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Introduction. Recently S. Sasaki [3]° defined the notion of (φ, ξ, η, g)

structure of a differentiable manifold. Further, S. Sasaki and Y. Hatakeyama

[ 4 ] [ 5 ] showed that the structure is closely related to contact structure. By

means of this notion, it is shown that a space with a contact structure can be

dealt with as we deal with an almost complex space. So, by similar manner,

some problems discussed in the latter space may be considered in the former.

On the other hand, S. Tachibana [6] [7] proved many interesting theorems in

an almost complex space. In this paper, the present author tries to study, in

the space with a certain contact structure, the problem corresponding to S.

Tachibana's results. We shall devote § 1 to preliminaries and in this section

introduce a normal contact structure. In §2, we ennumerate identities which

will be useful in the later sections. We shall prove in § 3 that a space with

a normal contact structure satisfying VkRjt = 0 be necessarily an Einstein

one and that a symmetric space with a normal contact structure reduces to the

space of constant curvature respectively. The differential form R is dealt with

in § 4, and in this section, we shall show a necessary and sufficient condition

that the space be an Einstein space by means of the form R. Finally in § 5,

we introduce a certain type of (φ, η, </)-connection with respect to which the

fundamental tensors φju η5 and g5l are all covariant constant.

The present author wishes to express his hearty thanks to Prof. S. Tachi-

bana for his many valuable advices and several discussions.

1. Preliminaries. Let M be an n-dimensional real differentiable manifold.

If there exist a tensor field φ/, contravariant and covariant vector fields ξ\ η3

over M such that

( i . i ) ξ% = i,

(1. 2) rank \φi

i\=n-l,

(1. 3) φ& = 0,

(1. 4) φ,% = 0,

(1. 5) φ/φS = - δ t + fSfc,

1) Numbers in brackets refer to the references at the end of the paper.
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then the manifold M is called to have a (φ, ξ, 77)-structure. In the space with

(φ, ξ, 77)-structure, it is known that the space is odd dimensional. There are

four important tensors, in the space, which correspond to the Nijenhuis tensor

of an almost complex space and they are defined by the following equations.

(1. 6)" Nk/ = ΦΛAΦ/ - 3 A 1 ) - ΦX^ΦS - 3*Φ**)

(1. 7) N,3 = φΛdjη, - θ^j) - Φ

(l. 8) N/ = ξ*(dhφ/ - 3A4) -

(1. 9) Nj = ξ\d)ηk - dhVi).

Furtheremore, we have known that a manifold M with a (φ, £, 77)-structure

always admits a positive definite Riemannian metric tensor gH such that

(1. 10) g,£ = ηi9

(l 11) gaΦnΦk =

Hence, in the following, we use a notation rf in stead of ξ*.

The aggregate consisting of a (φ, £, 77)-structure together with a Riemannian

metric tensor gH which satisfies (1. 10) and (1. 11) is called a (φ, ξ, η, g)

structure and gH is called a (φ, f, 77, ^)-metric.

On the other hand, let us consider a differentiable manifold with a contact

structure [ 1 ] [ 2 ] and let 77 = %dxl be the 1-form which defines the contact

structure. Then we have

m-times

where operator Λ in the last equation means exterior multiplication. From the

given contact structure, as is well known [ 5 ] we can find a (φ, ξ, 77, g) structure

such that the vector field ηt is the one given by the coefficients of the 1-form

77 and

(1. 12) 2 gίrφ/ = 2 φH = djVί - dίVj.

Such a metric gH is not determined uniquely, but in the following we shall

confine ourselves to a fixed (φ, ξ, 77, ^-metric. As was shown by S.Sasaki and

Y. Hatakeyama [5], in our case, both Nkj, N3 are identically zero and the

vanishing Nkj

l implies N/ = 0. So, if we assume the vanishing of Nkj\ the

three other tensors defined by (1. 7), (1. 8) and (1. 9) vanish.

In the following, the author try to discuss the properties of the space with

a contact structure whose Nkj

ι with respect to the (φ, ξ, η, </)-structure associated

2) This notation is slightly different to S. Sasaki's.
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with the given contact structure in the above way is identically zero. From

now on, for the convenience, we shall call such a contact structure a normal

contact structure, and under the symbol M we always understand a normal

contact space i. e. a space with a normal contact structure.

By S. Sasaki and Y. Hatakeyama, it has been shown that the following

relations are always valid in M,

(1. 13) VjVt = φjί9

(1. 14) VkΦjt = Vodik

from which we have

(1. 15) Vφίr = (n- ΐ)ηi9

\
)

where Vj means the covariant differentiation with respect to \ \ and Vr =
I j i )

grjVj- These identities play the fundamental role in our discussions. Moreover,

by definition, we find that the form φ = φHdxj f\ dxι is closed.

2. Identities. Let Rkji

h be the Riemannian curvature tensor, i. e.

*H Ί I Ί I ; 1
kr) (j 1 ) [jr J I k i \

a n d p u t RH = Rrjί

r, Rhjih = Rkii

rgrhy R = Rng
5i a n d

(2. 1) R% = ^-φn Rrskί Φ Λ

where φrs = gr%s.

Applying the Ricci's identity to ηh we obtain the identity

(2. 2)

If we substitute (1. 13) into the last equation, we get

ηrRιkj
r = — Viφkj + Vkφij-

By means of (1. 14), this relation changes its form as

(2. 3) VrRlkί = Vtfjk - Vkffjl

Transvecting this with (f\ we have

(2. 4) ηrRk

r = (n-ϊ)Vk

from which we have

(2. 5) R/ηrV

k = Rkrη
kηr = 7 1 - 1 ,

where we have used (1. 1). If the space under consideration is an Einstein

space, from (2. 4) we have the following
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THEOREM 2.1. If a normal contact space is an Einstein one, the scalar

curvature R has a positive constant value n(n — 1).

COROLLARY 1. If a normal contact space is a space of constant curv-

ature, the scalar curvature has a positive constant value n(n — 1).

Next, for the later use, we shall prove the following

LEMMA 2.1. The relation R- R* = (n- I)2 holds good, where R* = R%gji.

PROOF. Differentiating covariantly (1. 14) and using (1. 13), we get

(2. 6) VlVkΦjί — ΦljQik ~ Φli9j!c,

from which we have

(2. 7) — φjrRlki — ΦriRlkί = Φljgik — Φkjffίί — Φliffjk + Φki9jl'

Transvecting this with gkί, we find

— φjrRί + Φ^Rlkrj =(n — 2)Φlj-

On taking account of skew-symmetric property of φrk we have

(2. 8) — φjrRιr — -w~φrkRrkji ——{n — 2)φH,

from which we obtain

(2. 9) - φjrφijRιr - Rΐι=-(n - 2)φjιφί

j.

Making use of (1. 5) and (2. 5), we can see

(2. 10) Ru - R!i =(n - 2)gu + ViVι.

Regarding (1. 1) and (1. 6), we can complete the proof of the lemma.

It is necessary to bear in mind that R* is symmetric and that Hn =

φjrRιr is skew-symmetric. As an application of this lemma, we can prove the

LEMMA 2.2. If an n-dimensional normal contact space(n > 3) is a confor-

mally flat one, the scalar curvature has a positive constant value n(n — 1).

PROOF. From the assumption, the curvature tensor of M has the following

form:
1

R

(n- l)(n - 2)

Hence we have

R* = itφ
n Δι

R
- 2)
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which implies

(2. 11) {n - 2)£* = R - 2(n - 1).

From the Lemma 2.1, the last equation leads R = n{n — 1). This completes the

proof.
Let us differentiate (2. 10) covariantly, then by means of (1. 13), we get

VkRu - VkR* = Φktvi + VίΦki

Transvecting this with gιk and using (1. 3), (1. 4) we have

(2. 12) VrRπ = VrRri.

On the other hand, from the Bianchi's identity, we know

v Λ / + v A j - ViRjcj = 0,

from which we have

VrR = 2vhRhr.

So, we obtain

(2. 13) VrR = 2VhRϊr.

3. Some types of Riemannian spaces with normal contact structures.
In this section we obtain some results on special kinds of Riemannian spaces.

At first, let us consider a Riemannian space with a parallel Ricci tensor which

admits a normal contact structure. Then, by Ricci's identity on the Ricci tensor,

we have

(3. l) RirRw

r + RrhRkn
r = 0.

Transvecting this equation with ηι and making use of (2. 3), (2. 4), we get

(n - l)(ηkghj - ηjghk) - RAvtfjt - η}gki) = 0.

If we multiply the last equation by ηk, it follows that

Rhj =(n- ϊ)ghi.

Thus we have the

THEOREM 3. 1. A normal contact space with parallel Ricci tensor is an

Einstien space.

Next, we consider a symmetric space which is characterized by ^ΊRkji

h = 0.

By applying the Ricci's identity to the curvature tensor, we find

(3. 2) Rkji

rRmlr — Rkjr

hRmli

r — Rkrί

hRmlj

r — Rrjί

hRmlk

r = 0.

On multiplying this by ηh and summing over h, we get

(3. 3) RfcjilVm — RkjίmVl + (Vmgij ~ VlSmj^ki —(Vmfflk ~ Vlffmk)(/jί = 0,

by taking account of (2. 3).
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Transvecting this with ηm and making use of (1. 1), (1. 10) and (2. 3), we have

Rkjίl — ffclffji — UΠfJki>

Thus we get the

THEOREM 3. 2. If a normal contact space is a symmetric one, it is a

space of constant curvature.

COROLLARY 1. A semi-simple Lie group can not admits a normal contact

structure.

In concluding this section, we shall prove the following

THEOREM 3. 3. A conformally flat normal contact space is necessarily a

space of constant curvature (n > 3).

PROOF. From our assumption, we can apply the Lemma 2.2 and we have

(3. 4) Rjcjίh — 7r~ {dkhRji — ffjhRki + ffjtRkh — dkiRjh)
n Δι

Transvecting this with ηh and making use of (2. 3), (2. 4) we get

ηkRjt — ηjRjci = (n — 1) (ηkgjt — Vjgki)-

This implies that

RH = (n - l)gH.

If we substitute thus obtained Ricci tensor into (3. 4), we have at last

•K-kjih = gj%gkh gk%gjh

This completes the proof.

4. The form R. In this section, we introduce two forms R and H, and

show some properties of these two forms. In the first place, we define an anti-

symmetric tensor RH by

(4. 1) Rkj = - |-Λ w l *φ Λ

f = - \ φhiRhlkp.

Then, we have the following

LEMMA 4.L The differential form R defined by R = Rkjdxk Λ dx* is

closed.

PROOF. NOW, we define by © {akjί} the cyclic sum of a given tensor akjiy

namely

© iakji} = akit + aίki + am.

3) The definition of Rn differs from S.Tachibana's [6] [7] by a constant factor.
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With this notation, we have

Since, by Bianchi's identity, the first term of the right hand side of the last

equation vanishes identically, we have

/07As - v'gιr)}

= 0. Q. E. D.

Next if we put H = Hndx5 Λ dx\ Hn = φjrRιr, we have the

LEMMA 4. 2. TΛe form H defined by the above relation is closed.

From (1. 12), (2. 8) and Lemma 4.1, we can easily verify the lemma.

If we transvect the equation (2. 8) with φt

J + ηtη
J and take account of

(1. 3), we have

(4. 2) - φjrφt'RS - - \ φrkRmW + W) = (» - 2)φuψ/.

Comparing (4. 2) with (2. 9), it is known that

(4. 3) Rt = RuW + W)

On the other hand, by definition, we obtain

(4. 4) R% = %jφt>.

From (4. 3) and (4. 4), we find

(4.5) & V = 0 .

The last two equations shows us that

(4. 6) £ r ί - Rf4r\

Now, we have three closed forms φ, R and H in our space and they are

dependent by accordance of (2. 8). It is naturally arised a problem that under

what condition φ and R or H are dependent. We discuss this problem as

follows.

THEOREM 4.1. In order that two closed forms φ and R are dependent, it

is necessary and sufficient that

(4. 7) RJt = bgH
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valid where b and c mean some constants.

In the first place, we prove the

LEMMA 4. 3. If M has the Ricci tensor Rμ of the form (4. 7), b and c

must be constants (n>3).

PROOF. From (2. 4) and (4. 7), we find

(4. 8) b + c = n - 1,

hence, it is sufficient to show that b — const. Using (4. 7) and (4. 8) we have

(4. 9) V*Λ = ( « - 1 ) V Λ

On the other hand, taking account of (1. 3), (1. 4) and (1. 13), we get

(4. 10) VkR = 2VRrk = 2{vkb - Vrb.ηrηk).

Comparing (4. 9) and (4. 10), we have

2(VΦ - Vrb-ηrηk) = (n - l)Vkb

from which we obtain

0 - l)Vkb ηk = 0.

Substituting the last equation into the preceding one, we have b = const.

PROOF OF THE THEOREM. At first, we shall show the necessity of the

condition. Let us assume that Rit = aφn. Transvectng this with φL

j and using

(4. 4), we get

Ru = a(gu - Vivd.

If we recall (2. 10), we find

(4. 11) Ru ={a + ( n - 2)}gu + ( 1 - a)VίVι.

Conversely, if our space has a Ricci tensor of the form (4. 7), by means

of (2. 10) and (4. 6), we have easily

Rπ= {b - {n - 2)}φrl.

This completes the proof.

COROLLARY 1. In order that the differential form R — aφ be trivial, it

is necessary and sufficient that (4. 11) be valid.

If we operate V1 = gίrVr to (4. 6), we have

VιRrl = (VRVΦS + Rl

by virtue of (2. 13). By definition and symmetric property of Rfh we have R%ηj

= R* rf = 0. Hence, it follows that
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(4. 12) VRπ = -~(ViR)Φrl + R*Vr-

Accordingly, if the form R — aφ be harmonic, by virtue of (1. 15), we get

(4. 13) vKRn - aφn) = - | - ( V ^ ) Φ / + R*Vr ~ ain - ί)ηr = 0

which implies that

(4. 14) R = (n- 1)0 - 1 + a).

Conversely, if (4. 14) be valid, we have R* = a(n — 1), hence R — aφ is
harmonic. Thus we have the following

LEMMA 4. 4. In order that the differential form R — aφ be harmonic,
it is necessary and sufficient that (4. 14) holds good.

If we take a differential form H instead of R, we can see that an analogous
theorem to the Theorem 4.1 be valid.

As applications of our discussion in this section, we have the following
two theorems.

THEOREM 4. 2. In order that a normal contact space M be an Einstein
space, it is necessary and sufficient that the differential form R be idential
with φ.

PROOF. By virtue of corollary 1 of the Theorem 4. 1, the sufficiency is
trivial. The necessity is verified by use of the Theorem 2. 1.

From the discussions in § 2, the space with R = n(n — 1) seems to be
quite meaningful. From this point of view, we state the

THEOREM 4. 3. In order that a normal contact space M have the scalar
curvature R = n(n — 1) with respect to a fixed (φ,ξ,η,g)-metrίc, it is necessary

and sufficient that the differential form R — φ be harmonic.

COROLLARY l. If R coincide with φ, R = n(n - 1).

5. Some (φ, η, ̂ -connection. In the present section, we shall introduce a (φ, η,
^-connection, i. e. a connection with respect to which φji9 ηά and gH are all covar-
iant constants. To introduce such a connection, there may be many ways and
many different connections may be defined. In this paper, however, making
use of the fundamental tensor φH and vector ηh we construct the connection in
the following way.

Let us consider a tensor Ύ^ defined by

(5. 1) TV = pφSi + QΦnVh + rφfη,,

where p, q and r are constants. Now we shall determine p,q and r so that the
connection parameter defined by
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(5.

may

2)

be a (Φ,V>

-p h

</)-connection
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TV

Co variant differentiation of ηh with respect to T3i

h yields

(5. 3) V,V = VV + T ; ,V = Φ/ + PΦjh = 0,

where Vj means covariant differentiation with respect to T5i

h.

From the assumption that YH

h is a metric connection, it follows

V3gίk. = Vjgίk - Tn

hghk - Tjk

hghi

(5. 4) = — (pφjkηι + qφμηjc + rφikη3)

- (PφjίVk + ̂ Φjλ^t + rφfc^j)

= - ( / > + qXφjtVi + Φjî jt) = 0.

Since the second parenthesis of the last term of (5. 4) can not be zero, we have

p — — 1, q — \ by means of (5. 3). Regarding this fact, we have the

THEOREM 5. 1 For any constant r, put

(5. 5) I V = ) . . ( + ΦnVh - ΦJ% + rφt

hη3.
(J i )

Then, φ j t, η3 and gn are all covariant constants with respect to the connec-

tion I V .

PROOF. From the above discussions, it is sufficient to show that φH is

covariant constant. We compute here

iΦir = VjΦtr ~ Tn

hφhr ~ Tjr

hφίh

~ ΦJ% + rφt

hη3)

+ rφr

hη3)

— {—V r(gπ

= 0.

Q.E.D.

By further conditions, the constant r in (5. 5) may be determined. For

example, in order to discover the connection whose symmetric part be identical

with the ChristoffeΓs symbol, it must be that r — 1.

The (φ, η, ̂ -connection introduced by S.Sasaki and Y. Hatakeyama [ 4 ]

corresponds to the case where r = 0 in our connection.

Now, let us denote the curvature tensor with respect to the connection

(5. 5) by Kkji\ it follows that

J^kjί — lxkji *^ Vk1 ji \ j 1 k ί * •*- kr •*• ji x jr * ki
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If we define an anti-symmetric tensor Kkj by Kkj — —— Kkjί

hφh\ then we have

after some calculations

(5. 6) Kkj = Rkj + {(1 - n)r + l}φkj.

Thus, the form K = K^dx3 /\ dxι can be expressible in a linear form of i?
and φ.
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