ON GROUPS OF AUTOMORPHISMS OF FINITE FACTORS

TEISHIRÔ SAITÔ

(Received June 7,1961)

Introduction. One of the important questions in the theory of the crossed products of rings of operators is the following: Is the crossed product of a finite factor \mathbf{M} also a finite factor for any group G of automorphisms of \mathbf{M} ? The answer for this question is negative in general ([4]), and some kinds of conditions on G under which the crossed product is a factor have been obtained ([4]). In §2 we shall deal with this question when G is abelian, and sharpen the results in [2]. In §3 we shall consider the behaviour of the action of G in the crossed product and give a condition on G under which the crossed product is a factor.

1. Throughout this paper, we assume that all W^* -algebras are finite factors with the invariants C = 1. An automorphism of a W^* -algebra means a *-automorphism, and a group of outer automorphisms of a W^* -algebra is a group of automorphisms all member of which are outer automorphisms except the unit. The unit of a group will be denoted by e. $R(a_{\lambda} | \lambda \in \Lambda)$ means the W^* -algebra generated by the family of operators a_{λ} ($\lambda \in \Lambda$).

For convenience sake, we shall explain the construction of the crossed product. Let **M** be a finite factor with the invariant C = 1 on a Hilbert space **H** and G a group of automorphisms of **M**. Let φ be a separating and generating trace vector for **M**. For each $\sigma \in G$ we define

$$u_{\sigma}(a\varphi) = a^{\sigma^{-1}}\varphi$$
 for all $a \in \mathbf{M}$

where a^{τ} is the image of a by an automorphism τ . Then u_{σ} can be extended to a unitary operator on **H** which will be also denoted by u_{σ} , and $\sigma \rightarrow u_{\sigma}$ is a faithful unitary representation of G on **H** such that

$$u_{\sigma}^*au_{\sigma}=a^{\sigma}$$
 for all $a\in\mathbf{M}$.

Now consider the Hilbert space $\mathbf{H} \otimes l_2(G)$. If we choose the complete orthonormal system $\{\boldsymbol{\varepsilon}_{\alpha}\}_{\alpha \in G}$ in $l_2(G)$ such as

$$\mathcal{E}_{\alpha}(\boldsymbol{\gamma}) = \left\{egin{array}{cc} 1 & ext{if} & \boldsymbol{\gamma} = \boldsymbol{lpha} \\ 0 & ext{otherwise,} \end{array}
ight.$$

each vector of $\mathbf{H} \otimes l_2(G)$ is expressed in the form $\sum \varphi_{\alpha} \otimes \mathcal{E}_{\alpha}$ where $\varphi_{\alpha} \in \mathbf{H}$

and $\sum_{\alpha\in G} \|\varphi_{\alpha}\|^2 < \infty$.

For each $a \in \mathbf{M}$ and $\sigma \in G$ we define the operators $a \otimes 1$ and U_{σ} on $\mathbf{H} \otimes l_2(G)$ by

and

$$U_{\sigma}\left(\sum_{\alpha\in G} \varphi_{\alpha} \otimes \mathcal{E}_{\alpha}\right) = \sum_{\alpha\in G} u_{\sigma} \varphi_{\alpha} \otimes \mathcal{E}_{\sigma\alpha}$$

for all $\sum_{\alpha \in G} \varphi_{\alpha} \otimes \varepsilon_{\alpha} \in \mathbf{H} \otimes l_2(G)$. The set of all operators $a \otimes 1 \ (a \in \mathbf{M})$ will be denoted by $\mathbf{M} \otimes \mathbf{I}$. For $A = a \otimes 1 \in \mathbf{M} \otimes \mathbf{I}$ and $\sigma \in G$ we denote $a^{\sigma} \otimes 1$ by A^{σ} . Then it is clear that

 $U^*_{\sigma}AU_{\sigma} = A^{\sigma}$ for all $A \in \mathbf{M} \otimes \mathbf{I}$ and $\sigma \in G$.

The crossed product of **M** by G, denoted by (\mathbf{M}, G) is the W^* -algebra on $\mathbf{H} \otimes l_2(G)$ generated by the set of all finite linear combinations $\sum_i A_i U_{\alpha_i}(A_i \in \mathbf{M} \otimes \mathbf{I}, \alpha_i \in G)$, and (\mathbf{M}, G) is of finite type. It is noted that each element $A \in (\mathbf{M}, G)$ is uniquely expressed in the form

$$A = \sum_{\alpha \in G}' A_{\alpha} U_{\alpha}$$

where $A_{\alpha} \in \mathbf{M} \otimes \mathbf{I}$ and \sum' is taken in the sense of the metrical convergence, and $\varphi \otimes \varepsilon_e$ is a separating and generating vector for the crossed product (\mathbf{M}, G) . The crossed product defined above seems to depend on the choice of the representation of G on \mathbf{H} , but it is shown that the crossed product is uniquely determined by \mathbf{M} and G within unitary equivalence. For the details of the theory of crossed products see [4].

2. First we shall prove the following Theorem.

THEOREM 1. Let **M** be a finite factor with the invariant C = 1 on a Hilbert space **H** and G an abelian group of automorphisms of **M**. Let **P** be the fixed algebra of G in \mathbf{M}^{1} . Then the crossed product (\mathbf{M},G) is a factor if and only if there are no $a \in \mathbf{P}(a \neq \lambda 1, \lambda \text{ is a scalar})$ and $\sigma \in G(\sigma \neq e)$ such as

$$xa = ax^{\sigma}$$
 for all $x \in \mathbf{M}$.

PROOF. Necessity. Suppose that there exist an $a \in \mathbf{P}u(a \neq \lambda 1)$ and a $\sigma \in G$ $(\sigma \neq e)$ such as $xa = ax^{\sigma}$ for all $x \in \mathbf{M}$. Since $a \in \mathbf{P}$, $u_{\alpha}^* a u_{\alpha} = a$ for all $\alpha \in G$. Thus for any $\sum_{\alpha \in G} X_{\alpha} U_{\alpha} \in (\mathbf{M}, G)$,

428

¹⁾ The fixed algebra of G in **M** is the subalgebra of **M** composed of all elements $a \in \mathbf{M}$ such that $a^{\alpha} = a$ for all $\alpha \in G$ ([3: Definition 2]).

ON GROUPS OF AUTOMORPHISMS OF FINITE FACTORS

$$(AU_{\sigma}^{*})\left(\sum_{\alpha\in G}^{'}X_{\alpha}U_{\alpha}\right) = \sum_{\alpha\in G}^{'}AX_{\alpha}^{\sigma}U_{\sigma^{-1}\alpha} = \sum_{\alpha\in G}^{'}X_{\alpha}AU_{\alpha\sigma^{-1}}$$
$$= \sum_{\alpha\in G}^{'}X_{\alpha}AU_{\alpha}U_{\sigma}^{*} = \sum_{\alpha\in G}^{'}X_{\alpha}U_{\alpha}AU_{\sigma}^{*} = \left(\sum_{\alpha\in G}^{'}X_{\alpha}U_{\alpha}\right)(AU_{\sigma}^{*})$$

where $A = a \otimes 1$. Hence $AU^*_{\sigma} \in (\mathbf{M}, G) \cap (\mathbf{M}, G)'$. On the other hand,

$$AU^*_{\sigma}(\varphi\otimes \mathcal{E}_e) = au^*_{\sigma}\varphi\otimes \mathcal{E}_{\sigma^{-1}}.$$

where φ is a separating and generating trace vector for **M**, and AU_{σ}^* is not the scalar multiple of the identity operator on $\mathbf{H} \otimes l_2(G)$.

Sufficiency. Suppose that the condition in Theorem 1 is satisfied. If $\sum_{\alpha\in G} X_{\alpha}U_{\alpha}$ is contained in the center of (\mathbf{M}, G) ,

$$\left(\sum_{\alpha\in G}' X_{\alpha}U_{\alpha}\right)(AU_{\sigma}) = (AU_{\sigma})\left(\sum_{\alpha\in G}' X_{\alpha}U_{\alpha}\right)$$

for all $A = a \otimes 1 \in \mathbf{M} \otimes \mathbf{I}$ and $\sigma \in G$. Then

$$\left(\sum_{\boldsymbol{\alpha}\in G}' X_{\boldsymbol{\alpha}} U_{\boldsymbol{\alpha}}\right)(AU_{\sigma}) = \sum_{\boldsymbol{\alpha}\in G}' X_{\boldsymbol{\alpha}} A^{\boldsymbol{\alpha}-\boldsymbol{\alpha}} U_{\boldsymbol{\alpha}\sigma}$$

and

$$(AU_{\sigma})\left(\sum_{\alpha\in G}'X_{\alpha}U_{\alpha}\right)=\sum_{\alpha\in G}'AX_{\alpha}^{\sigma-1}U_{\alpha\sigma}.$$

Thus we have $ax_{\alpha}^{\sigma^{-1}} = xa_{\alpha}^{\alpha^{-1}}$ for each $\alpha \in G$ where $X_{\alpha} = x_{\alpha} \otimes 1$. Take $\sigma = e$, and we have

$$ax_{\alpha} = x_{\alpha}a^{\alpha-1}$$
 for all $a \in \mathbf{M}$.

Hence by the assumption $x_{\alpha} = \lambda_{\alpha} 1$ for all $\alpha \in G$, $\alpha \neq e$ where λ_{α} are scalars, and so $a = a^{\alpha^{-1}}$ for all $\alpha \in G$, $\alpha \neq e$ if $\lambda_{\alpha} \neq 0$ for $\alpha \neq e$, which contradicts to the arbitrariness of $a \in \mathbf{M}$. From the relation $ax_{\alpha} = x_{\alpha}a^{\alpha^{-1}}$ for all $a \in \mathbf{M}$, x_e is the scalar multiple of the identity operator on **H**, and (**M**, *G*) is a factor.

As a corollary of Theorem 1, we obtain the slight improvement of the example in [4]:

COROLLARY 1. Let M be a finite factor with the invariant C = 1 on a Hilbert space and α a non-trivial automorphism of M. Let G be a cyclic group generated by α . Then α is outer if the crossed product (M,G) is a factor. In particular, when the order of α is 2 or 3, (M,G) is a factor if and only if G is outer.

PROOF. Suppose that (\mathbf{M}, G) is a factor and α is inner. Then there exists a unitary operator $u \in \mathbf{M}$ such that $u^*au = a^{\alpha}$ for all $a \in \mathbf{M}$. Since $(u)^{\alpha^n} = (u^*)^n u(u)^n = u$ for all $n = 0, \pm 1, \pm 2, ..., u$ is contained in the fixed algebra of G in \mathbf{M} . Moreover we have

$$au = ua^{\alpha}$$
 for all $a \in \mathbf{M}$.

Thus, by Theorem 1, (\mathbf{M}, G) is not a factor which is a contradiction, and α is an outer automorphism of \mathbf{M} .

To prove the second part of our assertion, it is sufficient to show the "only if" part because the "if part" is known ([1], [4]). Suppose that (\mathbf{M}, G) is a factor and $\alpha^3 = e$. α is an outer automorphism of \mathbf{M} as shown above, and since $\alpha^2 = \alpha^{-1}, \alpha^2$ is also an outer automorphism of \mathbf{M} . Thus G is outer. If $\alpha^2 = e$, it is obvious that G is outer.

The case where $\alpha^2 = e$ is nothing but the example in [3].

By virtue of Corollary 1 we can prove the following Theorem which is closely related to [2] and sharpens the results in [2].

THEOREM 2. Let **M** and **N** be finite factors with the invariants C = 1, and let G and H be groups of outer automorphisms of **M** and **N** respectively. Then $G \times H^{2}$ is a group of outer automorphisms of $\mathbf{M} \otimes \mathbf{N}$.

PROOF. Let $(\alpha, \beta) \in G \times H$ be an arbitrary element which is different from the unit (e, e) of $G \times H$, and let $\mathfrak{G}_{(\alpha,\beta)}$ be a cyclic group generated by (α, β) . Then it is sufficient to show that the crossed product $(\mathbf{M} \otimes \mathbf{N}, \mathfrak{G}_{(\alpha,\beta)})$ is a factor by Corollary 1. By [2: Theorem 1] and [3: Theorem] we have 1

$$(\mathbf{M} \otimes \mathbf{N}, \mathfrak{G}_{(\alpha,\beta)}) \cap (\mathbf{M} \otimes \mathbf{N}, \mathfrak{G}_{(\alpha,\beta)})' \cong (\mathbf{M} \otimes \mathbf{N}, G \times H) \cap (\mathbf{M} \otimes \mathbf{N}, \{(e, e)\})'$$

= $(\mathbf{M}, G) \otimes (\mathbf{N}, H) \cap ((\mathbf{M}, \{e\}) \otimes (\mathbf{N}, \{e\}))'$
= $((\mathbf{M}, G) \cap (\mathbf{M}, \{e\})') \otimes ((\mathbf{N}, H) \cap (\mathbf{N}, \{e\})').$

On the other hand by [4: Theorem 3], $(\mathbf{M}, G) \cap (\mathbf{M}, \{e\})'(\operatorname{resp.}(\mathbf{N}, H) \cap (\mathbf{N}, \{e\})')$ coincides with the center of $(\mathbf{M}, \{e\})$ (resp. $(\mathbf{N}, \{e\})$), because G (resp. H) is outer. Thus $(\mathbf{M} \otimes \mathbf{N}, \mathfrak{G}_{(\alpha,\beta)})$ is a factor, and the proof is completed.

REMARK. Theorem 2 holds when \mathbf{M} and \mathbf{N} are semi-finite factors. A sketch of the proof is as follows. Let \mathbf{M} be a standard factor on a Hilbert space \mathbf{H} and G a group of automorphisms of \mathbf{M} . Then Lemmas 1 and 2 in [4] remain true, and so we can define the crossed product as the same way as in the case of finite factor, and Lemma 5 and Theorem 3 in [4] are also true³. Hence we can easily seen that Corollary 1 is valid and the same computations as the proof of Theorem 2 are available.

3. Let M be a finite factor with the invariant C = 1 on a Hilbert space H and G a group of automorphisms of M. Let P be the fixed algebra of G in

430

²⁾ For the definition of $G \times H$, see Lemma 2 in [2].

³⁾ These facts were pointed out by N. Suzuki when he published the paper [4].

M. Then (\mathbf{P}, G) means the W^* -subalgebra of the crossed product (\mathbf{M}, G) generated by all finite linear combinations $\sum_i A_i U_{\alpha_i}$ where $A_i = a_i \otimes 1$, $\alpha_i \in G$. It is easily seen that each element in (\mathbf{P}, G) can be expressed uniquely in the form $\sum_{\alpha \in G} A_{\alpha} U_{\alpha}$ where $A_{\alpha} = a_{\alpha} \otimes 1$, $a_{\alpha} \in \mathbf{P}$. The set of all operators $a \otimes 1$ on $\mathbf{H} \otimes l_2(G)$ such as $a \in \mathbf{P}$ will be denoted by $\mathbf{P} \otimes \mathbf{I}$.

LEMMA 1. If G is abelian

$$(\mathbf{P}, G) = (\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)'.$$

PROOF. We first recall that $a \in \mathbf{P}$ if and only if $au_{\alpha} = u_{\alpha}a$ for all $\alpha \in G$. Let $\sum_{\alpha \in G} A_{\alpha} U_{\alpha}$ be an element in (\mathbf{P}, G) . Then for each $\sigma \in G$ we have

$$egin{aligned} U_{\sigma}\left(\sum_{lpha\in G}'A_{lpha}\,U_{lpha}
ight)&=\sum_{lpha\in G}'U_{\sigma}A_{lpha}\,U_{lpha}=\sum_{lpha\in G}'A_{lpha}\,U_{\sigmalpha}\ &=\sum_{lpha\in G}'A_{lpha}U_{lpha\sigma}=\left(\sum_{lpha\in G}'A_{lpha}\,U_{lpha}
ight)U_{\sigma}, \end{aligned}$$

and so

$$(\mathbf{P},G) \subseteq (\mathbf{M},G) \cap R(U_{\alpha} | \alpha \in G)'.$$

Conversely, if we take an arbitrary element $\sum_{\alpha \in G} A_{\alpha} U_{\alpha}$ in (M. G) $\cap R(U_{\alpha} | \alpha \in G)'$,

$$U_{\sigma}\left(\sum_{\alpha\in G}^{'}A_{\alpha}U_{\alpha}\right)=\left(\sum_{\alpha\in G}^{'}A_{\alpha}U_{\alpha}\right)U_{\sigma} \text{ for all } \sigma\in G.$$

Thus

$$\sum_{\alpha_{\epsilon G}}^{'} A_{\alpha}^{\sigma^{-1}} U_{\alpha \sigma} = \sum_{\alpha_{\epsilon G}}^{'} A_{\alpha} U_{\alpha \sigma} \text{ for all } \sigma \in G,$$

hence we have $a_{\alpha} = a_{\alpha}^{\sigma^{-1}}$ for each $\alpha \in G$ where $A_{\alpha} = a_{\alpha} \otimes 1 \in \mathbf{M} \otimes \mathbf{I}$. Since $\sigma \in G$ is arbitrary, $a_{\alpha} \in \mathbf{P}$ for all $\alpha \in G$. This proves that $\sum_{\alpha \in G} A_{\alpha} U_{\alpha} \in (\mathbf{P}, G)$ and

$$(\mathbf{P},G) \supseteq (\mathbf{M},G) \cap R(U_{\alpha} | \alpha \in G)',$$

So we have $(\mathbf{P}, G) = (\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)'$.

As an immediate consequence of Lemma 1, we have the following result.

COROLLARY 2. If G is ergodic and abelian, $R(U_{\alpha} | \alpha \in G)$ is a maximal abelian W^{*}-subalgebra of the factor (**M**, G).

In fact, the ergodicity of G leads to $\mathbf{P} = \{\lambda 1\}$, and $(\mathbf{P},G) = R(U_{\alpha} | \alpha \in G)$. Thus, by Lemma 1,

$$R(U_{\alpha} | \alpha \in G) = (\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)'.$$

This proves Corollary 2 since $R(U_{\alpha} | \alpha \in G)$ is abelian.

Next lemma is a non-abelian analogue of Lemma 1.

LEMMA 2. Assume that G satisfies the condition: every non-trivial conjugate class of G it infinite, that is for every $\alpha \in G$ other than the identity, the class $\{\sigma\alpha\sigma^{-1} | \sigma \in G\}$ is infinite. Then we have

 $(\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)' = \mathbf{P} \otimes \mathbf{I}.$

PROOF. Let $A = \sum_{\alpha \in G}^{'} A_{\alpha} U_{\alpha}$ be an arbitrary element in $(\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)^{'}$. Then

$$AU_{\sigma} = U_{\sigma}A$$
 for all $\sigma \in G$.

Since $AU_{\sigma} = \sum_{\alpha \ G}^{'} A_{\alpha}U_{\alpha\sigma} = \sum_{\alpha \in G}^{'} A_{\sigma\alpha\sigma^{-1}}U_{\sigma\alpha}$ and $U_{\sigma}A = \sum_{\alpha \in G}^{'} A_{\alpha}^{\sigma^{-1}}U_{\sigma\alpha}$, we have (*) $a_{\alpha}^{\sigma^{-1}} = a_{\sigma\alpha\sigma^{-1}}$ for all $\sigma \in G$ and $\alpha \in G$,

where $A_{\alpha} = a_{\alpha} \otimes 1 \in \mathbf{M} \otimes \mathbf{I}$. Suppose that $a_{\alpha_0} \neq 0$ for an $\alpha_0 \in G$, $\alpha_0 \neq e$. Let φ be a separating and generating trace vector for \mathbf{M} . Then, by our hypothesis the conjugate class $\{\sigma \alpha_0 \sigma^{-1} | \sigma \in G\}$ is infinite. As $||a\varphi|| = ||a^{\sigma}\varphi||$ for all $a \in \mathbf{M}$ and $\sigma \in G$, we have by (*)

$$||a_{\sigma\alpha_0\sigma^{-1}}\varphi|| = ||a_{\alpha_0}^{\sigma^{-1}}\varphi|| = ||a_{\alpha_0}\varphi||$$
 for all $\sigma \in G$.

Thus we have

$$\sum_{\alpha\in G}^{'} \|a_{\alpha}\varphi\|^2 = \infty.$$

which is a contradiction. Hence $a_{\alpha} = 0$ for all $\alpha \in G$, $\alpha \neq e$, and $A = A_e \in \mathbf{P} \otimes \mathbf{I}$ because, again by (*) $a_e^{\sigma^{-1}} = a_e$ for all $\sigma \in G$, and so $(\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)'$ $\subseteq \mathbf{P} \otimes \mathbf{I}$. On the other hand, it is obvious that $\mathbf{P} \otimes \mathbf{I} \subseteq (\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)'$ since $au_{\alpha} = u_{\alpha}a$ for all $a \in \mathbf{P}$ and $\alpha \in G$. Therefore we have

$$(\mathbf{M},G) \cap R(U_{\alpha} | \alpha \in G)' = \mathbf{P} \bigotimes \mathbf{I}.$$

By Lemma 2 we have the following theorem.

THEOREM 3. Let \mathbf{M} be a finite factor with the invariant C = 1 and G a group of automorphisms of \mathbf{M} whose non-trivial conjugate classes are all infinite. Then (\mathbf{M}, G) is a factor.

PROOF. Let $A = \sum_{\alpha \in G} A_{\alpha} U_{\alpha}$ be an arbitrary element in the center of (\mathbf{M}, G) . Since $(\mathbf{M}, G) \cap (\mathbf{M}, G) \cong (\mathbf{M}, G) \cap R(U_{\alpha} | \alpha \in G)'$, $A = A_e \in \mathbf{P} \otimes \mathbf{I}$, where \mathbf{P} is the fixed algebra of G in \mathbf{M} by Lemma 2. Moreover A commutes with all $x \otimes 1 \in \mathbf{M} \otimes \mathbf{I}$, and so we have $a_e x = xa_e$ for all $x \in \mathbf{M}$ where $A_e = a_e \otimes 1$. Thus $a_e \in \mathbf{M} \cap \mathbf{M}'$. Hence A is the scalar multiple of the identity operator on

432

 $\mathbf{H} \otimes l_2(G)$, and (\mathbf{M}, G) is a factor.

REMARK. Theorem 3 can be slightly generalized as follows. Assume that G has a subgroup G_0 such that for every element $\alpha \in G$ other than the identity, the set $\{\sigma\alpha\sigma^{-1} | \sigma \in G_0\}$ is infinite. Then the commutant of (\mathbf{M}, G_0) in the crossed product (\mathbf{M}, G) is the scalar multiples of the identity operator on $\mathbf{H} \otimes l_2(G)$, where (\mathbf{M}, G_0) is a subalgebra of (\mathbf{M}, G) composed of all $A = \sum_{\alpha \in G_0} A_\alpha U_\alpha \in (\mathbf{M}, G)$. In particular (\mathbf{M}, G) is a factor.

This is a non-commutative version of Lemma 3 in [5].

REFERENCES

- [1] T.SAITÔ, The direct product and the crossed product of rings of opdrators, Tôhoku Math. Journ. 11(1959), 229-304.
- [2] T.SAITÔ and J.TOMIYAMA, Some results on the direct product of W*-algebras, Tôhoku Math. Journ., 12(1960), 455-458.
- [3] N.SUZUKI, Crossed products of rings of operators, Tôhoku Math. Journ., 11(1959), 113-124.
- [4] H. WIDOM, Nonisomorphic approximately finite factors. Proc. Amer. Math. Soc., 8(1957),537-540.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.