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Introduction. Recently S. Sasaki [3]" defined the notion of (¢, &, », g)
structure of a differentiable manifold. Further, S.Sasaki and Y.Hatakeyama
[4] [5] showed that the structure is closely related to contact structure. By
means of this notion, it is shown that a space with a contact structure can be
dealt with as we deal with an almost complex space. So, by similar manner,
some problems discussed in the latter space may be considered in the former.
On the other hand, S. Tachibana [6][7] proved many interesting theorems in
an almost complex space. In this paper, the present author tries to study, in
the space with a certain contact structure, the problem corresponding to S.
Tachibana’s results. We shall devote §1 to preliminaries and in this section
introduce a normal contact structure. In §2, we ennumerate identities which
will be useful in the later sections. We shall prove in §3 that a space with
a normal contact structure satisfying V.R;; =0 be necessarily an Einstein
one and that a symmetric space with a normal contact structure reduces to the
space of constant curvature respectively. The differential form R is dealt with
in §4, and in this section, we shall show a necessary and sufficient condition
that the space be an Einstein space by means of the form R Finally in §5,
we introduce a certain type of (¢,7, g)-connection with respect to which the
fundamental tensors ¢;;, n; and g¢,, are all covariant constant.

The present author wishes to express his hearty thanks to Prof. S.Tachi-
bana for his many valuable advices and several discussions.

1. Preliminaries. Let M be an n-dimensional real differentiable manifold.
If there exist a tensor field ¢,’, contravariant and covariant vector fields &, #;
over M such that

1. 1) &' =1,

(1. 2) rank |[¢/f=n—1,

1. 3) $,'¢' =0,

1. 4) ¢)'m =0,

(1. 5) ¢i'd’ =— &' + Ene,

1) Numbers in brackets refer to the references at the end of the paper.
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then the manifold M is called to have a (¢, € #)-structure. In the space with
(¢, & n)-structure, it is known that the space is odd dimensional. There are
four important tensors, in the space, which correspond to the Nijenhuis tensor
of an almost complex space and they are defined by the following equations.

1. 6)® Nyt = ¢"(0rd;" — 0;¢4")— " (O’ — Oxr’)
+ (0,8 — (O Emy,

Q.7 N, = d)lch(aj"’h — Owm;) — &,"(Omn — i),

1. 8) Nji = ‘Eh(anfﬁji - aj¢'ni) - ¢jhan§i,

(1.9 N; = E" (O — Onmy)-

Furtheremore, we have known that a manifold M with a (¢,&, n)-structure
always admits a positive definite Riemannian metric tensor ¢;; such that

(1. 10) gi€ = m,
(1. 11) ) 951Pn' D’ = Gin —
Hence, in the following, we use a notation %’ in stead of &.
The aggregate consisting of a (¢, &, 5)-structure together with a Riemannian

metric tensor ¢; which satisfies (1. 10) and (1. 11) is called a (¢, &, 2, ¢)
structure and g;; is called a (¢, £, #, ¢g)-metric.

On the other hand, let us consider a differentiable manifold with a contact
structure [1] [2] and let » = n,dx* be the 1-form which defines the contact
structure. Then we have

nAdp AN A dn==0, (n=2m+1),

m-times

where operator A in the last equation means exterior multiplication. From the
given contact structure, as is well known [5] we can find a (¢, &, 5, ¢)-structure
such that the vector field #; is the one given by the coefficients of the 1-form
7 and

(1. 12) 2 9ud” = 2 ¢ = Om — O

Such a metric ¢;; is not determined uniquely, but in the following we shall
confine ourselves to a fixed (¢, &, 5, g)-metric. As was shown by S.Sasaki and
Y.Hatakeyama [ 5], in our case, both N,;, N, are identically zero and the
vanishing N,,' implies N;' = 0. So, if we assume the vanishing of N,;!, the
three other tensors defined by (1. 7), (1. 8) and (1. 9) vanish.

In the following, the author try to discuss the properties of the space with
a contact structure whose N,;' with respect to the (¢, &, #, ¢)-structure associated

2) This notation is slightly different to S. Sasaki’s.
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with the given contact structure in the above way is identically zero. From
now on, for the convenience, we shall call such a contact structure a normal
contact structure, and under the symbol M we always understand a normal
contact space i.e.a space with a normal contact structure.

By S.Sasaki and Y.Hatakeyama, it has been shown that the following
relations are always valid in M,

(L 13) Vi = by,

(1. 14) Vi = i — MmTins
from which we have

(1. 15) Vi, = (n — L,

where V; means the covariant differentiation with respect to { . } and V" =
] 1

¢"”’V;. These identities play the fundamental role in our discussions. Moreover,
by definition, we find that the form ¢ = ¢;,dx’ A dx' is closed.

2. Identities. Let R,;" be the Riemannian curvature tensor, i. e.

Rk”n:a"{jhi} _aj{:i} * ikhreri} ——{j};”kri%’

and put Ry, = R.;/", Rijin = Ryji' 0, R = R;,97" and
1
(2 1) Tl: -27(1)” Rrski d)jk’
where ¢ = ¢"'¢;".
Applying the Ricci’s identity to 7;, we obtain the identity
(2. 2) VVin; — ViVim; = — 7Ry
If we substitute (1. 13) into the last equation, we get

7R =— Vibi; + V.

By means of (1. 14), this relation changes its form as

2. 3) 2 Ries” = mGix — M-
Transvecting this with ¢’, we have

2. 4) R = (n — 1)y
from which we have

(2. 5) R py* = Remfy = n — 1,

where we have used (L. 1). If the space under consideration is an Einstein
space, from (2. 4) we have the following
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THEOREM 2.1. If a normal contact space is an Einstein one, the scalar
curvature R has a positive constant value n(n — 1).

COROLLARY 1. If a normal contact space is a space of constant curv-
ature, the scalar curvature has a positive constant value n(n — 1).
Next, for the later use, we shall prove the following

LEMMA 2.1. The relation R — R* = (n —1)? holds good, where R*=R} g’
PROOF. Differentiating covariantly (1. 14) and using (1. 13), we get

(2. 6) ViVidi: = b0 — Puibins
from which we have
2.7 — ¢ Ri” — DuRi” = bk — Priu — budix + Pridi-

Transvecting this with ¢*, we find
= ¢ R + ¢ Riyry =(n — 2)¢y;.

On taking account of skew-symmetric property of ¢™* we have

(2 8) — RS = " Reus =— (2 — Dby
from which we obtain

2.9 — ¢;,9’R” — R =—(n — 2)¢;,¢,’.
Making use of (1. 5) and (2. 5), we can see

(2. 10) R, — Rt =(n — 2)g,, + nm.

Regarding (1. 1) and (1. 6), we can complete the proof of the lemma.
It is necessary to bear in mind that R} is symmetric and that H;%
¢;,R,” is skew-symmetric. As an application of this lemma, we can prove the

LEMMA 2.2. If an n-dimensional normal contact space(n > 3)is a confor-
mally flat one, the scalar curvature has a positive constant value n(n — 1).

PROOF. From the assumption, the curvature tensor of M has the following
form:

1
Ry = n—2 (genRi — ginRii + 95 Ren — 9l51)

R
- m (95:9xn — riGns)-

Hence we have
1 o
R = ;[_”2 (Rji¢'zz¢‘nj + th - Rm'ﬂr”h)

R
T = Dn=2) (gn = mam0),
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which implies

(2. 11) (n—2R*=R—2(n—1).
From the Lemma 2.1, the last equation leads R = n(n — 1). This completes the
proof.

Let us differentiate (2. 10) covariantly, then by means of (1. 13), we get
ViRy — ViR = drm + niiee
Transvecting this with ¢"* and using (1. 3), (1. 4) we have
(2. 12) V'R, = V'R}.
On the other hand, from the Bianchi’s identity, we know
ViR + ViR — ViR = 0,
from which we have
V.R = 2V"R,,.
So, we obtain
(2. 13) V.R = 2V"R},.
3. Some types of Riemannian spaces with normal contact structures.
In this section we obtain some results on special kinds of Riemannian spaces.

At first, let us consider a Riemannian space with a parallel Ricci tensor which
admits a normal contact structure. Then, by Ricci’s identity on the Ricci tensor,

we have
3.1 ' R,,R:;," + R R, = 0.
Transvecting this equation with %* and making use of (2. 3), (2. 4), we get
(n — D megns — mi9ni) — R medss — mgi) = 0.
If we multiply the last equation by 7#*, it follows that
R,; =(n — L)gy;.
Thus we have the

THEOREM 3.1. A normal contact space with parallel Ricci tensor is an
Einstien space.

Next, we consider a symmetric space which is characterized by V,R.;" = 0.
By applying the Ricci’s identity to the curvature tensor, we find

(3' 2) RkjiTleTh - Rijhleir - RkTihlejr - RTjihRm”CT = 0‘
On multiplying this by 7, and summing over A, we get
3. 3) Ryjumm — Rkjim”?z + (ﬂmgzj - nzgm,-)yki _(7]‘mglk - 7)1!/mk).(/ji =0,

by taking account of (2. 3).
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Transvecting this with »™ and making use of (1. 1), (1. 10) and (2. 3), we have
Ry = 9.9 — 93k
Thus we get the

THEOREM 3. 2. If a normal contact space is a symmetric one, it is a
space of constant curvature.

COROLLARY 1. A semi-simple Lie group can not admits a normal contact
Structure.

In concluding this section, we shall prove the following

THEOREM 3.3. A conformally flat normal contact space is necessarily a
space of constant curvature (n > 3).
PROOF. From our assumption, we can apply the Lemma 2.2 and we have

1
3. 4) Rijin = —;jz—(gkan — ginRii + 95Rin — 9xiRn)

n
T Ta_2 (9519nk — Grins)-

Transvecting this with %" and making use of (2. 3), (2. 4) we get
Ry — iRy = (n — 1) (nkgﬁ - ﬂjgki)'
This implies that
Rji = (7’! -_ 1)gji'
If we substitute thus obtained Ricci tensor into (3. 4), we have at last
Rejin = ¢59kn — GriGin-
This completes the proof.

4. The form R. In this section, we introduce two forms R and H, and
show some properfi\es of these two forms. In the first place, we define an anti-
symmetric tensor R;; by

o 1 gt 1 3)
(4. 1) Ry; = TRkji b =— —2‘¢' Ry
Then, we have the following
LEMMA 4.1. The differential form R defined by R= I/Q\k,-dx" A dx’ is

closed.
PROOF. Now, we define by & {a,;;} the cyclic sum of a given tensor ay;;,

namely
S {akji} = Qyji + Ak j + Ajik-

3) The definition of Ién differs from S.Tachibana’s [6] [7] by a constant factor.
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With this notation, we have

S(VR,} = 5 & (ViRu$)

= 7;7 [@ {(VszjsT)(t'rs} + @{RkjsT(Vl(ﬁTx)}]'

Since, by Bianchi’s identity, the first term of the right hand side of the last
equation vanishes identically, we have

~ 1
€ {Vlej} = 7? @{Rkjsr(nrsls - ngzr)}

= 5 (SR} — SRy}

= 0. Q.E.D.
Next if we put H = H,dx’ \ dx', H;, = ¢;,R,", we have the
LEMMA 4. 2. The form H defined by the above relation is closed.

From (1. 12), (2. 8) and Lemma 4.1, we can easily verify the lemma.
If we transvect the equation (2.8) with ¢,/ + 55’ and take account of
(1. 3), we have

(4. 2) — ¢ 'R — ; " Ry + ma’) = (n — )b
Comparing (4.2) with (2. 9), it is known that

. 3) Rt = Ry(¢ + nar').

On the other hand, by definition, we obtain

(4. 4) R: = R/,
From (4. 3) and (4. 4), we find

(4. 5) Rypi=0.
The last two equations shows us that

(4. 6) R, = Rip,"

Now, we have three closed forms ¢, R and H in our space and they are
dependent by accordan/c\e of (2. 8). It is naturally arised a problem that under
what condition ¢ and R or H are dependent. We discuss this problem as
follows.

2\
THEOREM 4. 1. In order that two closed forms ¢ and R are dependent, it
is necessary and sufficient that

4.7 R = bg;i + enms
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valid where b and ¢ mean some constants.
In the first place, we prove the

LEMMA 4. 3. If M has the Ricci tensor R;; of the form (4.7), b and ¢
must be constants (n>3).

PROOF. From (2. 4) and (4.7), we find

(4. 8) b+c=n-1,

hence, it is sufficient to show that & = const. Using (4.7) and (4.8) we have
4.9 ViR = —1)v,b.

On the other hand, taking account of (1. 3), (1. 4) and (1. 13), we get
(4. 10) ViR = 2V'R,, = 2(Vib — V,ben'ny.).

Comparing (4. 9) and (4. 10), we have
AVl — Vibyn) = (n — 1)Vib
from which we obtain
(n — 1)Vibey* = 0.
Substituting the last equation into the preceding one, we have b = const.

PROOF OF THE THEOREM. At first, we shall show the necessity of the

ay
condition. Let us assume that R;; = a¢;,. Transvectng this with ¢’ and using
(4. 4), we get

Rf = a(gil - "h"’?l)-
If we recall (2. 10), we find
(4. 11) Ry={a+mn—-2)lg,+ QA — aymn.

Conversely, if our space has a Ricci tensor of the form (4. 7), by means
of (2.10) and (4. 6), we have easily

o\
er = {b - (n - 2)}¢rl
This completes the proof.

COROLLARY 1. In order that the differential form R - a¢p be trivial, it
is necessary and sufficient that (4.11) be wvalid.
If we operate V' = ¢""V, to (4. 6), we have

VR, = (VR)$, + RYV'S,)
1 . i,
= T(ViR)qul + R (")lg/l - Wisrl)’

by virtue of (2.13). By definition and symmetric property of R}, we have R}y’
= Rfn’ = 0. Hence, it follows that
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~N 1 )
(4. 12) VIR, = 5 (Vil)¢,' + R*p,.
Accordingly, if the form R- a¢ be harmonic, by virtue of (1.15), we get
(4. 13) VR, — ad,) = %(ViR)qST‘ + R¥, — a(n — 1y, = 0

which implies that
(4. 14) R=(n—-1n-1+a).

Conversely, if (4. 14) be valid, we have R* = a(n — 1), hence R— ad is
harmonic. Thus we have the following

LEMMA 4.4. In order that the differential form R— a¢p be harmonic,
it is necessary and sufficient that (4. 14) holds good.

If we take a differential form H instead of I/Q\, we can see that an analogous
theorem to the Theorem 4.1 be valid.

As applications of our discussion in this section, we have the following
two theorems.

THEOREM 4. 2. In order that a normal contact space M be an Einstein
space, it is necessary and sufficient that the differential form R be idential
with ¢.

PROOF. By virtue of corollary 1 of the Theorem 4.1, the sufficiency is
trivial. The necessity is verified by use of the Theorem 2. 1.

From the discussions in §2, the space with R = n(n — 1) seems to be
quite meaningful. From this point of view, we state the

THEOREM 4. 3. In order that a normal contact space M have the scalar
curvature R = n(n — 1) with respect to a fixed ($,&,n,q)-metric, it is necessary

and sufficient that the differential form R - ¢ be harmonic.

COROLLARY 1. If R coincide with ¢, R=n(n—1).

5. Some (¢, 5, g)-connection. In the present section, we shall introduce a (¢, ,
g)-connection, i.e. a connection with respect to which ¢;;, ; and g;; are all covar-
iant constants. To introduce such a connection, there may be many ways and
many different connections may be defined. In this paper, however, making
use of the fundamental tensor ¢;, and vector 7;, we construct the connection in
the following way.

Let us consider a tensor 7T';," defined by

6. 1) T," = pps"n + qbsm" + rdi"n;,

where p,q and r are constants. Now we shall determine p,¢ and » so that the
connection parameter defined by
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h
]l

(5. 2) I, = {

may be a (¢, 5, ¢)-connection.
Covariant differentiation of 7" with respect to T';;* yields

5. 3) gj’?h =V + Ty'n' = ¢ + pp," =0,
where NV—,- means covariant differentiation with respect to I';;".
From the assumption that I';,* is a metric connection, it follows
V~'}'gik =V — Tsi"gne — Tt gns
(5. 4) =— (pbsm + gbsme + 7un;)
— (s + qPsms + rdeimy)
=—(p + gXbum + ¢;mi) = 0.
Since the second parenthesis of the last term of (5. 4) can not be zero, we have

p=—1, g=1 by means of (5. 3). Regarding this fact, we have the
THEOREM 5.1 For any constant r, put

h
(5. 5) "= {j ; } + dsm" — ¢t + rdy;.

Then, ¢, n; and g;; are all covariant constants with respect to the connec-
tion Ty".

PROOF. From the above discussions, it is sufficient to show that ¢; is
covariant constant. We compute here %,-qbi,.

;71'951‘7 = Vb — Tji"$ur — T, by,
= (mgsr — mGi)— bl s — b;"n: + ;)
— bulbsm" — b"n, + ¢, ;)
= (mgsr — i)~ {— nlnm, — 90 + ros(nm, — ¢}
— {=n g5 — nm) + (g — nm:)}

Q.E.D.

By further conditions, the constant 7 in (5.5) may be determined. For
example, in order to discover the connection whose symmetric part be identical
with the Christoffel’s symbol, it must be that » = 1.

The (¢, 5, ¢)-connection introduced by S.Sasaki and Y.Hatakeyama [4]
corresponds to the case where » = 0 in our connection.

Now, let us denote the curvature tensor with respect to the connection

(5. 5) by K,,", it follows that
Kkjih = Rk]'ih + VICTJ'ih - Vkaih + TkTthiT - TjTthciT'
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If we define an anti-symmetric tensor ﬁ“ by I/C\,c,- = \%v K.;*¢,", then we have
after some calculations
ay N .
(5. 6) Ki; = Ri; + {1 — n)r + 1}¢y,;.

Thus, the form K= I/f\ﬁdx" A dx' can be expressible in a linear form of R
and ¢.
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