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1. G.Sunouchi [3] has recently introduced some new methods of sum-
mability which are regular. These are defined in the following way. A series

oo

> a, is said to be summable (&, a) to s if the series in
n=0

e . —1 e .
510 = o+ ([ S25 az) zan[“%”idu, 0<a<,
. . n=1

n ua+l

converges in some interval 0 <z <¢#, and fi(¢)—>s as £¢—>0+. A series

> a, is said to be summable (8%, @) to s if the series in

n=0
—1 oo

&.2 05.2
ﬁ(t):a0+(ﬁ sin xdx) San %du, 0<a<l,

a+1
x o

converges in some interval 0 <t <, and f,(¢) > s as t >0+.

It is purpose of this paper to obtain information about these Sunouchi’s
methods of summability and generalization of them. Throughout this paper,
p denotes a positive integer and a denotes a real number, not necessarily an
integer, such that 0 <a < p. Let us put

“ sin’x
Cp.ﬂ:j; xaq—l dx’

pn,0) = gint) = (Co [ WL gz = (1 [ e

n ua-)-l

oo

Then a series ) a, will be said to be summable (R, p, @) to s if the series in

n=0

f(P’ a, t) = a, + ian ¢(7‘Zt)

n=1

converges in some interval 0 <z <#, and f(p,a,t)—s as t—0+. Under
this definition, the (&, @) method and the (®%*, a) method are reduced to the

1) The author thanks to Professors G.Sunouchi and S.Yano for their valuable suggestions.
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(8,1, @) method and the (8,2, a) method, respectively. On the other hand,

for a series )_a,, let us write of = s8/A%, where s and A2 are defined by
n=al

the relations

n=0

STALxn =(1—2)*! and Y sfa"=1-2x2)*'> a,x".
n=0 n=0

oo

Then, if ¢f — s as n— oo, we say that the series Y a, is summable (C,8)to s.

n=0

(See, for example, [4].) If ¢f—s as n—oo and D |of — of,,| < + oo, the
n=0

series ) a, is said to be summable |C,B| to s. It is well-known that, if the
n=0

series »_ a, is summable (C,8) to 0, then s} = o(n®), 0 =7Y=pRB. Our main

n=0
results in this paper are the following theorems.

THEOREM 1. Let 0 <B < a < p. Then, if a series >_ a, is summable

n=0

(C,B) to s, the series > _ a, is summable (], p,a) to s.

n=0

THEOREM 2. Let 0 <a<p and let A, >0 (n=1,2,---) and the series

oo

> 7:;‘ converge. Then, if

n=1

sy — SA% = o(n*N\,),

the series Y a, is summable (&), p, @) to s.

n=0

THEOREM 3. Let 0 <a < p. Then, if a series _ a, is summable |C,a|

n=0

to s, the series ) a, is summable (8, p, @) to s.

n=0

2. Some Lemmas.

LEMMA 1. Let 0 < a< p and let A™p(n, t) denote the m-th difference of
@(n, t) with respect to n. Then
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2.1 A" @p(n, t) = O(n~*"1gm=1)
when m is a positive integer such that m = p + 1, and
2. 2) At @p(n, t) = O(n=*t+=*)

when p is a positive integer such that u = p.

PROOF. By an extension of the mean value theorem in the differential
calculus [1; p.178], we have

sin? u

2.3)  Anemnn=(~IrGuren [ [ S g

where @ is some point such that nz <6 <(n+m)¢t. Hence, for the proof of
(2.1), it is sufficient to prove that

[ ‘i:" (p(x)L, = O((nt)y~="),
or

@ 9 i P2 =0,

Now we have to show that, for m =< p + 1,

dm dm—l 3 p
dar o(x)= T drmt (S;I}x“ ) O(x=*7).
An elementary calculation shows that, for 2 = p,

1+ (=1 .
—(—*)—— Yk,» SIN"~" T,

dr
. sin’ x = nk(x)z
where 7,, are constants depending only on % and », and
n(x) =1 (k; even), = cosx (k; odd).
On the other hand

dk

7;87:1:'““ = (=1 (a+1)(a+2) - (a+k)x e ! = §, £~ *, say.

Then, by Leibnitz formula,
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dm_l D m—1 _ k+v
(Si;_ﬁ.ﬁ[:_) = Z (mk 1) m—k~1 Mk (x) Z 1*+(—‘L Vi ™% sin? v x .

-1
dxm \ x k=0 v=0
Since 0=v=k=m—1= p, we get

MV gin?r x = O(a*~ ™V sin?~* x)

(2. 5) B o(—Si“#( e )k)=0(1) 0<z<1),

™' \sinx
O@E="")=0Q) (z=1).
Then, by #.(x) = OQ), we have (2.4). Therefore, by (2.3),
Amp(n,t) = O@™9~=") = O(n=*"1¢"~*1).

The proof of (2.2) is similar to that of (2.1). In this case, it is sufficient to
prove that, when 0=v=k=p—-1=p—1,

2t sin® x = 0(1) .

But this is easily proved as in (2.5). Hence we have (2.2).

LEMMA 2. Let 0<Y = a < p. Then, for non-integral number v,

(2 6) G(’Y k t) = ZA_'Y—I A¢(n t) — O(k—- a=1 t'}’—a)
n=k

2.7 G, b, t) = O(kM-1-% (I¥1-a+1)2)

and

(2. 8) G(Y—1,k,t) = O(kM-Y-= gn-)

PROOF. We shall first prove (2.6). Let p=[1/¢] and write
k+p-—-1

G,k t) = ( >+ Z ) = g.(k, t) + go(k, t),

n=k+p

say. Then, using (2.1) for m =1,

PR

n=k+p

2) Throughout this paper, [x] denotes the greatest integer less than z.
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:O(k“‘“‘t‘“ > (n--/e)-v-l)
nek+p

= Ok~ 7-%) .

By the repeated use of Abel transformation

p—1
gk, t) =3 AT Ap(n+k, £)

n=0
p=I[71-2" [vl+1

= 3 AU AT gt kt) + S AZHT Alg(k+p—iy£) .
n=0 i=1

Since p is an integer, we have [Y] + 2 =< p + 1, and then, by (2.1),

a(kt) =0 (Z (n+ 1)1 (n+ )= t‘”‘““)

n=0

[Y1+1
vo ( 2 (p=iy T (Rt p—i) t"“_])

i=1

P
=0 (k-a-l gri=es1 5 (n+1)[“"’) + Ok =1 )
) n=0
= Ok /7).

Thus we have (2.6). Next we shall prove (2.7). By the repeated use of Abel
transformation, we have, by (2.1),

GO, kt) =2 A" Ap(n + k, t)

n=0

=2 AVTTA" 2 p(n + k, t)

n=0

k
= O (Z (n+l)[7]—7(n+k)—a_1 t[”_"“"l)

n=0

+ O ( Z n[‘Y]'-'Y (7'l+ k)—a—l t[‘l]—a+l)

n=k+1

=0 (k—a-l tlr—a+1 i (n + l)m-v)

n=0
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+ O (k[7]—7 t[Y]—a+1 Z (n + k)—a—l)

n=k

= OQ(RN-7Y-a glri-as1y

which is the required result (2.7). Similarly we have

co

GOY=1,kt) =3 A" Ap(n + &, t)

n=0
=3 AV A p(n+k, £)
n=0

= O(k[“f]—v—a t[v]—tx) ,

which is the required result (2.8).

3. PROOF OF THEOREM 1. We shall prove theorem when B is non-
integral, the case of integral 8 being easily proved by the method analogous
to the following argument. For the proof, we may assume, without loss of
generality, that a, =0, s =0 and a—1 < 8. Since

o1,5) = G [ S du = Ot

ua+l

we have by Abel transformation and using s% = o(7%),

f(p) a, t) = i; an ¢7(7’l, t) = i S A¢(n, t) .

n=l

Therefore, for the proof, it is sufficient to prove that the series

3.1 i} saAg(n, 2)

converges in some interval 0 < ¢ <¢, and its sum tends to 0 as £ —>0+. By
a well-known formula

n
sh=> A7t
k=0

S siAp(n,t) =D s> A Ap(n, t) = > sEG(B, &, 1),
n=1 k=1

k=1 n=k
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where

GB, &k t) = > AP Ap(n, t) .

n=k
Here we must prove that this rearrangement is permissible. For this purpose,
it is sufficient to show that, for a fixed ¢ > 0,

N oo
In=3"st > A%'Ap(n,t)—>0 as N— oo,

k=1 n=N+1

But this is easily proved as following. By (2.1) and st = o(n®),

Iy = O(é |s8] Z“: (n—k)"ﬁ—l . n‘“—l)

=0 (N‘“‘l > lsﬁl) = o(N-*T N#*) = o(1) .

Let us now write

ist(,B,k,t) = (‘E +i) =U@R) +VQE)),

k=1 k=p

where p =[1/¢], 0 <t < 1/2. Then using (2.6) and s¢ = o(nf)

V) = X £G@ kD) = o (Z ke ket tﬁ-“) = o(P*™ 1) = o(1),

k=p

when ¢t —0+. Now, since 8—a <0, the series (3.1) converges for every
t > 0. On the other hand, using Abel transformation, we get, when ¢ — 0+,

U@

I

pi‘,sﬁ“ (GB, k,t) — G(B, k+ 1,2) + s£51 G(B,p — 1,¢)

\3)
=0 (i kBH.k—a—l.tﬂ—wH) _I__O(PBH.P—a-—l.tﬁ—a)

k=1

=0 (pﬂ—-a+lt6—a+1) +o0 (PB—atB—-a) =0 (1) ,

in virtue of our assumption a—1 < g. Hence the sum of the series (3.1)
tends to 0 when £ —0+. Thus the theorem 1 is completely proved.
REMARK. In the proof of the theorem 1 when B = p—1, for the sake

P
of estimating the sum > si™' A? @(n, t), we use the inequality (2.2).

n=1

3) G(B,k,t)—G(B,k+1,t) =0 (k~*-1tB-«+1)is proved by the method analogous to that of (2.6).
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4. PROOF OF THEOREM 2. We shall prove the theorem in which «a is
non-integral, the theorem in which a is an integer being easily proved by
the method analogous to the following argument. For the proof, we may
assume, without loss of generality, that a, =0 and s= 0. Then, as in the
proof of the theorem 1, we have

D a,pnt) =Y st Gla, kt),
n=1 k=1

where

Gla, bk, t) = > A5  Ap(n, t) .
n=k
Let us now write
oo N1 oo
>SostGla, kyt) = ( + Z) =U@)+ V@),
k=1

k=1 k=N

say, where N is an arbitrary fixed positive integer. By (2.6) with ¥ = «,

V() = o(i k“-xk-k““"l) =0 (i k“)»,c).

oo

From this, we see that, by the convergence of the series »_ £~'A;, the series
k=1

> st Gla, b, t)
k=1

converges for every £ > 0. On the other hand we have

in?
Ap(n,t) = O(t- s;gﬂﬂ), nt <60 <(n+l)t,

4.1 (0/0)) when a+1=<p,
i O when a+ 1> p.

Hence

Gla, kt)= 0 (sgplArp(n, |- i | Azt )

n=k

o O®) " when a+l=p,
{ O(t"*) when a+ 1> p.
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Therefore, since N is constant,

1limU@#) =0.

10+

Then we have

S 52 Gla, &, z)[ = o(z k-mk) _
k=1 k=N

lim sup
-0+

oo

Since N is arbitrary and the series > 2™'A, is convergent, we have
k=1

lim > s¢ Gla, &k, t) = 0,
k=1

to0+ 2=

and theorem is completely proved.

5. PROOF OF THEOREM 3. We shall prove the theorem in which « is
non-integral, the theorem in which a is an integer being easily proved by
the method analogous to the following argument. For the proof, we may
assume, without loss of generality, that a,=0 and s=0. Then, as in the proof
of the theorem 1, we have ‘

> anp(n,t) = 2 st Gla, b, t) = 3 (of — o) Un(?),
k=1 k=1

n=1

where
Gla, kt)= 2 A%'Ap(n,t) and U,@) = > A:Ga, k,t),
n=k k=1
provided that
5. 1) U,®)=01) for 0<t<1l and m=1,2,---.

We shall now prove (5.1). If mt =1, then, by (2.7),

Um(t) =0 (Z k. plal-2a tlﬂf]~o¢+1)

kel

— O (m[a]—a+l t[u]—-a+l) — O(l) .

On the other hand, if mz > 1, then, putting p = [1/¢], 0 < ¢ < 1/2, we have,
by the modefied Abel transformation ([2; Lemma 3]) and (2. 8),
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v.0 = (L + 2)

m—1

= 0()+A;Gla—1,p,t) — Az Gla—1,m+1,t) + > Al Gla—1,k+1,¢)

k=p

= 0(1) + O(pd . Pla]—2a t[n]-a) + O(ma . m[a]—?a t[n]—:x) + O (z ka—l . k[a)-—mz t[a]-a)

k=p

= O(1)+ O((pt)i1~*) + O((m#)=*) + O((pt)=~) = O(1) .

Thus U,(¢) is bounded uniformly in 0 <# <1 and for all positive integers .

oo

Since the series > |of—of,,| is convergent by our assumption, for an arbitrary
k=1

small &> 0, there exists an integer N = N(€) such that

D:Z (0'1? - U'I?H)Uk(t)’ = O(ij: IU'I? - 0'1?+1I) < €.

Further, using (4.1), we have, for a fixed N,

N-1

lim 3 (0% — 0%, Un(d) = 0.,

t—0+ k=1

Then we have

limsup | >~ (of — of)U(8)| = €.
t—>0+4 k=1

Since & is arbitrary, we have

lim 3 (of — o) Us(®) = 0,

t->0+ k=1

and the theorem is proved.
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