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Introduction. One of the important questions in the theory of the crossed

products of rings of operators is the following: Is the crossed product of

a finite factor M also a finite factor for any group G of automorphisms of

M ? The answer for this question is negative in general ([4]), and some

kinds of conditions on G under which the crossed product is a factor have

been obtained ([4]). In § 2 we shall deal with this question when G is abelian,

and sharpen the results in [2], In §3 we shall consider the behaviour of the

action of G in the crossed product and give a condition on G under which

the crossed product is a factor.

1. Throughout this paper, we assume that all "W^-algebras are finite

factors with the invariants C = 1. An automorphism of a W"*-algebra means

a ^-automorphism, and a group of outer automorphisms of a W*-algebra is

a group of automorhisms all member of which are outer automorphisms except

the unit. The unit of a group will be denoted by e. R(aλ\\ € Λ) means the

W^-algebra generated by the family of operators a\ (λ € Λ).

For convenience sake, we shall explain the construction of the crossed

product. Let M be a finite factor with the invariant C = 1 on a Hubert space

H and G a group of automorphisms of M. Let φ be a separating and generat-

ing trace vector for M. For each σ € G we define

uσ(aφ) = aσ~lφ for all a € M

where aτ is the image of a by an automorphism r. Then uσ can be extended

to a unitary operator on H which will be also denoted by uσ, and σ^uσ is a

faithful unitary representation of G on H such that

ulauσ = ασ for all a € M.

Now consider the Hubert space H(^)/2(G). If we choose the complete
orthonormal system \£a}asG in /2(G) such as

1 if γ = a

0 otherwise,

each vector of H®/2(G) is expressed in the form Σ <p«0£α where φ<* € H
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For each #€M and σ € G we define the operators <z® 1 and Z7σ on
by

and

for all Σβ6β9>« ® £* € H(g)/a(G). The set of all operators a ® 1 (α € M) will

be denoted by M <g) I. For A = α ( g ) l € M ® I and σ€ G we denote ασ ® 1 by
Aσ. Then it is clear that

UΪAUσ = Aσ for all A € M ® I and σ € G.

The crossed product of M by G, denoted by (M, G) is the W ̂ -algebra on

H® /2(G) generated by the set of all finite linear combinations ΣιAiUat(At€

M ® I, aίi € G), and (M, G) is of finite type. It is noted that each element
A € (M, G) is uniquely expressed in the form

where Aa € M (g) I and ]Γ is taken in the sense of the metrical convergence,

and φ$?)Ge is a separating and generating vector for the crossed product
(M, G). The crossed product defined above seems to depend on the choice of
the representation of G on H, but it is shown that the crossed product is uni-
quely determined by M and G within unitary equivalence. For the details of
the theory of crossed products see [4],

2. First we shall prove the following Theorem.

THEOREM I. Let M. be a finite factor with the invariant C = 1 on a
Hilbert space H and G an abelian group of automorphisms of M. Let P be
the fixed algebra of G in M1}. Then the crossed product (M,G) is a factor if
and only if there are no a € P (a =φ= λ 1, λ is a scalar) and σ€ G (σ ^ξ=e) such as

xa = axσ for all x € M.

PROOF. Necessity. Suppose that there exist an a € Yu(a 4= λl) and a σ € G
(σ =4= tf) such as xa = axσ for all x € M. Since a € P, ulaua — a for all oί € G.

Thus for any Σ X « C Λ , € (M,G),

1) The fixed algebra of G in M is the subalgebra of M composed ol all elements #
such that aa = a for all oc 6 G ([3: Definition 2]).
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= Σ*X,AΓ7.ϊ7* = Σ^X U.AU* = (Σl«X.tf.) (At/5)

where A = a® 1. Hence ^C7ί€(M,G)Π(M, G)'. On the other hand,

AUΪ(φ ® £e) = tf«ί?> ® &-ι.

where φ is a separating and generating trace vector for M, and AU* is not

the scalar multiple of the identity operator on H ® /2(^)

Sufficiency. Suppose that the condition in Theorem 1 is satisfied. If

y^l e6,Xαί7αis contained in the center of (M, G),

f or all A = a (g) 1 € M <g> I and σ € G. Then

and

Thus we have aa%~1 = xa%Γl for each OL € G where Xα = «̂ ® 1- Take σ=£,

and we have

axΛ — xua*~l for all <z € M.

Hence by the assumption XΛ = λΛl for all Λ € G, # 4= ̂  where λ* are scalars,

and so a — a*~l for all oί € G, α 4= £ if λΛ =f= 0 f or oί 4= έ?, which contradicts

to the arbitrariness of a € M. From the relation axΛ = xΛa
Λ~γ for all α ^ M,

:re is the scalar multiple of the identity operator on H, and (M,G) is a factor.

As a corollary of Theorem 1, we obtain the slight improvement of the

example in [4]:

COROLLARY 1. Let M be a finite factor with the invariant C = 1 on a
Hilbert space and OL a non- trivial automorphism of M. Let G be a cyclic
group generated by a. Then a is outer if the crossed product (M, G) is a
factor. In particular, when the order of a is 2 or 3, (M, G) is a factor if and
only if G is outer.

PROOF. Suppose that (M, G) is a factor and OL is inner. Then there exists

a unitary operator u € M such that u*au = a* for all a € M. Since («)"" =
(u*)nu(u)n = u for all n = 0, ±1, ±2,..., u is contained in the fixed algebra of
G in M. Moreover we have
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au = ua" for all a € M.

Thus, by Theorem 1, (M, G) is not a factor which is a contradiction, and OL is
an outer automorphism of M.

To prove the second part of our assertion, it is sufficient to show the "only
if" part because the "if part" is known ([]J, [4]). Suppose that (M, G) is a
factor and Q? — e. a is an outer automorphism of M as shown above, and
since op = or1,**2 is also an outer automorphism of M. Thus G is outer. If
tf2 = e, it is obvious that G is outer.

The case where a2 = e is nothing but the example in [3].

By virtue of Corollary 1 we can prove the following Theorem which is
closely related to [2] and sharpens the results in [2].

THEOREM 2. Let M and N be finite factors with the invariants C = 1,
and let G and H be groups of outer automorphisms of M and N respe-
ctively. Then G X H2) is a group of outer automorphisms of M ® N.

PROOF. Let (α, β) € G x H be an arbitrary element which is different
from the unit (e, e) of G x H, and let @u,j8) be a cyclic group generated by
(#, β). Then it is sufficient to show that the crossed product (M®N, ©(α,^) is
a factor by Corollary 1. By [2: Theorem l] and [3: Theorem] we have 1

(M(g)N,®(βf«)n(M(g)N,®(β|β))
/S(M®N,G x H)Π(M® N, {(*,*)})'

= (M, G) ® (N, H) Π ((M, \e\) ® (N, \e]))'

= ((M, G) Π (M, [e])') ® ((N, H) Π (N, {*})').

On the other hand by [4: Theorem 3], (M, G)n(M,{β}y(resφ.(N,H)n(N, {«})')
coincides with the center of (M, {e}) (resp. (N, [e\)\ because G (resp. //) is
outer. Thus (M®N, ©(«,£)) is a factor, and the proof is completed.

REMARK. Theorem 2 holds when M and N are semi-finite factors. A sketch
of the proof is as follows. Let M be a standard factor on a Hubert space H
and G a group of automorphisms of M. Then Lemmas 1 and 2 in [4] remain
true, and so we can define the crossed product as the same way as in the case
of finite factor, and Lemma 5 and Theorem 3 in [4] are also true3). Hence
we can easily seen that Corollary 1 is valid and the same computations as the
proof of Theorem 2 are available.

3. Let M be a finite factor with the invariant C = 1 on a Hubert space
H and G a group of automorphisms of M. Let P be the fixed algebra of G in

2) For the definition of G X H9 see Lemma 2 in [2].
3) These facts were pointed out by N. Suzuki when he published the paper [4].
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M. Then (P, G) means the W*-subalgebra of the crossed product (M,G) gene-

rated by all finite linear combinations ^^lAiUΛi where At = di ® 1, θίt £Ξ G. it

is easily seen that each element in (P, G) can be expressed uniquely in the

form ΣasffAccUa where AΛ = aa ® 1, aΛ € P. The set of all operators a ® 1

on H ® /2(G) such as a € P will be denoted by P ® I.

LEMMA I. // G is abelian

(P,G) = (M,G)Πl?(l7β *£ G)'.

PROOF. We first recall that a€P if and only if auΛ = u*a for all OL € G.

Let Σα€£A*tΛ* ke an element in (P, G). Then for each σ € G we have

Σ,'uσAa ua = E « ̂ «

and so

(P,G)£(M,G)

Conversely, if we take an arbitrary element ΣU€G AΛUΛ in (M. G) Π

, for all β € G.

Thus

Σle^Γ C7βσ - ΣlrfAtf- for all σ € G,

hence we have ΛΛ = aσ*~l for each a € G where Aa = αα ® 1 € M ® I.

Since σ 6 G is arbitrary, αΛ £Ξ P for all oί € G. This proves that Σαe<j^«^« ̂

(P, G) and

(P,G)2(M,G)n#(t7 a | t f€ G)',

So we have (P, G) = (M, G) f] R(Ua\a € G)'.

As an immediate consequence of Lemma 1, we have the following result.

COROLLARY 2. If G is ergodic and abelian, R(Ua\oί € G) is a maximal
abelian W*-subalgebra of the factor (M, G).

In fact, the ergodicity of G leads to P= {λl}? and (P,G) = R(Ua\a € G).
Thus, by Lemma 1,

R(Ua\a € G) = (M,G) Π R(Ua\aζ G)'.
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This proves Corollary 2 since R(Ua\ct € G) is abelian.

Next lemma is a non-abelian analogue of Lemma 1.

LEMMA 2. Assume that G satisfies the condition: every non-trivial conjugate
class of G it infinite, that is for every oί € G other than the identity,
the class \σθίσ~l\σ € G] is infinite. Then we have

(M,G) Π

PROOF. Let A= Σlβίy4«E7« be an arbitrary element in

Then

AUσ = UσA for all σ € G.

Since At/σ = Σα ff Aαt/ασ = Σαβ(? Aσασ-ιC7σα and t/σA = ]Γ^ AΓ' ί/σ«, we have

(*) tfΓ* = θσ«r-« for all σ € G and a € G,

where A« = #α ® 1 € M ® I. Suppose that ααo 4= 0 for an <*0 € G, Λ0 =4= £-
Let φ be a separating and generating trace vector for M. Then, by our hypothesis
the conjugate class {σC£0σ~1\σ€; G} is infinite. As \\aφ\\ = \\aσφ\\ for all a € M
and σ € G, we have by (*)

||dW-i£>|| = lk«~VII = IKo9>li for all σ € G.

Thus we have

which is a contradiction. Hence <2α=0 for all Λ€G, ^4=^, and A— Ae

because, again by (*)*£"' = a* for all σ € G, and so (M, G) Γ) Λ(ί7α|α € G)'
SP®I. On the other hand, it is obvious that P®Ki(M, G)(}R(U«\ae G)'
since αwα = uaa for all ίz € P and # € G. Therefore we have

By Lemma 2 we have the following theorem.

THEOREM 3. Let M. be a finite factor with the invariant C = 1 and G
a group of automorphisms of M whose non-trivial conjugate classes are all
infinite. Then (M, G) is a factor.

PROOF. Let A = Σαe(,Aα{7α be an arbitrary element in the center of (M,G).

Since (M,G)n(M,G)'£(M,G)n-R(C7«|Λ€G)', A = A e€P®I, where P is the
fixed algebra of G in M by Lemma 2. Moreover A commutes with all
.r ® 1 € M ®I, and so we have aex = xae for all x € M where Ae = ae §ξ) 1.
Thus ae € M Π M'. Hence A is the scalar multiple of the identity operator on
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H ® 12(G\ and (M, G) is a factor.

REMARK. Theorem 3 can be slightly generalized as follows. Assume that G
has a subgroup G0 such that for every element a € G other than the identity,
the set \σctσ~1\σ€; G0J is infinite. Then the commutant of (M, G0) in the
crossed product (M, G) is the scalar multiples of the identity operator on
H ® /2(G), where (M, G0) is a subalgebra of (M, G) composed of all A

— Σαe£0^«^«€ (M, G). In particular (M, G) is a factor.

This is a non-commutative version of Lemma 3 in [5].
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