha<\beta}} G(\alpha, \beta)\end{cases}
$$

Then, using the Jacobi identities it is easily verified that in the diagram

the commutativity $\lambda_{4} \circ W_{3}=T_{3} \circ\left(h_{2} \otimes \lambda_{3}\right)$ holds good. We also define a homomorphism

$$
\lambda_{4}^{*}: \pi_{4}\left(K^{3}\right) \rightarrow \pi_{4}
$$

by

Then, from $\left(D_{3}\right)$ we have the following commutative diagram:

Now we apply Lemma 1 with $X=K^{3}, \rho=\lambda_{3}^{*}$, then we obtain $K^{4} \supset K^{3}$ such that the kernel of $\lambda_{3}^{*}=$ the kernel of i_{3} and i_{3} is onto, where $i_{3}: \pi_{3}\left(K^{3}\right)$ $\rightarrow \pi_{3}\left(K^{4}\right)$ is the homomorphism induced by the identity map. Therefore there exists an isomorphism $h_{3}: \pi_{3}\left(K^{4}\right) \approx \pi_{3}$ such that $h_{3} \circ i_{3}=\lambda_{3}^{*}$. By the naturality of Whitehead products and the commutativity of the diagram $\left(D_{2}\right)$, we have the following commutative diagram :

where W_{2} denotes the Whitehead product in K^{4}.
We consider the exact sequence :

$$
\pi_{5}\left(K^{4}, K^{3}\right) \xrightarrow{\partial_{5}} \pi_{4}\left(K^{3}\right) \xrightarrow{i_{4}} \pi_{4}\left(K^{4}\right) \xrightarrow{j_{4}} \pi_{4}\left(K^{4}, K^{3}\right)
$$

Since $\pi_{4}\left(K^{4}, K^{3}\right)$ is free, $\Gamma=i_{4} \pi_{4}\left(K^{3}\right)$ is one of the direct summands of $\pi_{4}\left(K^{4}\right)$. Therefore, if we assume that $\lambda_{1}^{*}\left(\right.$ kernel of $\left.i_{4}\right)=0$, then there exists a homomorphism

$$
\lambda_{1}^{* *}: \pi_{4}\left(K^{4}\right) \rightarrow \pi_{4}
$$

such that $\lambda_{4}^{* *} \circ i_{4}=\lambda_{4}^{*}$. Therefore, from the commutative diagram (D_{4}) we have the following commutative diagram

Therefore by the same process as in the proof of Theorem 3 we have a simply connected space which realizes $\pi_{2}, \pi_{3}, \pi_{4}, T_{2}, T_{3}$. Thus the proof of our theorem is complete.

Now we shall prove that $\lambda_{4}^{*}\left(\right.$ kernel of $\left.i_{4}\right)=0$
By Lemma 4 of [24], the kernel of i_{4} is generated by subgroups ($i_{3}^{-1}(0)$) $\otimes \pi_{2}\left(K^{3}\right)$ and $\left(i_{3}^{-1}(0)\right) \circ \pi_{4}\left(S^{3}\right)$ of $\pi_{4}\left(K^{3}\right)$, where \otimes and \circ mean the Whitehead product and the composition respectively.

Since $i_{3}^{-1}(0)=\lambda_{3}^{*-1}(0)$ and $\pi_{3}\left(K^{3}\right)=\pi_{3}\left(K^{2}\right)+\pi_{3}^{*}$, any element $\tau \in i_{3}^{-1}(0)$ may be represented as $\tau=\rho+\sigma$ where $\rho \in \pi_{3}\left(K^{2}\right) \subset \pi_{3}\left(K^{3}\right)$ and $\sigma \in \pi_{3}^{*} \subset$ $\pi_{3}\left(K^{3}\right)$ and $\lambda_{3} \rho+p \sigma=0$. Moreover, the element ρ is represented as

$$
\rho=\sum m_{i}\left(\iota_{a_{i}} \circ \eta\right)+\sum n_{j}\left[\iota_{\beta_{3}}, \iota_{\gamma_{j}}\right]
$$

where m_{i} and n_{j} are integers, and $\alpha_{i}, \beta_{j}, \gamma_{j} \in B, \beta_{j}<\gamma_{j}$.
We consider the element $\sigma^{\prime}=-\sum m_{i} \sigma\left(\eta\left(\alpha_{i}\right)\right)-\sum n_{j} \sigma\left(T_{2}\left(\beta_{j} \otimes \gamma_{j}\right)\right)$ and set $\tau^{\prime}=\rho+\sigma^{\prime}, \sigma_{0}=\sigma-\sigma^{\prime}$. Then we have

$$
\tau=\tau^{\prime}+\sigma_{0} \text { and } \sigma_{0} \in p^{-1}(0)
$$

Since $E: \pi_{3}\left(S^{2}\right) \rightarrow \pi_{4}\left(S^{3}\right)$ is onto, to show that $\lambda_{4}^{*}\left(\right.$ kernel of $\left.i_{4}\right)=0$, it is sufficient to show that

$$
\begin{array}{rlrl}
\lambda_{4}^{*}\left(\tau^{\prime} \otimes \pi_{2}\left(K^{3}\right)\right) & =0, & & \lambda_{4}^{*}\left(\tau^{\prime} \circ \pi_{4}\left(S^{3}\right)\right)=0, \\
\lambda_{i}^{*}\left(p^{-1}(0) \otimes \pi_{2}\left(K^{3}\right)\right)=0, & & \lambda_{\dot{4}}^{*}\left(p^{-1}(0) \circ \pi_{4}\left(S^{3}\right)\right)=0,
\end{array}
$$

where τ^{\prime} is an element of the form $\iota_{\alpha} \propto \eta-\iota_{\eta(\alpha)}$ or $\left[\iota_{\beta}, \iota_{\gamma}\right]-\iota_{\tau_{2}(\beta \otimes \gamma)}(\beta<\gamma)$. And this is proved by straightforward computations. Thus the proof is complete.
8. The realizations of $T_{6}: \pi_{6} \otimes \pi_{6} \rightarrow \pi_{11}$, and $T_{7}: \pi_{7} \otimes \pi_{7} \rightarrow \pi_{13} . \quad$ By H. Toda [19], the following results has been obtained:

$$
\begin{equation*}
\pi_{11}\left(S^{6}\right) \approx Z \tag{i}
\end{equation*}
$$

and its generators is $\left[\iota_{8}, \iota_{6}\right]$, where ι_{6} is a generators of $\pi_{6}\left(S^{6}\right)$, and $\pi_{10}\left(S^{6}\right)=0$,

$$
\begin{equation*}
\pi_{13}\left(S^{7}\right) \approx Z_{2} \tag{ii}
\end{equation*}
$$

and its generator is $\nu_{7} \circ \nu_{10}$ and $\pi_{12}\left(S^{7}\right)=0$, where ν_{n} denotes $(n-4)$-fold suspension of the element $\nu_{4} \in \pi_{7}\left(S^{4}\right)$ which represented by the Hopf map.

Therefore, for any $C W$-complex K such that K^{n-1} consists of only one 0 -cell for $n=6$ or 7, by Theorem 1. 3 of [10], we have

$$
\begin{aligned}
\pi_{2 n-1}\left(K^{n+1}, K^{n}\right) & \approx \pi_{2 n-1}\left(E^{n+1}, S^{n}\right) \otimes \pi_{n+1}\left(K^{n+1}, K^{n}\right) \\
& \approx \pi_{2 n-2}\left(S^{n}\right) \otimes \pi_{n+1}\left(K^{n+1}, K^{n}\right)=0 .
\end{aligned}
$$

Hence $i: \pi_{2 n-1}\left(K^{n}\right) \rightarrow \pi_{2 n-1}\left(K^{n+1}\right)$ is onto. Therefore, by the same way as the proof of Theorem 3, we have the following

THEOREM 6. Let π_{8}, π_{11} be π_{1}-modules and $T_{6}: \pi_{6} \otimes \pi_{8} \rightarrow \pi_{11}$ be an arbitrary π_{1}-homomorphism such that $T_{6}(\alpha \otimes \beta)=T_{6}(\beta \otimes \alpha)^{8)}$ for $\alpha, \beta \in \pi_{6}$. Then, the system $\pi_{1}, \pi_{6}, \pi_{11}$ and T_{6} is realizable.

ThEOREM 7. Let π_{7}, π_{13} be π_{1}-modules and $T_{7}: \pi_{7} \otimes \pi_{7} \rightarrow \pi_{13}$ be an arbitrary π_{1}-homomorphism such that $T_{7}(\alpha \otimes \alpha)=0^{8)}$ for $\alpha \in \pi_{7}$. Then the system $\pi_{1}, \pi_{7}, \pi_{13}$ and T_{7} is realizable.
9. The realizations of $\boldsymbol{T}_{p}: \pi_{p} \otimes \pi_{p} \rightarrow \pi_{2 p-1}$ for $\boldsymbol{p}=3,5,8$. For T_{3} : $\pi_{3} \otimes \pi_{3} \rightarrow \pi_{5}$, since $[\iota, \iota]=0\left(\iota \in \pi_{3}\left(S^{3}\right)\right)$ it is necessary that $T_{3}(\alpha \otimes \alpha)=0$ for $\alpha \in \pi_{3}$. For the elementary complex $S^{3} \cup e^{4}$, where e^{4} attached by a map of degree 2 , $i\left(\pi_{5}\left(S^{3}\right)\right.$) is not a direct summand of $\pi_{6}\left(S^{3} \cup e^{4}\right)([9])$. Therefore, for a 2 -connected $C W$-complex $K, i\left(\pi_{5}\left(K^{3}\right)\right)$ is not necessarily a direct summand of $\pi_{5}\left(K^{4}\right)$, but $\pi_{5}\left(K^{4}\right) / i \pi_{5}\left(K^{3}\right) \subset \pi_{5}\left(K^{4}, K^{3}\right) \approx \pi_{4}\left(K^{4}, K^{3}\right) \otimes \pi_{5}\left(E^{4}, S^{3}\right) \approx \pi_{4}\left(K^{4}, K^{3}\right)$ $\otimes Z_{2}$.
8) Of course this is a necessary condition.

Therefore we can state the following
THEOREM 8. Let π_{3}, π_{5} be finitely generated abelian groups and T_{3} : $\pi_{3} \otimes \pi_{3} \rightarrow \pi_{5}$ be a homomorphism such that $T_{3}(\alpha \otimes \alpha)=0$ and $T_{3}\left(\pi_{3} \otimes \pi_{3}\right)$ $\subset 2 \pi_{5}^{9}$. Then, the system π_{3}, π_{5}, T_{3} is realizable.

With respect to the realizability of T_{6}, since $\pi_{9}\left(S^{5}\right)$ is the group of order 2 generated by $[\iota, \iota]$ for a generator $\iota \in \pi_{5}\left(S^{5}\right)$ and $\pi_{8}\left(S^{5}\right) \approx Z_{24}$, we have the following

THEOREM 9. Let π_{5}, π_{9} be finitely generated abelian groups and T_{5} : $\pi_{5} \otimes \pi_{5} \rightarrow \pi_{9}$ be a homomorphism such that $2 T_{5}(\alpha \otimes \alpha)=0$ and $T_{5}\left(\pi_{5} \otimes \pi_{5}\right)$ $\subset 24 \pi_{9}{ }^{10}$. Then, the system π_{5}, π_{9} and T_{5} is realizable.
H. Toda proved that $\pi_{15}\left(S^{8}\right) \approx Z+Z_{120}$, and $\pi_{14}\left(S^{8}\right) \approx Z_{2}$ (see Appendix p. 66 of [27]). Z and Z_{120} have generators ρ and a such that $\left[\iota_{8}, \iota_{8}\right]=2 \rho-a$.

Therefore we have the following
THEOREM 10. Let π_{8}, π_{15} be given finitely generated abelian groups and $T_{8}: \pi_{8} \otimes \pi_{8} \rightarrow \pi_{15}$ be a given homomorphism. If there exist a map $\rho:$ $\pi_{8} \rightarrow \pi_{15}$ and a homomorphism $a: \pi_{8} \rightarrow \pi_{15}$ such that
(1) $T_{8}(\alpha \otimes \beta)=\rho^{\prime}(\alpha+\beta)-\rho^{\prime}(\alpha)-\rho^{\prime}(\beta)$,
(2) $\rho(-\alpha)=\rho^{\prime}(\alpha)-a(\alpha)$,
(3) $120 a(\alpha)=0$,
(4) ${ }^{11)} \quad \rho\left(\pi_{8}\right) \subset 2 \pi_{15}, a\left(\pi_{8}\right) \subset 2 \pi_{15}, \quad$ for $\alpha, \beta \in \pi_{8}$, then, the system π_{8}, π_{15} and T_{8} is realizable.

In the proofs of Theorems stated in this section, Lemma 6 is used, but proofs are similar to that of theorems of preceding sections and so we shall omit the details.

REFERENCES

[1] A.L. Blakers and W.S. Massey, The homotopy groups of a triad, III, Ann. of Math., 58(1953), 409-417.
[2] H. Cartan and J.P.SERre, Espaces fibrés et groupes d'homotopie, I. Constructions générales, Compt. Rend. Acad. Sci. Paris, 234(1952), 288-290.
[3] C.Chang, Homotopy invariants and continuous mappings, Proc. Roy. Soc., A, 202(1950), 253-263.

[^4][4] S. Eilenberg, Homology of spaces with operators, I, Trans. Amer. Math. Soc., 61(1947), 378-417.
[5] S. Eilenberg and J.A.Zilber, Semi-simplicial complexes and singular homology, Ann. of Math., 51(1950), 499-513.
[6] S.Eilenberg and S. MACLANE, Relations between homology and homotopy groups of spaces, II, Ann. of Math., 51(1950), 514-533.
[7] S. Eilenberg and N.STEENROD, Foundations of algebraic topology, 1952, Princeton.
[8] J.B. GIEVER, On the equivalence of the two singular homology theories, Ann. of Math., 51(1950), 178-191.
[9] P.J.Hilton, Calculation of the homotopy groups of A_{n}^{2}-polyhedra, II, Quarterly Journ, Math., (Oxford), (2), 1(1951), 229-240
[10] \qquad , Suspension theorems and generalized Hopf invariant, Proc. London Math. Soc., 1(1951), 463-493.
[11] On the homotopy groups of union of spaces, Comm. Math. Helv., 29 (1954), 59-91.
[12] On the homotopy groups of the union of spheres, Journ. London Math. Soc., 30(1955), 154-172.
[13] S.T.HU, On the realizability of homotopy groups and their operations, Pacific Journ. Math., 1(1951), 583-602.
[14] W.S. MASSEY, Exact couples in algebraic topology, (Part I and II), Ann of Math., 58 (1952), 363-396.
[15] \qquad , Some problems in algebraic topology and the theory of fibre bundles, Ann. of Math., 62(1955), 327-352.
[16] M. Nakaoka and H. Toda, On Jacobi identity for Whitehead products, Journ. of Poly. Osaka City Univ., 5(1954), 1-13.
[17] N.SteEnrod, The topology of fibre bundles, 1951, Princeton.
[18] J. P.SERRE, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv., 27(1953), 198-232.
[19] H.TODA, Generalized Whitehead products and homotopy groups of spheres, Journ, Poly. Osaka City Univ., 3(1953), 43-82.
[20] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51(1950), 192-237.
[21] \longrightarrow, The $(n+2)^{n a}$ homotopy group of the n-sphere, Ann. of Math., 52(1950), 245-247.
[22] , Fiber spaces and the Eilenberg homology groups, Proc. of Nat. Acad. Sci., 38(1952), 426-430.
[23] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., 45(1939), 245-327.
[24] \qquad , On adding relations to homotopy groups, Ann. of Math., 42(1941), 409428.
[25] H. Whe realizability of homotopy groups, Ann. of Math., 50(1949).261-263. H. Whitney, Relations between the second and third homotopy groups of a simply connected space, Ann. of Math., 50(1949), 214-236.
[27] The dictionary of mathematics, Published by Math. Soc. of Japan., 1954 (in Japanese).
Mathematical Institute, Tôhoku University.

[^0]: 2) Recently J.F. Adams proved that there is no element of Hopf invariant one in $\pi_{2 n-1}\left(S^{n}\right)$ unless $n=2,4$ or 8 (cf. Bull. Amer. Math. Soc. 64(1958), 279-282). Therefore necessary conditions imposed to $T_{p, p}(\alpha \otimes \alpha)$ are only (4).
[^1]: 3) In the following Z denotes the group of integers, and for an integer $m>1, Z_{m}$ denotes the cyclic group of the order m.
[^2]: 5) By Theorem 2, this system is realizable in a space B such that $\pi_{(}(B)$ with $i<4$ or $i>7$ are arbitrary given abelian groups, and $W_{p . q}(B)=0$ for $p+q-1<4$ or $p+q-1>7$. But it seems that $\pi_{i}(B)$ for $4<i<7$ are not arbitrary. This situation occurs in the cases of the realizations of $T_{p . q}$ for $p \geqq 3$.
[^3]: 6) It is desired to remove these assumptions.
 7) We remark that this system is realized in a space B such that $W_{p . q}(B)=0$ except $W_{2.2}(B)$, $W_{2 \cdot 5}(B)$.
[^4]: 9) For an abelian group G and an integer $n, n G$ denotes the subgroup of G consisting of elements $n g$ for $g \in G$. The condition $T_{3}\left(\pi_{3} \otimes \pi_{3}\right) \subset 2 \pi_{5}$ is not a necessary condition.
 10) The condition $T_{5}\left(\pi_{5} \otimes \pi_{5}\right) \subset 24 \pi_{9}$ is not a necessary condition.
 11) The condition (4) is not a necessary condition.
