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Introduction. In the previous paper [ 4] the author discussed some pro-
perties of normal contact spaces. However, problems concerning infinitesimal
transformations have not been studied. In the present paper such problems are
concerned and some satisfactory answers are given.

In §1, we state the fundamental identities of normal contact spaces.

In § 2, we shall give some preliminary facts concerning infinitesimal trans-
formations for the later use. After these preparations, in § 3, v.e shall prove that
an infinitesimal conformal transformation in normal contact spaces is necessarily
concircular. Thus we know that a connected complete normal contact space
admitting an infinitesimal non-isometric conformal transformation is isometric
with a unit sphere.

It will be shown in §4 that an infinitesimal projective transformation in
a normal contact space has some analogous properties of the one in an Ein-
stein space, for example, that any infinitesimal projective transformation in this
space is decomposed as a sum of a Killing vector and an infinitesimal gradient
projective transformation.

In §5, we shall define the notion of #-Einstein spaces and discuss infinite-
simal conformal and projective transformations in such spaces.

Finally, we shall devote §6 to show that one of Sasaki’s examples of
normal contact spaces is an example of 7-Einstein spaces.

1. (¢, & n, g)-structure and contact structure. On an n”(= 2m + 1)-dim-
ensional real differentiable manifold M with local coordinate systems {z'},
if there exist a tensor field ¢,’, contravariant and covariant vector fields & and
7, satisfying the relations

(1- 1) &iﬂt =1,

1. 2 rank |¢|l=n —1,

(1. 3) ¢,'E =0,

(1. 4) ¢i'n = 0,

(1‘ 5) ¢ji¢kj =—38' + ﬂk‘fi,

1) The numbers in the bracket refer to the bibliography at the end of the paper,
2) In this paper we assume that »>3 and that the indices 7,j,%,---=1,2,---, 7,
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then the set (¢, &, 5;) is called a (¢, & n)-structure. It is well known fact®
that a manifold M with a (¢, &, 5)-structure always admits a positive definite
Riemannian metric tensor ¢, such that

1. 6) g€ = m,
a7 91iP’ Pt = Fnk — Mk

The aggregate consisting of a (¢, &, n)-structure together with a Riemannian
metric tensor which has above properties is called a (¢, &, 7, ¢)-structure and
the metric tensor g;; is called an associated metric to the (¢, &, )-structure.

In this paper, we always consider such a Riemannian metric tensor, so we
use a notation 7' in stead of £.

On the other hand let M be a differentiable manifold with a contact
structure 5 = n,dx'. Then if we define ¢, by

2¢,,= 9m — 9m;, (9; = 0/0x7),

we can introduce a Riemannian metric ¢g;; such that ¢, = ¢""¢;,, & = ¢''n,, 7
and g¢;, define a (¢, &, 7, g)-structure.?

There are four important tensors N*, N;;, N;'and N;and, as was shown by
S.Sasaki and Y.Hatakeyama [ 7], the vanishing of N,* yields the vanishing of
the other three tensors. The contact manifold with vanishing N;* is called a
normal contact space. In the following we only consider a normal contact space.

The following identities®> are fundamental,
1. 8 Vi = $is
(1.9 Vibii = 1k — Milfki
From th= last relation we have
(1. 10) V¢, = (n — s,

where and throughout the paper V; denotes the operator of covariant differen-
tiation with respect to the Christoffel symbols and we put VvV’ = ¢7'V..
In a Riemannian space, a vector field v* which satisfies

Vv + Viv; = 0

is called an infinitesimal isometry or a Killing vector.
A normal contact space is characterized by the fact that it is a Riemannian
space which admits a unit Killing vector % satisfying

VieVimi = 159k — 19k

3) Sasaki, S. [5], Hatakeyama, Y. [2]
4) Sasaki, S. and Hatakeyama, Y. [7]
5) Sasaki, S. and Hatakeyama, Y. [7]
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Now, let R,;;" be Riemannian curvature tensor, i.e.

Rut =] .;li }“ a"i o H i H o H b Hjhr }

and put
Rijin = R "grny Rji = Ry, R = y”‘Rn-

We have known the relations®

(1. 11) N Resi” = s — niGuis

1. 12) BRI+ = $*Rous =(n — Dby
From (1. 11) it follows that

(1. 13) 7R =(n — 1)n;,

(1. 14) Rym'n = n—1.

Let v; be an arbitrary vector field. Since ¢*/ = g*’¢,’ is anti-symmetric we
have by virtue of the Ricci’s identity

(1. 15) ¢ijijvi = —% ¢ijkjiTvr-

Next, let us recall the definition of Lie’s derivation.” For any vector field
o' and tensor field a;;, we have the following identities.

1. 16) nifvm = %ﬂi"f%gﬁ,
r r
1.17) Vila; — £Via; = af { . }4‘ a;L { . },
) v v J k v 1 k
h h
(1. 18) V;&{ .. }— ij,{ . }= LRy
v | ji v (k1 v

2. Some infinitesimal transformations. In a Riemannian space, a vector
field »* which satisfies

2.1 %gﬂ = Vv + Viv; = 2p95

where p is a certain scalar function, is called an infinitesimal conformal trans-
formation or a conformal Killing vector and the function p is called an associa-

6) Okumura, M. [4].
7) Yano, K. [9]
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ted function of this transformation. As is well known®, an infinitesimal confor-
mal transformation v’ satisfies

h
2. 2) £{ ji }EVjVﬂ’h + Ry"v" = pd" + pid" — p'gy, pi = Oip.
v 1
According to (1. 18), (2. 1) and (2. 2), we get the following identities,
2.3 %«Rkﬂh = Vip0" — VkP"yﬁ — VP8 + V}'phglci,
2. 49 £R =— 20R — 2(n — 1)V,p".

For the non-constant scalar field p in a Riemannian space, if there exists a
scalar field o such that

2. 5 ViVip =095 ,

then the scalar field p is called a concircular scalar field. Especially if the scalar
o is linear in p, i.e. if

2. 6) ViVip =(—kp + b)g;

is valid with constants 2 and b, then p is called a special concircular scalar
field in the sense of Y. Tashiro.?

About a special concircular scalar field the following theorem has been
proved by M.Obata [ 3] and Y.Tashiro [ 8] recently.

THEOREM. Suppose an n-dimensional connected complete Riemannian
space admits a special concircular scalar field p satisfying (2.6). If k = ¢*>0,
then the space is isometric with a sphere of radius 1/c.

If the associated function p is a concircular scalar field, the infinitesimal
conformal transformation is called an infinitesimal concircular transformation.

In a Riemannian space, a vector field v is called an infinitesimal projective
transformation or a projective Killing vector if it satisfies

@7 £ { h }'—— piS" + pid"
v JZ
where p; is a certain vector field which is called an associated vector of the
infinitesimal projective transformation.
Contracting 2 and 7 in (2. 7), we can show that the associated vector p;
is a gradient vector. So, from (1. 18) and (2. 7) we have for an infinitesimal
projective transformation

2. 8 fv/ Ry " = Vipidst — V08"

8) Yano, K. [9]
9) Tashiro, Y. [8]
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which implies that
2.9 %R” =—(n — 1)V,p..
In a normal contact space, the vector field v* satisfying
2. 10) Em = om
where o is a certain scalar is called an infinitesimal contact transformation.

Especially if ¢ vanishes identically we call v an infinitesimal strict contact
transformation.

3. Infinitesimal conformal transformations. In this section, we shall give
the following

THEOREM 3.1. In a normal contact space (n>3), any infinitesimal
conformal transformation is necessarily concircular.

To prove the theorem, we begin with the following

LEMMA 3.1. For a scalar field p if there exist ¢ and v such that
(GADY) Vipi = 095 + T, pi = Oip,
then we have v = 0.

PROOF. Differentiating (3. 1) covariantly and taking account of (1. 8) we
have

(3. 2) ViVips = Vio @ + Virnm + (em + drimy).

Transvecting the last equation with ¢*/ and making use of (1.4), (1.5),(1.15)
we get

1 ; .
-9 SRy sinp” = Viad*g; + (n — Dy,
Transvecting %' to this and using (1. 11), we have
1
- 7 ¢'kj("7}'!7kr - my,-r)p’ =(n — 7.

Since the left hand side of this equation vanishes by virtue of (1. 4), it follows
that 7 = 0. This completes the proof.
From (1.16) and (2.1) we get

LEMMA 3.2. For a conformal Killing vector v' and its associated func-
tion p, we have

3. 3) nrga’?r =P

Next, we state the
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LEMMA 3. 3. For a conformal Killing vector v' and its associated function
p there exists a scalar function a such that

(3 4) anjpT = dn;.
PrROOF. If we recall (1.11), for any conformal Killing vector we have
(3. 5) Rmhgﬂh + "7n£v,R1cjih = 9;’1%% + 2pg5m — gmav@,m — 2pGki;-

Substituting (2. 3) into (3.5), we have
(3. 6) Rkjih%’?n :(%Wk + 2pme + 7,VieP )51 *(fv"h' + 2pn; + 7,V5P )Gk

+ 7 ViPs — 1 Vips.
Transvecting this with ¢*/ and making use of (1. 4), we get

3.7 (PR 5" + 2¢ir)%/’)r =— 20, VP "
On the other hand, if we transvect (3. 6) with ¢ we obtain
Ri"Enn =(n — DEne + 2pn) + (2 — 2m Ve + mVp"
Multiplying the last equation with ¢, and summing over %, we have

¢fkRkh5§,7)h =(n — 1)‘75/‘%/771: + (n — 2)n,V.pes".

Substituting (1. 12) into the last equation, we get

(3. 8 (@*Rys" + 2¢1T)§777‘ =— 2n — 2)n,Vip'd:".
Comparing (3. 7) and (3. 8), we have
(3. 9) (ﬂ - 3)777VjPT¢ij == 0.

Transvecting (3. 9) with ¢,’, we obtain (3. 4). This proves the lemma.
PROOF OF THE THEOREM. Substituting (3.4) into (3.6), we get
(3. 10) Rkﬁihfvﬂ?h :{%ﬂk +(2p + aymilgn — {%,m + (2p + a)m;} gus

+ 7eViPi — n;Vepi-
Transvecting (3. 10) with 2* and making use of (1. 11), we have

(n”gn - 'm‘sjh)%ﬂ?h z(ﬂrag/'?r + 2p + a)!]ﬂ _771%/'75 — 20p + a)nm + VP

which implies that

(8. 11) — Vips =(2p + @)gs — 2(p + a)nms.
Applying Lemma 3.1 to (3.11), we have p+a=0. Thus it follows that
(3. 12) ViPs = — PG5

which shows that the transformation is concircular. 0. E. D.
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By virtue of this theorem and the theorem stated in §2, we have

THEOREM 3.2. Let M be an n(> 3)-dimensional connected complete nor-
mal contact space. If it admits a non-isometric infinitesimal conformal trans-
Jformation, then M is isometric with a unit sphere.

Since p is the associated function of an infinitesimal conformal transfor-
mation, (2. 1) and (3. 12) show us that

%gn = VUi + Viv; = — 2V,p;
which implies that
Vi(vi + p) + Vi(v; + p;) = 0.
The last equation shows that the vector v; + p; is a Killing vector.

Thus we have

THEOREM 3. 3. If a normal contact space (n > 3) admits an infinitesimal
conformal transformation v’, then v' is decomposed into

v = wt — p
where w' is a Killing vector and p* is a gradient'® vector defining an infi-
nitesimal conformal transformation.

REMARK. If we apply Theorem 3.3 to the infinitesimal conformal transfor-
mation p' which is the gradient vector of the associated function of !, then w'

is a zero vector.
Before describing an application of Theorem 3.3, we must prove the

LEMMA 3. 4. In a normal contact space, there exists no parallel wvector
field other than zero wvector.

PROOF. For any parallel vector field %, it follows that
(3. 13) V'Rt = 0.

Transvecting this with 7,7* and making use of (1.11), we have v; = (,v")7,.
On the other hand, transvecting (3.13) with %*3,’ and making use of
(1.13),we can see that 59" = 0 easily. Thus the lemma is proved.

Let Ly, L; and L’ be the Lie algebra consisting of all infinitesimal confor-
mal transformations, the Lie algebra consisting of all Killing vector fields and
the vector space of the gradient of the associated functon p respectively. Then
we have the following

THEOREM 3.4. In a normal contact space (n > 3), the following relations
hold.

10) This means that the covariant component of p* is a gradient vector.
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Ly = L+ L' (direct sum)
(L, Llc L, [L,L'lc L, [L',L'1c L.

PROOF. Theorem 3.3 and Lemma 3.4 assert that Ls = L; + L’ holds
good. The other parts of the theorem follow from the relations £ = ££ﬂ, - %%

Luyv]

and [«, v]' = «'V,v" — v"V,u' immediately.

4. Infinitesimal projective transformations. We shall show in this section
that an infinitesimal projective transformation in a normal contact space has
some analogous properties of the one in an Einstein space.'?

At first we prove the

LEMMA 4.1. Let ' be an infinitesimal projective transformation and
p: be its associated vector. If there is a relation

4. 1) %yﬁ =— ViPs

then p' is also an infinitesimal projective transformation.

PROOF. Applying (1.17) to the Riemannian metric tensor, it follows that

4 2 Vil gy = gnﬁ{ g }+ gj&{ g }
s AT 5 | ki

By virtue of (2. 7) and (4. 1), this equation is written as

4. 3) = ViViPs = 2Pc@i + Pidki + Pigsn

which implies that

4. 4) PRy = prgis — Pigui-

According to (4. 3) and (4. 4), it follows that
h
(4. 5) %« { ji } =V,Vip" + Ryp" =— 2(p 8" + piSi").

This proves the lemma.

LEMMA 4.2. Let v' be an infinitesimal projective transformation and p,
be its associated vector. If there is a relation

(4. 6) %gn =— V;p + Bnm,
then, we have 8 = 0.
PRrROOF. Taking the Lie’s differential of the both sides of (1. 11), we get
Rkjih%«ﬂh, + ﬂn%Rkjih = gji%"?k + m%gn - gm%"h - msg:gu-

11) Yano, K. [9] p. 271-272.
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Substituting (2. 8) into the last equation, we have

4.7 Rm”%,nn = !]n%«’?k + Wk%f/ﬂ - gki%/']) - ma{:’,gm — VP + 7:V,P;

from which we have

(4.8 Rfan = (1 Dfn + nlg"Egu + V) — 7 €g0r + Vip)

Substituting (4. 6) into (4. 8), we get

4. 9) Rk”{;m =(n— D& .

On the other hand, (1. 13) yields that

(4. 10) Rk”;;Em + n,,;vE,Rk" =(n— 1)£v,77k.

Thus we have

(4. 11) MmER" = nhRMdf;-,g’” + &Ry = 0.

Substituting (2. 9) and

4. 12) £9" = V' = B’y

which is obtained from (4. 6) and ¢;,¢** = 8/, into (4. 11) we get
(V" — B )Ry — (n — L)y’ Vip, = O.

Transvecting the last equation with #* and making use of (1. 13), we have

B=0. Q.E.D.
Now, we shall show the

THEOREM 4. 1. Let v' be an infinitesimal projective transformation in a
normal contact space. Then its associated wvector p' is also an infinitesimal
projective transformation whose associated vector is — 2p;.

PROOF. Transvecting (4. 7) with ¢*/ and making use of (1. 4), we have
(4. 13) (#"Res” + 2¢)Em, = 0.
On the other hand, if we transvect (4. 8) with ¢, it follows that
BFREm, = ((n — Dn — 70 + Vip )b
Substituting (1. 12) into the last equation, we get
4. 14) (¢* Ry + 2¢‘ir)%ﬂ7r = 2¢ik("77¥‘/gkr + 9'Vip,).
Comparing (4. 13) and (4. 14) and regarding (1. 2), we have
(4. 15) TEGer + 1ViP 1= B
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for a certain proportional factor B.
Transvecting (4. 7) with 5*, we have the following equation.
(4. 16) %ag.ii ==V + ﬂj(nr%/gri + 7'Vipr).
Thus, from (4. 15) and (4. 16), it follows that
f;,gjt == Vipi + Bnms.
The last equation, Lemma 4.1 and 4.2 show us that the theorem is true.
Writing out (4. 1) explicitly, we find
Vv + Viv; = — V;ps.
In the same way as in the previous section, we have

THEOREM 4. 2. If a normal contact space admits an infinitesimal projec-
tive transformation v', then v' is decomposed into

1
=w' — - p,
where w' is a Killing vector and p' is the associated vector of the infinites-
imal projective transformation.

REMARK. By virtue of Theorem 4.1, we can apply Theorem 4.2 to the
associated vector of an infinitesimal projective transformation. In this case the
Killing vector w' is a zero vector.

THEOREM 4. 3. In a normal contact space, we have
Lp= L; + L” (direct sum)
[L,L"lc L”, [L”,L"] C Ly,
where Lp is the Lie algebra consisting of infinitesimal projective transforma-
tions and L” is the vector space of the associated wvector.

5. n-Einstein spaces. Let R = —;—Ri iddx’ N\ dxt. In the previous
paper [ 4], we have seen that the differential form R is closed and the follow-
ing two propositions are valid.

LEMMA 5.1. If in a normal contact space we have (n > 3)

6. 1) Rj = ag; + by,
then a and b are constants.

LEMMA 5. 2. In order that the two closed 2-forms R and ¢ = ¢,dx’ N\ dxt
are linearly dependent, it is necessary and sufficient that the space has the
Ricci tensor of the form (5. 1).
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In this section, we shall discuss a normal contact space with the Ricci
tensor of the form (5. 1). In this paper such a space will be called an #-Einstein
space for brevity. Evidently, any Einstein space is an 7-Einstein space. An
example of #-Einstein space with 4==0 will be shown in the next section.

From (5. 1) and (1. 14) we have

(5. 2 a+b=n-—1,
(5. 3) R=an+b.

On the other hand by virtue of (1. 12), we get
5. 4) " R, = 2{(n — 2) — aldy.

In an %-Einstein space, the following theorem holds good.

THEOREM 5. 1. In an n-Einstein space with b==0, an infinitesimal isom-
etry is always an infinitesimal strict contact transformation.

PROOF. For any vector v* we have

5. 5) %«Rn = a%a!]n + b(’h%ﬂ?f + "h‘%ﬂh)-
For a Killing vector v, the last equation becomes
(5. 6) b(m%,m + 77:‘%/'71) = 0.

Transvecting this with %' and using Lemma 3.2 we get b£7; = 0. This com-
v

pletes the proof.

Now, let v* be a conformal Killing vector. From the discussion in § 3,
(8. 9) holds good. Consequently, according to (3. 7), it follows that

6.7 (" Ryy" + 2‘1’1’)%% = 0.

Substituting (5. 4) into (5. 7), we have bp,"£7, = 0 by virtue of (5.2). From this
equation and Lemma 3.2, we get the following equation for & ==0:
5. 8 %«"h = P

Substituting (5. 8) into (3. 6) and making use of Lemma 3.3 and (1. 11), we
have

VP — mVipe = (2p + Q)5 — 1iGx)-
Transvecting this with ¢’* and taking account of the fact p + @ = 0, we have
6.9 V,p" =— np.
On the other hand from (2. 4), (5. 2) and (5. 3), it follows that
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(5. 10) V.p" =— (a + D).

Comparing the last two equations we have {a — (n — 1)}p = 0. Thus we have

the

THEOREM 5. 2. In an 5-Einstein space (n > 3) with b==0, any infinite-
simal conformal transformation is necessarily an infinitesimal isometry.

Next, let v* be a projective Killing vector. By means of (2. 9), (4. 1) and
(5. 5) we have

(6. 11) — (= 1)V,p, =— av,p; + b(m%ﬂj + ﬂj%’?i)-
On the other hand (4. 13) and (5. 4) yield
6. 12) £, = om,

where we have put ¢ = 'rf%,n,.

Substituting (5. 12) into (5. 11), we get

(5. 13) —V,p; = 20nm;.

Applying Lemma 3.1 to (5. 13), we have V,0; = 0. Thus we have £g¢;, =0
by means of (4. 1). '

THEOREME 5. 3. Let M be an n-Einstein space with b==0. Then any
infinitesimal projective transformation in M is necessarily an infinitesimal
isometry.

6. An example. In this section we shall show an example of an #-Einstein
space which is not an Einstein space.

Let E*™*! be a Euclidean space with cartesian coordinates (x%,y% 2) (a =
1,2, ... ,m). We put

m
6. 1) n = LZ (dz -> y“dx“),
a=1
then 7 gives a contact structure to Em' I we put
6. 2) =" =y 2 =2, A=2m + 1,

we have from the definition that

1 .o L
(63) 771:"‘(_" 2 y:O’ 2)

12) For example, Gray, J. W. [1]." Sasaki, S. [6]
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and
®. 4) dn =—;—de A dy*.

Therefore, the tensor
2¢;; = Om — Oum;

has the components

0 4 S 0
(6 5) (¢J’i) = . '1_8a6 0 0
4
0 0 0
From the relations (1. 1) and (1. 3), we have
(6. 6) g =28, =(0,0, 2).
Now, we consider a symmetric tensor field in E*™! defined by
1
—_ a,,B _ a
1 Qe+ %) 0 iV
6. 7) (g) = 0 25 0 :
1. 1
e 0 1

then (g;;,) defines a positive definite Riemannian metric. The covariant compo-
nents of the tensor (¢;) are given by

457 0 4y
| 0 457 0
(6. 8) (¢ = i
4y 0 4 (1 3 (y7)2>
a=1

S.Sasaki [ 6] proved that thus defined tensors ¢, ¢;,7; and & form a
(¢, & n, g)-structure. Further, he proved that this contact structure 5 is normal.
However, he has not calculated yet the Christoffel symbols, the curvature
tensor and the Ricci tensor. In the following, we shall calculate them.

By means of (6. 7) and

o~ a!]n agir _ _a'gL)
Lt 71 = ( oxt + ox’ ox™ /
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we can verify that
[aB*;v] = (Bypy™ + 8asy”)/8, [aB, v*] = — (Byay® + y*8ay)/8,
6. 9) [aB*, A] = — 8a5/8, [ad,v*] =8xy/8, [a¥A,y] =— 8. /8,

the other components are zero.

h
(6. 8), (6. 9) and { N } = g"Iji. r] imply that
ji

)1 R o w1

{a/i’*}_ 2 Sﬂﬁy’{aﬂ}_— 2 (Ba.wy_‘_ysﬂ-ﬁ), {aAi— 2 8"‘14’
(6. 10) (A)_ 1 . Al__ L L el

laf,@* - 9 (yy_sfxﬂ)’ A/S* - 2 Y a*A - 2 8“#’

the other components are zero.

After straightforward calculations, we obtain the independent components of
the curvature tensor R, as follows.

Ruype = Busy®y” + 3pryy® — 3uvy®y’ — 82y"y")/16,
Risyrga= (8avss —- 8.58ay) /16,

Rsysa = Bavy’ — 8u0y")/186,

6. 11) Riypra=(8ry"y" — 2 8updys — 8ar8ps)/16,

Rsane = 8.3/16,

RA'Y"Aa*: - Bav/ 16,

Ri«sgra=08p5y%/16,

the other independent components are zero.

According to (6.8) and (6.11), the Ricci tensor has the following components.
Ry, == Bus — my°)/2,  Rya =0,

(6. 12) S Rswar = — 8.5/2, Rix = m/2, Ry-y =0,
Ry, =— my’/2.

Substituting (6. 7) and (6. 3) into (6. 12), we have

(6. 13) R; =— 2¢; + 2(m + Lnm,.

Thus the normal contact space defined above is an #-Einstein space and by
virtue of (5.3) and Lemma 5. 1, it is also an example of a space with constant
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scalar curvature whose Ricci tensor is not parallel.

The author would like to express here his hearty thanks to Prof. S.Tachi-

bana for his kind criticisms and reading the manuscript.
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