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Introduction. We have generalized the Hirzebruch polynomials in [8] and
proved their integrality in [9]. In this paper we shall generalize the Hirzebruch
polynomials in the most general way without loss of integrality. Moreover we
shall utilize these polynomials for study of the cobordism coefficients or the
cobordism ring. The cobordism ring of modulo 2 has been completely studied
by Dold ([3]). Recently Milnor and Wall have completely made clear the torsion
of the cobordism ring Q([6],[11]). However, there are still many unsolved
problems concerning the free part of the Q. We shall introduce a finite group
which seems to be the centre of these problems.

1. Let X** be a compact orientable differentiable manifold whose dimension
is 4k. Let

(1. 1) X4~ Z Aﬁ...t‘PZi,(C)' . -Pzt,(c‘) mod torsion
fitee. +ig=k
be the cobordism decomposition of X** based on the complex projective spaces

P,(c)s. It is known that ([8])

(a) 9Ai=(—4p, + 4p:p + 2P, — 4P + )X,
(b) 21A% = (36p, — 33psp1 — 18p:* + 33pp,* — 8p,*)[ X",
(c) 25A% = (18p, — 18p,p, — Tp,° + 16p,p,2 — 4p,*)[ X'°],
(1.2) 0 (d) 45A% = (— 180p, + 159p,p, + 80p,° — 1500, 0. + 365, X"°],
(e) 81A1m = (165p, — 137p,p, — 700, + 127p,p> — 30p,*)[ X ],
(f) 325271 = 335%T7(A + - - -« +Alm)
= (381p, — T1pypy — 19p,° + 22p,p.> — 3p,) X0,

where 7 denotes the index of X'® and p;, denotes the Pontryagin class of the
dimension 4:. In [8] we introduced a multiplicative series such that

(L. 3) I Y7 (14 yptghty/r) = 3 5 9l - -0,
s tgha/7; =0 j=0
where
(1. 4) Ha+»n =07
i 1=0

If we put y =0 in (1. 3) we obtain the Hirzebruch polynomials. For brevity
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we put as follows:
(1- 5) Pij(Pu' . ',Pz)[XM] = Fij-
We have proved in [9] that the I',’s are integers. Some of them are as follows :
I(g) Ty = Al X,
(h) 3y = (8p — pupIX"),

(1) 45Ty, = (108p, — 27psp1 — TPy + 6,07 X",
(j) 3%5+41T,, = (744p, — 325p,p, — 176p,2 + 248p,p,* — 51p,4) ['¢].

The parametric multiplicative series (1. 3) admits the following generalization :

(1. 6)

W7 YT+ ptght/7s + yutghin/rs +- - -+ ytght™y/r)*
: tgha/7;

= Z Z Nage y%Lil---dp(Pb‘ . ‘,Pi),

=0 ajeeeap
where L. s denote certain polynomials of p,-...,p, whose weight is Z. The
integrality of
(1 8) qu...a,,(Pla' M "Pi)[Xu]

can be proved in the same way as in the case of (1. 5) (Appendix, [9]). In the
case of X'® we need only the following one:

a9 1 v — (1 + utgh®/7, + vtgh's/r) = 2 3 uvPKie(p1,e - -, 1)
i

Ty
tghy/7; i ap

In particular we need the following term :
(1.10)  45Kb(pi,- - -,p0) = (— 216p, + 156p,p, + 94p,2 — 147p,p,° + 33p,*).
We put as follows :
(1.11) Ki(prse - -pIX°] = K.
Of course the K}, is an integer.

2. We see from 2(f) + (c) that 5A% is an integer. It follows from 2(f) + (e)
that 9Ain is an integer. The integrality of 3A% follows from 2(f) + (b). We see
from 111(j) + 126(f) — (d) + 70(i) that A%, is an integer. From (a) it is clear
that 9A% is an integer. From above facts and the integrality of Afn + Af + A%
+ A%, + Al + Ain we see that A} and 3A{ + 3A%n are integers. From 2(f)
+ (e) + 9(j) + 9(h) + 9(d) + 9(b) we see that 3A%,; + A% is an integer. Since
A}y, Kb and 3A% are integers we see from — 2(d) + 45K% + 3(b) + 4(f) + 4(j)
that 7A% is an integer and hence A% is an integer. Therefore 3Aim and 3Aj
are also integers. Since A{ +...+ Ay is an integer we see that Aj + Ahn is

*) tgh?my/ = (tgha/7e)2m.
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an integer. Thus we have the following results:

@ 1) { (1) 3A%i Aj, As, Ah, 3Ain are integers,
‘ (i) At + Aty is an integer.
In the case of the manifold W = F,/Spin(9) ([2], p.534) we have
@2  Ai=-2 A4 =36 AL =18 A= — 92 Aty = 12>

This is an example of non-integral Af. Another example is found in the 16-
dimensional submanifolds of the P,(c). Let X'® be a submanifold of X', ie. X®

L,X18, Let X6 correspond to a cohomology class v € H*(X',Z). Then the cob-
ordism coefficients of X'® are given by

(2) Af= (= o(dp, — dpspy — 20 + dpup* — pY) — )XV

(b) A = - [u(36p, — 33ppy — 185" + Bpup’ — 8p,") + 0'(— 3p,
+ 3p:p — p°) — U+ 10073 XP,

(c) AL = 2—15 {v(18p, — 18, — Tp,2 + 16,02 — 4p*) + v°(2p, — %)
+ 50} [X**],

d) Am = ;115 {v(— 180p, + 159p,p, + 80,2 — 150, + 36p,*) + v*(21p;
— 19p,p, + 6p,%) + v°(— 11p, + 5p,2) + 8v"p, — 550} [ X8,

(e) Aln= é {v(165p, — 137p,p, — T0p,% + 127ppi2 — 30p,*) + v°e

(= 28p, + 23ppy — 7$,%) + 30°(5p, — 2p,%) — 1207 p, + 550°}[ X*8].

2.3)

These relations are derived from the multiplicative series

)\/E 2 /r) 1 = o, D;
(2 4) . tgh\/;i (1 + ytgh /\/ri) ;Ai(yapl;' * :pz):
(2. 5) 2 Al X - oK)

= [ 0 + ytgh'o) = AAIX) - 20X
i
and the relation
(2. 6)  A,p1e -5 ) [X] = Mltghv (1 + v tgh’n) 30 Ay, pr,e - )X
i

In the case of Py(c) it is known that
2.7 P =10¢%, p, = 45¢*, py = 120¢°%, p, = 210¢°, g°[Ps(c)] = 1.
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Letting X'®* = Py(c) and v = 2¢ we have from (2. 3)

Al = — lgi, A% = 180, A% = 90,
(2. 8) 560
A§11 = - 400, Aﬁu = ‘3)

We denote above submanifold of Py(c) by Q.
We have from (2. 1) and (2. 2) the

THEOREM. A compact orientable differentiable manifold X'® admits the
following cobordism decomposition :
(2. 9) X'~ AiPy(c) + A4Py(c)Py(c) + ALP,(c)* + AinP.(c)Py(c)?
+ AtnPs(c)* + ASQ., mod torsion,
where the A’s denote some integer and the A% takes the values 0,1 and 2 and

the A’s are uniquely determined by X'.

3. We denote by G, the additive group of the cobordism classes of the compact
orientable differentiable manifolds of the dimension 4% modulo torsion and let

(3. 1) Xt~ > A i Pufc). - -Pufc) mod torsion

i+teeti=k
be the cobordism decomposition of such a manifold. Among them, those cobordism
classes whose all coefficients are integers form a sub-group. We denote this
group by @k. N
It is well known that G, = G, & = 1,2,3 ([4]).
Let us consider the factor group G,/ G/,:. We have proved in the last paragraph
that

(i) G,/G, =17,
Moreover we see that
(i1) Gk/é;\,c is a finite group.

PROOF. First of all G,/ (/}'\k consists only of torsions because the cobordism
coefficients are rational numbers. Moreover the number of these torsions is finite,
because all Af...’s ({,+-..+ i, = k) become integers by multiplying a suitable
large integer depending on % ([5] p.p.77 ~ 79).

P N AN N

(iii) The sequence G,/G,— G,/Gy— ... =G /G, — Gy11/Gryr — +++ 15
decreasing.

PROOF. If we multiply an element of G, by the P,(c), we obtain an element
of G,,. We denote this injection by j:

J
Gi = Giar.
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It is clear that the injection j is isomorphic into and induces an injection such
that

Go/G S Grrr /Gy,

It is also clear that j* is isomorphic into.

APPENDIX
Integrality of Ty; ((1. 5)).
It suffices to prove that
(i) the I'y; does not contain the factor 2 in its denominator when it is
{ written as a quotient of relative prime integers.

(ii) 2°T;; becomes an integer for a suitable integer «.

First of all let us prove (i). It is well known that

N3

) tghy/z =t Z( U= I(Zk)‘ Bzt (15] p.13),
= 3 "’+12_2n(22——1). 2n~1
(2) tghe = ”Z:I(_l) o B,

Moreover it is known that

a. By(Bernoulli number) contains the factor 2 exactly to the first power
(3) in its denominator.
b. (2%)! is not divisible by 2%* ([2] II p.341).

The statement (i) easily follows from these facts and (1. 3). Next let us
prove (ii). It suffices to show this for the complex algebraic manifold ([6]). In
this case we have

(4) ZP¢=H(1+312), ZC1=H(1+81)

and

(5) I 7 (1 + yight/r) = (1 + ytgh's)
i tgh\/ri ¢ t h8

=1 +ytghd, ) (1—e®
‘ 8‘<th8 stg i> )
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i % 1+ e™™) % 1 —e®)(1—e%)
= I‘I 1— 6—5( 1-— e—8‘+ Y 1— e—z&
1 -

T2 1-"

Hence we have

(6) Zyjrnf' (Pl;‘ . ‘7Pn) = Kun []]: Si H [% (1 + 6—251)
j=0

1—e™®
1—e 1—e?®\" , 1 _abNq b
x{1+ 5 ( v ( . )}—l—zy(l—e )1 —e-t)

1—e®  (1—e™ i ]]
X {1 + 5 ( ) + .. ( 5 )
— @185 + iee +ARS 81
= Kun Zy Z As...an Z enonT s T ndhn =5 |
A1y, G fyFee. iy -
where A denotes some rational number which becomes integer by multiplying

suitable power of 2 and a, denotes some integer.
Putting

(7) II a+ad+-+as,)=>d
fiFee iy i

we see that d; is an integral cohomology class, ie. d;, ¢ H*(X"",Z).

Hence we have

(8) Fnlc = Fnk(Pl,' * "Pn)[X4n] = Z sz(X4n} Wi) = Z biX(X4",Wi)>
i 4

where b; denotes some rational number which becomes integer by multiplying
some power of 2 and T(X**,W,) denotes the Todd genus with regard to W,
and W, denotes a complex analytic vector bundle whose Chern class is 3d; and
X(X**\W,) denotes the Riemann-Roch number with regard to W ([5] p.154). Thus

we have proved (ii).
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