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Introduction. In the previous paper [ 4 ]° the author discussed some pro-
perties of normal contact spaces. However, problems concerning infinitesimal
transformations have not been studied. In the present paper such problems are
concerned and some satisfactory answers are given.

In § 1, we state the fundamental identities of normal contact spaces.
In § 2, we shall give some preliminary facts concerning infinitesimal trans-

formations for the later use. After these preparations, in § 3, v e shall prove that
an infinitesimal conformal transformation in normal contact spaces is necessarily
concircular. Thus we know that a connected complete normal contact space
admitting an infinitesimal non-isometric conformal transformation is isometric
with a unit sphere.

It will be shown in § 4 that an infinitesimal projective transformation in
a normal contact space has some analogous properties of the one in an Ein-
stein space, for example, that any infinitesimal projective transformation in this
space is decomposed as a sum of a Killing vector and an infinitesimal gradient
projective transformation.

In § 5, we shall define the notion of ^-Einstein spaces and discuss infinite-
simal conformal and projective transformations in such spaces.

Finally, we shall devote § 6 to show that one of Sasaki's examples of
normal contact spaces is an example of ^-Einstein spaces.

l (Φ>?> v> ^-structure and contact structure. On an nΌ(= 2m + l)-dim-
ensional real differentiable manifold M with local coordinate systems {x1},
if there exist a tensor field φ/, contravariant and covariant vector fields ξι and
ηt satisfying the relations

(1. 1) ξ% = 1,

(1. 2) rank | φ / | = n - 1,

(1. 3) φ/ξ> = 0,

(1. 4) φ/Vί = 0,

(1- 5) Φ / Φ * ' = - δ * < + *7*fi,

1) The numbers in the bracket refer to the bibliography at the end of the paper,
2) In this paper we assume that n>3 and that the indices i,j,k, = l,2t' ,n%
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then the set (φ/, ξι, η3) is called a (φ, ξ, ̂ -structure. It is well known fact3)

that a manifold M with a (φ, f, ^-structure always admits a positive definite

Riemannian metric tensor gH such that

(l 6) gHξj = Vί,

(l 7) OnΦkφh = ffhk — VtiVk

The aggregate consisting of a (φ, £, ̂ -structure together with a Riemannian

metric tensor which has above properties is called a (φ, £, ?;, ̂ -structure and

the metric tensor g5i is called an associated metric to the (φ, ξ, ̂ -structure.

In this paper, we always consider such a Riemannian metric tensor, so we

use a notation ηι in stead of ξι.

On the other hand let M be a differentiable manifold with a contact

structure η = ηidx1. Then if we define φH by

(3j = d/dxj\

we can introduce a Riemannian metric gH such that φt

Λ = ghrφίr, ζι = girηr> Vt

and (7̂  define a (φ, f, ?;, ̂ -structure.4}

There are four important tensors Λr

;i

Λ, Nju N/ and iVj and, as was shown by

S.Sasaki and Y.Hatakeyama [ 7 ], the vanishing of NjiΛ yields the vanishing of

the other three tensors. The contact manifold with vanishing Njih is called a

normal contact space. In the following we only consider a normal contact space.

The following identities5} are fundamental,

(1. 8)

(l 9)

From the last relation we have

(1. 10) Vrφίr = ( n - l ) V ί ,

where and throughout the paper Vj denotes the operator of covariant differen-

tiation with respect to the Christoίfel symbols and we put VJ = 9JrVr>

In a Riemannian space, a vector field vι which satisfies

+ ViVj = 0

is called an infinitesimal isometry or a Killing vector.

A normal contact space is characterized by the fact that it is a Riemannian

space which admits a unit Killing vector rf satisfying

3) Sasaki, S. [5], Hatakeyama, Y. [2]
4) Sasaki, S. and Hatakeyama, Y. [7]
5) Sasaki, S. and Hatakeyama, Y. [7]
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Now, let Rkjt
h be Riemannian curvature tensor, i. e.

jί ' \ k i \ \ j i ) \ k r

and put

Rjcjih — Rkjίr(/rh> Rji = Rrj

We have known the relations6)

(1. 11) VrRkfr = Vkffji —

(1. 12) φjrRtr + -7Γ Φr*Λ

From (1. 11) it follows that

(1. 13) VrR/=(n - l)Vh

(1. 14) i?^V = n-\.

Let Vt be an arbitrary vector field. Since φkj = gkrφr

5 is anti-symmetric we
have by virtue of the Ricci's identity

(1. 15) φkjVkV}vt = — | - φklRk}i

rvr.

Next, let us recall the definition of Lie's derivation.^ For any vector field
vι and tensor field aH, we have the following identities.

(1.16) ^

(1. 17) V*;£<Zji - £Vλ:^ji = arί£ \ . + α j r £ j . . ,

(l. 18) v*£ ( . ( v,£ f .

2. Some infinitesimal transformations. In a Riemannian space, a vector
field vι which satisfies

(2. 1) £ffn Ξ= Vjτ>i + Vi^ = 2p^i ,

where p is a certain scalar function, is called an infinitesimal conformal trans-
formation or a conformal Killing vector and the function p is called an associa-

6) Okumura, M. [4].
7) Yano, K. [9]
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ted function of this transformation. As is well known8>, an infinitesimal confor-

mal transformation vι satisfies

(2. 2) £ I [=VίVιvΛ + Rrjthvr = pβth + piSj

h - phgn, pt = dφ.

According to (1. 18), (2. 1) and (2. 2), we get the following identities,

(2. 3) £R*jιh = V*ftδ/ - V*PΛflto ~ VίftδΛ

Λ

1)

(2. 4) £ Λ = - 2pi? - 2(n - l)vrf>
r

V

For the non-constant scalar field p in a Riemannian space, if there exists a

scalar field σ such that

(2. 5) VNip = σgH ,

then the scalar field p is called a concircular scalar field. Especially if the scalar

σ is linear in p, i. e. if

(2. 6) VNip=(-kp + b)gH

is valid with constants £ and b, then /> is called a special concircular scalar

field in the sense of Y. Tashiro.9)

About a special concircular scalar field the following theorem has been

proved by M.Obata [ 3 ] and Y.Tashiro [ 8 ] recently.

THEOREM. Suppose an n~dimensional connected complete Riemannian

space admits a special concircular scalar field p satisfying (2.6). If k = c 2>0,

then the space is isometric with a sphere of radius 1/c.

If the associated function p is a concircular scalar field, the infinitesimal

conformal transformation is called an infinitesimal concircular transformation.

In a Riemannian space, a vector field vι is called an infinitesimal projective

transformation or a projective Killing vector if it satisfies

(2. 7) \

where pt is a certain vector field which is called an associated vector of the

infinitesimal projective transformation.

Contracting h and i in (2. 7), we can show that the associated vector p5

is a gradient vector. So, from (1. 18) and (2. 7) we have for an infinitesimal

projective transformation

(2. 8) £ RkH

h = v*ftδ/ - VjpAh

8) Yano, K. [9]
9) Tashiro, Y. [8]
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which implies that

(2.9)
v

In a normal contact space, the vector field v* satisfying

(2. 10)

where σ is a certain scalar is called an infinitesimal contact transformation.

Especially if σ vanishes identically we call vι an infinitesimal strict contact

transformation.

3. Infinitesimal conformal transformations. In this section, we shall give

the following

THEOREM 3.1. In a normal contact space (n > 3), any infinitesimal

conformal transformation is necessarily concircular.

To prove the theorem, we begin with the following

LEMMA 3.1. For a scalar field p if there exist σ and r such that

(3. 1) Vjpi = o ffji -f- τη/ηί, pi = dip,

then we have τ = 0.

PROOF. Differentiating (3. 1) covariantly and taking account of (1. 8) we

have

(3. 2) VkViPt = Vk<rffjt + VkTηjVi + τ(φkjηi + φkiη3).

Transvecting the last equation with φkj and making use of (1. 4), (1. 5), (1.15)

we get

- - | - φkjRkHrp
r = Vκσφkj0H + (n

Transvecting rf to this and using (1. 11), we have

φ

Since the left hand side of this equation vanishes by virtue of (1. 4), it follows

that T = 0. This completes the proof.

From (1.16) and (2. 1) we get

LEMMA 3. 2. For a conformal Killing vector vι and its associated func-

tion p, zve have

(3. 3) η'£ηr = p.
V

Next, we state the



L E M M A  3. 3. F07- a conformal Killing vector vi and its associated function 
p there exists a scalar function a such that 

(3. 4) v7vjpr = avj. 

PROOF. If we  recall (1.11), for any conformal Killing vector we have 

(3. 5) RkjihEqh + 7,LERkjzh = gji£.qic + 2p$'ji~k - gKi&qj - 2p~klvj. 

Substituting (2.3) into (3.5), we have 

(3. 6, R k j i h g ~ h  =(g??k- + 2~?7ic + r]rvicpr)gji -(&7j + 2pqj f 7r~jp~)gk i  

f vrV,Pi - VjVkPi. 
Transvecting this with +'"." and making use of (1. 4), we get 

(3. 7, (+kjRkjir + 2+ir)&?7, = - 2 r 1 ~ ~ 1 ~ ~ ~ $ ' i ~ .  

On the other hand, if we transvect (3. 6) with gji we obtain 

Rich%qh =(n  - l)(&vk- + 2~17,) + ( n  - 2 ) q , ~ ~ p '  + vkVrpr 

Multiplying the last equation with ~ $ ~ ' h n d  summing over k, we have 

+jkRkh£.vh = ( n  - l)+jk£,qk + ( n  - z ) q ? ~ h ! p ~ + j ~ -  

Substituting (1. 12) into the last equation, we get 

(3. 8) (+"Rkjir + 2+ir)£.71, v = - 2(n - 2)rl,~kpr+ik, 

Comparing (3. 7) and (3. 8), we have 

(3. 9) ( n  - 3 ) q , ~ ~ p ' $ ' ~ j  = 0. 

Transvecting (3. 9) with +,', we obtain (3. 4). This proves the lemma. 

PROOF OF THE THEOREM. Substituting (3.4) into (3.6), we get 

(3. 10) Ricjiri&vtL ={£,qic + ( 2 ~  + a)vic],(fji - (%qJ + ( 2 ~  + a ) ~ j ] g k i  

$. 7icVjPi - ~jVkPi 
Transvecting (3. 10) with qk and making use of (1. ll), we have 

which implies that 

(3. 11) - VjPi =(2p + ff)gji - 2(p + a)v,qi. 
Applying Lemma 3.1 to (3. ll), we have p+a=O. Thus it follows that 

(3. 12) VjPi = - Pgji 

which shows that the transformation is concircular. Q. E. D. 
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By virtue of this theorem and the theorem stated in §2, we have

THEOREM 3. 2. Let M be an n{> 3)-dimensional connected complete nor-

mal contact space. If it admits a non-isometric infinitesimal conformal trans-

formation, then M is isometric with a unit sphere.

Since p is the associated function of an infinitesimal conformal transfor-

mation, (2. 1) and (3. 12) show us that

which implies that

V/τ>i + Pi) + Vi(vj + pj) = 0.

The last equation shows that the vector v5 + ρό is a Killing vector.

Thus we have

THEOREM 3. 3. If a normal contact space (n > 3) admits an infinitesimal

conformal transformation v\ then vι is decomposed into

vι = wι — ρι

where wι is a Killing vector and pι is a gradient1^ vector defining an infi-

nitesimal conformal transformation.

REMARK. If we apply Theorem 3.3 to the infinitesimal conformal transfor-

mation pi which is the gradient vector of the associated function of v\ then w'

is a zero vector.

Before describing an application of Theorem 3.3, we must prove the

LEMMA 3. 4. In a normal contact space, there exists no parallel vector

field other than zero vector.

PROOF. For any parallel vector field v\ it follows that

(3. 13) vrRkjr

h = 0.

Transvecting this with ηhη
k and making use of (1.11), we have Vj = (vr^r)Vj'

On the other hand, transvecting (3. 13) with ηkSh

j and making use of

(1.13),we can see that ηrv
r = 0 easily. Thus the lemma is proved.

Let Lσ, Li and U be the Lie algebra consisting of all infinitesimal confor-

mal transformations, the Lie algebra consisting of all Killing vector fields and

the vector space of the gradient of the associated functon p respectively. Then

we have the following

THEOREM 3.4. In a normal contact space (Vz > 3), the following relations

hold.

10) This means that the covariant component of p1 is a gradient vector.
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Lσ = Li + L' {direct sum)

[Li, Lr] C Li, [Lr, U] CZ V, \V, L'] C Li.

PROOF. Theorem 3.3 and Lemma 3.4 assert that Lσ = Lr + V holds

good. The other parts of the theorem follow from the relations £ = £ £ — £ £
[υtv\ u v v u

and [u, vY = urvrv
ι — vrTJru

l immediately.

4. Infinitesimal projective transformations. We shall show in this section

that an infinitesimal projective transformation in a normal contact space has

some analogous properties of the one in an Einstein space.10

At first we prove the

LEMMA 4. 1. Let vι be an infinitesimal projective transformation and

pi be its associated vector. If there is a relation

(4. 1) £gn = -
V

then ρι is also an infinitesimal projective transformation.

PROOF. Applying (1.17) to the Riemannian metric tensor, it follows that

(4. 2)

By virtue of (2. 7) and (4. 1), this equation is written as

(4. 3) - VkVjPt = 2pkgH + psgki + ptgjk

which implies that

(4. 4) PrRkH = 9*9)1 - Pj9ki-

According to (4. 3) and (4. 4), it follows that

(4. 5) (
( Ji

This proves the lemma.

LEMMA 4. 2. Let vι be an infinitesimal projective transformation and

be its associated vector. If there is a relation

(4. 6) £gH = -
V

then, we have β = 0.

PROOF. Taking the Lie's differential of the both sides of (1. 11), we get

11) Yano, K. [9] p. 271-272.
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Substituting (2. 8) into the last equation, we have

(4. 7) RkjSfίVh, = ffjii^Vic + VkLffjί — <Jkί$ίvj — Vj^ffici — VjVkPί +
V V V V V

from which we have

(4. 8) Rk

h£ηh = {Π- l)£ηk + Vk(<7H£ffH + VrpT) - ηr(£fftr + VtPr).
V V V V

Substituting (4. 6) into (4. 8), we get

(4. 9) RS£ηh = (n - ϊ)&ηk.
V V

On the other hand, (1. 13) yields that

(4. 10) Rk*£Vh + Vh£Rk

h = (n- l)£ηk.
υ v v

Thus we have

(4. 11) ηΛ£Rk

h = ηhRki£ghr + vr£Rkr = 0.
υ v v

Substituting (2. 9) and

(4. 12) £gil = VV - βηV
V

which is obtained from (4. 6) and <Jjkffki — &/, into (4. 11) we get

i7»(W - βηhηr)Rkr - i n - l)ηrVkPr = 0.

Transvecting the last equation with ηk and making use of (1. 13), we have

β = 0. Q. E. D.

Now, we shall show the

THEOREM 4. 1. Let vι be an infinitesimal projective transformation in a

normal contact space. Then its associated vector pι is also an infinitesimal

projective transformation whose associated vector is — 2pt.

PROOF. Transvecting (4. 7) with φkJ and making use of (1. 4), we have

(4. 13) (ΦkiRtnr + 2φιr)&ηr = 0.

On the other hand, if we transvect (4. 8) with φ/, it follows that

Φ / # / £ ^ = {(n - l)tVk - ηr(£grk +
V V V

Substituting (1. 12) into the last equation, we get

(4. 14) (φk'Rt,tr + 2φtηtVr = W £ ί * r + V'
v v

Comparing (4. 13) and (4. 14) and regarding (1. 2), we have

(4. 15) ηr£g*r +
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for a certain proportional factor β.

Transvecting (4. 7) with ηk, we have the following equation.

(4. 16) £gn = - VjPt + vfar£,grt + vrVipr\
V V

Thus, from (4. 15) and (4. 16), it follows that

The last equation, Lemma 4.1 and 4. 2 show us that the theorem is true.

Writing out (4.1) explicitly, we find

VjVi + ViVj = - VjPi

In the same way as in the previous section, we have

THEOREM 4. 2. If a normal contact space admits an infinitesimal projec-

tive transformation v\ then vι is decomposed into

γp\

where zvι is a Killing vector and pι is the associated vector of the infinites-

imal projective transformation.

REMARK. By virtue of Theorem 4.1, we can apply Theorem 4. 2 to the

associated vector of an infinitesimal projective transformation. In this case the

Killing vector zvι is a zero vector.

THEOREM 4. 3. In a normal contact space, we have

LP= hi + L" {direct sum)

[Lr,L"]CZL", [L",L"]CZLr,

where LP is the Lie algebra consisting of infinitesimal projective transforma-

tions and L" is the vector space of the associated vector.

5. ?7-Einstein spaces. Let R = - ^ - Rίjr

sψs

rdxj Λ dx\ In the previous

paper [ 4 ], we have seen that the differential form R is closed and the follow-

ing two propositions are valid.

LEMMA 5.1. If in a normal contact space we have (n > 3)

(5. 1) RH = affji + bηjηi9

then a and b are constants.

LEMMA 5. 2. In order that the two closed 2-forms R and φ = φjίdxj Λ dxι

are linearly dependent, it is necessary and sufficient that the space has the

Ricci tensor of the form (5. 1).
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In this section, we shall discuss a normal contact space with the Ricci

tensor of the form (5. 1). In this paper such a space will be called an η-Einstein

space for brevity. Evidently, any Einstein space is an ^-Einstein space. An

example of ^-Einstein space with £=f=0 will be shown in the next section.

From (5. 1) and (1. 14) we have

(5. 2) a + b = n - l ,

(5. 3) R = an + b.

On the other hand by virtue of (1. 12), we get

(5. 4) ΦτkRrm = 2{(n - 2) - a}φH.

In an T -Einstein space, the following theorem holds good.

THEOREM 5.1. In an ψEinstein space with b 4= 0, an infinitesimal tsom-

etry is always an infinitesimal strict contact transformation.

PROOF. For any vector vi we have

(5. 5) £RH = a£gH + b(Vi£Vj + η&ηύ.
V V V V

For a Killing vector v\ the last equation becomes

(5. 6) KV&VJ + V&Vt) = 0.
V V

Transvecting this with ηι and using Lemma 3. 2 we get b£ηό — 0. This com-
V

pletes the proof.

Now, let vι be a conformal Killing vector. From the discussion in § 3,

(3. 9) holds good. Consequently, according to (3. 7), it follows that

(5. 7) {φkjRkji

r + 2φr&ηr = 0.

Substituting (5. 4) into (5. 7), we have bφir£ηr = 0 by virtue of (5. 2). From this

equation and Lemma 3.2, we get the following equation for b + 0:

(5. 8) £Vi = Pit-
V

Substituting (5. 8) into (3. 6) and making use of Lemma 3. 3 and (1. 11), we

have

Pί = (2p + aXηφi - ηφi).

Transvecting this with gjί and taking account of the fact p + a = 0, we have

(5. 9) Vrpr = - np.

On the other hand from (2. 4), (5. 2) and (5. 3), it follows that
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(5. 10) Vrp
r = ~ (a + ΐ)p.

Comparing the last two equations we have {a — (n — ϊ)}ρ = 0. Thus we have
the

THEOREM 5. 2. In an η-Einsteίn space {n > 3) with b 4= 0, any infinite-
simal conformal transformation is necessarily an infinitesimal isometry.

Next, let vi be a projective Killing vector. By means of (2. 9), (4. 1) and
(5. 5) we have

(5. 11) - {n - 1)VΛ = - aViPi + KV&VJ + V&Vι)>
V V

On the other hand (4. 13) and (5. 4) yield

(5. 12) £Vj - σηt
V

where we have put σ — rf$iηr.

Substituting (5. 12) into (5. 11), we get

(5. 13) - V Λ = 2σηjVί.

Applying Lemma 3.1 to (5. 13), we have Vjpi = 0. Thus we have &git = 0

by means of (4. 1).

THEOREME 5. 3. Let M be an η-Einstein space with b 4= 0. Then any
infinitesimal projective transformation in M is necessarily an infinitesimal
isometry.

6. An example. In this section we shall show an example of an ^-Einstein
space which is not an Einstein space.

Let E2m+1 be a Euclidean space with cartesian coordinates (xa,ya,z) {a =
1,2, ,ra). We put

(6. 1) v=±(

then η gives a contact structure to £ 2 m + l l 2 ) . If w e put

(6. 2) xa* = xm+a = ya, x* = z, A = 2m + 1,

we have from the definition that

(6. 3) ηt = ί — -^-y*, o, ~2

12) For example, Gray, J. W. [1], [ Sasaki, S. ] [6].
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and

(6. 4) dη =

Therefore, the tensor
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m

/ djca f\ dya.

has the components

(6. 5) <Φn) =

2φjί =

0

1
0 0

00 0

From the relations (1. 1) and (1. 3), we have

(6. 6) f * = 2δi = (0 ,0, 2).

Now, we consider a symmetric tensor field in E2m+1 defined by

(6. 7)

+ yayβ) o

i

>a 0

then {gH) defines a positive definite Riemannian metric. The covariant compo-
nents of the tensor {gH) are given by

4δ«" 0 Ay"

0 4 δ"β 0
(6. 8)

o

S.Sasaki [ 6 ] proved that thus defined tensors φjU gH, ηt and ξι form a
(Φ, ζ> V> ^-structure. Further, he proved that this contact structure η is normal.
However, he has not calculated yet the Christoffel symbols, the curvature
tensor and the Ricci tensor. In the following, we shall calculate them.

By means of (6. 7) and

2 V 3a:1
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we can verify that

/ [a£*; Ύ] = (Syfly
e + W ) A [aβ, γ*] = - (δγ</ + Λ Y ) A

(6. 9) • [a£*, Δ] = - $aβ/8, [a Δ, γ*] = S«y/8, [rf*Δ, γ] = - Ky /8,

the other components are zero.

(6. 8), (6. 9) and j = ghr\ji. r] imply that

(6. 10) I Δ

the other components are zero.

2 "«μ>

After straightforward calculations, we obtain the independent components of
the curvature tensor Rkjih a s follows.

7 Rsyβa = (S*syβyy -

(6. 11)

- δαδy)/i6,

- δαyδβ 6)/16,

Δα = δ α δ /16,

x the other independent components are zero.

According to (6. 8) and (6.11), the Ricci tensor has the following components.

(6. 12)

R*Λ = - (Ks - myayδ)/2, Rδ*a = 0,

Rδ*a* — -" δ«δ/2, -RΔΔ = rn/2, Ry*± — 0,

RyA =-myy/2.

Substituting (6. 7) and (6. 3) into (6. 12), we have

(6. 13) Rn = - 2gόi + 2(m -

Thus the normal contact space defined above is an »r Einstein space and by
virtue of (5. 3) and Lemma 5. 1, it is also an example of a space with constant






