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1. Introduction. We consider the tensor product of two function algebras
A and B on compact Hausdorff spaces X and Y, respectively, where by
function algebras we shall mean uniformly closed subalgebras of the continuous
complex-valued functions which contain the constants and separate the points.

n

Let AQB be the algebraic tensor product of A, B and let

€ AQB, then, by [Σfί ® ^JO>:y) = Σfi(x)(Ji(y) for (x,^) € X x 7 , ] Γ / t

(8) gTi belongs to C(XxY). Let A 0 δ be the completion of AQB under the
λ-norm.*)O The λ-norm is identical with the usual uniform norm on X x Y
and C(X)®C(Y) = C(XxY). Thus, A 8 B is a Banach algebra. Further, it
is easily seen that A® B becomes a function algebra on XxY, which we
shall denote by SI. Now, it will be natural to ask what properties of A and
B are inherited to Si, or conversely. We shall show that the Silov boundary
and the Choquet boundary of 91 are represented exactly as Cartesian products
of such subsets. Each Gleason part of the maximal ideal space of 91 is also
a Cartesian product of parts of maximal ideal spaces of A, B respectively.
Even if both A and B are dirichlet algebras (A Φ C(X), B Φ C(Y)), 91 is far
from being dirichlet. However, the maximal ideal space of 91 remains to
have an analytic structure, where analytic functions of two complex variables
on the open unit bicylinder are involved.

The author is indebted to Prof. T. Turumaru and Mr. J. Tomiyama for
valuable conversations on the subject of this paper.

2. Tensor product A®B. In what follows, we denote by dA, SDt(A) and
M(A) the Silov boundary, the maximal ideal space and the Choquet boundary
of Ay respectively. The closed unit disk [z: \z\ ĝ 1} of the complex plane
is denoted by D and its interior [z: \z\ < 1} by D\ We use the symbol T
for the unit circle.

*) Let A*, 5* be the conjugate spaces of A, B respectively. For 'Σ,fi®ffi€A'J)B, the λ-norm
is defined by | | 2 / i ® ^ i | | λ = supjS φ(fi)ψ(c[i) \ where φ, ψ run over the unit balls of A*,
B* respectiyelv ([13]),
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It is known that sD?(Sl) is homeomorphic to W(A) X $?(£), that is, for every

there corresponds a unique (φ, ψ) z 9JΪ(Λ) x $31(13) such that h =

which means that if F= Σ / t ® ^ € AQB then A(F) =

For Fz 21 and for a fixed :y0 € Y, we define FVo by i ^ O ) = F(x,y0). FXo is
similarly defined. The following is nothing but Lemma 2 of [9].

LEMMA 1. Let Fz Sί. Then every Fyo belongs to A and every FXo to B.

PROOF. Let φVo be the functional which associates with g <= B the value
g(y0). Then φVo e B*. We define a mapping TVo of AQB into A by

TVo (Σ/i ® ^i) = Σ Ci(yo)fi for Σ/i 8 ^ ^ 4 0 5 . Ty o is continuous, so extended
to δί. Let {2,fin)~® g\n)] be a sequence such that Σ/]w ) ® ^(TI) -^ F. Then,
Tyo(F)£A, and (TVo(F))(x) = lim Σ/}%r) ̂ ( y o ) - ^ 0(x) for x € X, which
completes the proof.

T H E O R E M l.*> 3 a = θ^x 3 B .

PROOF. Let (xo,yo) ? 3^x3,5. We assume that x0 ? 3 4̂. There then
exists a neighborhood U of x0 such that for every f £ A the inequality
sup I f(x) I ^ sup |/(JΪ:) | holds. ί/xY is a neighborhood of (xo,yo), and for

every F<Ξ SI we have

sup \F(x,y)\ = sup sup | F/(^)| ^ sup sup |F(x,3/)| = sup \F(x,y)\ ,

so (^OJ^O) 1" 3sι Conversely, let (^0)^0)^ 3^ x3 Λ . Then for every neighborhood
UxV of (.ro> 3>o) we can choose f ^ A and g ^ B such that sup | /(x) |

> sup I f(x) I, sup I g(y) \ > sup | g(y) \. We put F = fξ$g. Then, we have

sup \F(x,y)\ > sup | F(x,y)\. Also we have sup | F(x,y)\ > sup | F(x,y)\
UxV UcxVc UxV Ux Vc

and sup | F(x,y)\ > sup | F(x,y)\. Thus, sup | F(x,y)\ > sup| F(x,y)\,
ϋ"xΓ ΓcxΓ FxK (lfχF)c

which shows that {xQ,y^) £ d%.

For the Choquet boundary of a function algebra, the following are
equivalent ([2]), p. 325) :

*) Some of our results (Theorem 1 and parts of Corollary 1 and Theorem 4) are contained
in [3]. We shall state them for the sake of completeness.
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1. x0 € M(A).
2. For every neighborhood U of x0, there exists f e A such that \\f || g 1,

I f(x0) I > 3/4 and \ f(x) j < 1/4 for all x τ. U .

For our present use, we prove the following lemma which seems to be
interesting for its own sake.

LEMMA 2. The following are equivalent:

1. x0 € M(A) .
2. Let U be a neighborhood of x0. Then there exists a sequence {fn}

in A such that lfn || rg 1, lim \ fn(x0) \ = 1 and lim \fn(x) | = 0 uniformly
for x ? U.

PROOF. It is sufficient to show that 1 implies 2. Let g € CR(X) be such
that 0 fg g ^ 1, g(x0) = 1 and g(x) = 0 for x ? U. By Lemma 5.1 in [2]
applied in this case, we have sup [f(x0) \ fz 9ϊeA, / ^ g] ^ 1. Let {/9W} be
an increasing sequence of positive numbers such that pn —• 1 and {6W} a
decreasing sequence of positive numbers tending to 0. Since 1— (log pn/\og Sn)

< 1 for n = 1,2,3, , there exist h'n € dieA for which Knt=k g and h'n(xQ) > 1
-(logpn/log£n) hold. We put An = logen (l-A;). Since hn s dleA, hn+ikn

£ A for some &„ € 3ϊeA, so / w = exp(^ + / y ^ Λ. It is easily seen that
| | / w || ^ 1, I frixo) I > Pn and | fn(x) \ ̂  θw for r ? Ϊ7, which completes the
proof.

T H E O R E M 2. M(Sί) = M(A) x M(5).

PROOF. Let (x09y0) ^ M(8l) and let ?7, y be neighborhoods of xQ,y0

respectively. Then there exists {Fin)} c SI such that || F(7Z) || ^ 1, |F(n)(^0,3/0)|
-^ 1 and F[n\x,y) -> 0 uniformly for (x,y) zUxV. Put fn = Fi? and gn = F£\

fn and <7W satisfy the condition of Lemma 2, so r 0 ^ M(A) and y0 € M{E).
Let conversely x0

 ζ M(A), 3Ό ζ M(JS) and let (7xV be a neighborhood of
(Xo,yo)- Let {/„}, {gn} be sequences in A, B satisfying the condition of
Lemma 2 for U,V. Putting Fn —fn®gn> it is clear that [Fn] also satisfies
the condition for UxV, hence (xo,yQ)z M(?t).

Given a function algebra A on X, X is always decomposed into maximal

antisymmetric closed subsets, that is, X= \^J Ja, where the restriction of A to
a

Ja is an antisymmetric subalgebra of C(Ja) and Ja is the maximal set having

this property ([1]).
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THEOREM 3 *> Let X= \Jja and Y = \JKβ be maximal antisymmetric
oc β

decompositions, then XxY = \^/(JαxK^) is also the maximal antisymmetric

decomposition of XxY.

PROOF. First, every JaxKβ is an antisymmetric set. In fact, let Fz SI,
F(x,y) = real for (x,y)z Jax Kβ9 and let (xo,yo), ( # I , J Ί ) be arbitrary points in
Ja x Kβ. Then FXo(y) = real for x £ Kβ and FVo(x) = real for x z Ja, therefore
they are constant on Kβ,Ja, respectively, and F(xo,yo) = F^y^ = Fyι{xλ)
= F(xι,yι). This implies that F is constant on Ja x Kβ. Hence, there exists
a maximal antisymmetric set β in X x Y such that JaxKβc.$. Let px$
denote the projection of ίfc into X and l e t / e A, then f(j>xR) = (/® l)(ft). If

j^i />χSί=real, then y takes on a constant value on ^K1, so px$ is an antisym-
metric set. Similarly, py$ is antisymmetric. From JaxKβ C fiϊ C />xff x/>?yffi
and from the fact that Ja, Kβ are maximal, we see that Ja = px$, Kβ = pv^,
so B = Ja x Kβ.

COROLLARY 1. Si is antisyynmetric if and only if each component is
antisyminetric.

COROLLARY 2. SI is an essential algebra if and only if at least one of
the components is essential.

PROOF. Let P and Q be the collections of all one-point antisymmetric
subsets of X, Y, respectively. Then, by Theorem 3 in [10], for A or B to be
essential it is necessary and sufficient that X—Pί — X or Y—Qι = Y, which is
equivalent to XxY-(PxQY = XxY.

THEOREM 4. 21 is analytic if and only if each co?nponent is analytic.

PROOF. Let A and B be analytic. If Fz 3(, and F vanishes on an open
set UxV, then for every x0 £ U, we have FXo(y) = 0 on V, so Fx(y) = 0 for
all y e Y. Next, let yzY. For any xeU, we have Fyo(x) = Fx (y0) = 0, hence
FVΰ(x) — 0 for all x € X. Thus, F vanishes identically. Let, conversely, Si be
analytic, and let U be an open subset of X. If fe A and / = 0 on U, then,
since ( / <g> 1)(C7 x Y) =/(C7), we have / ® 1 =: 0, so / = 0 on X. Hence, A is
analytic.

Let G,H be compact abelian groups, and let Γ+, Λ+ be subsemigroups

of G, H, such that each contains identity and generates G, H respectively.

*) Results from Theorem 3 to Theorem 4 are due to J. Tomiyama.
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We denote by A(G, Γ+), or briefly by A(G), the algebra of all generalized
analytic functions on G with respect to Γ+, that is, A(G, Γ+) = f f \ fz C(G),

Γ

— \ f{oc)Ί{pc)dx = 0 for 7<EΓ + }, where dx denotes the normalized Haar
measure on G. A(H, Λ+) is similarly defined. They are function algebras.

T H E O R E M 5. A(G,Γ+)®Λ(//,Λ+) = A(Gx/ί ,Γ + xΛ + ) .

PROOF. It is clear that Γ+ xΛ+ is a subsemigroup of (GxH)A containing
the identity of (GxH)A and generates (GxH)A, so A(G x H, Γ\ xΛ+) is
defined as above. For f®g £ A(G)QA(H\ (f®g)\V,X) =/( '/) ^(λ). If
Fz A(G)QA(H) and (7, λ) ? Γ+xΛ+, we have F(γ,λ) = 0, thus Fz A(GxH,
Γ+ x Λ+). Conversely, any Fz A(G X H) is the uniform limit of trigonometric
polynomials consisting of members of Γ+xA+ ([8]) and these belong to A(G)
O A(H), so we have A(G) ® A(H) = A(G x H) as desired.

3. Dirichlet algebras and analytic structure. It is well known that, for
φ, φ € 9Jl(A), the relation || φ — φ'^ < 2 is an equivalence relation ([5]), which
we shall denote by φ—φ. Equivalence classes in 9Ji(A) are called (Gleason)
parts. If a part does not reduce to a single point, it is said to be non-trivial.
If A is a dirichlet algebra, every non-trivial part P of 3K(Λ) is the image of
a continuous one-to-one mapping r of D and every f € A has the property
that f o T is an analytic function on Dι. In this sense, a sort of analytic
structure is shared by S5Ά(A), and this structure may be considered as complex
one dimensional. But, in general, when A is not dirichlet, this is not true,
as is easily seen from considering algebras consisting of analytic functions of
several complex variables defined on a suitable region.

LEMMA 3. Let P,Q be parts of W(A), SJJ?CB), respectively, then PxQ is
a part of sJ)f(Sί). Conversely, every part of 3B(8l) is of this form.

PROOF. For A, K <= 9)?(SI), we have h — φ ® ψ, K — φ ® ψ' where φ, φ
€ 2R(A), ψ, ψ € yH{B). For the proof, it is sufficient to show that h—K if and
only if φ~~φ and ψ^ψ'. Let first φ^-φ and ψ ^-ψ '. Then, clearly φ®ψ
—φ ®ψ,φ®ty' — φ®ψ, so φ ® ψ ^ φ ® ψ. We suppose conversely that
φ y^ φ\ say. Since || φ — φ || = 2, there exists a sequence { / J c A such that
||/„ < 1 and I ̂ (/n) - φ(fn)\ ->2. Put Fn=fn® 1. Then || FM || ^ 1 and

- h'(Fn)\ ->2, which implies that λ ** λ\

THEOREM 6. L^ί 81 = A®B in -which both A and B are dirichlet algebras.
If % is a non-trivial part o/9Ji(2l), then $ is either the image of a one-to-one
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continuous mapping Φ of D1 or Dι x Dι and for every F £ 21, f o φ is an
analytic function on such a region.

PROOF. By Lemma 3, $ = PxQ where P, Q are parts of 2R(A),3KCB),
respectively. In the case where one of P, Q is trivial, Sβ is clearly an image
of D\ If both P and Q are non-trivial, there are one-to-one continuous map-
pings T and σ which map Dι onto P, Q respectively, in such a manner that
f or, g o σ are analytic for fz A, g£ B. We define Φ by Φ(z,w) = (τ(z),σ(w))
for (z, w) € Z>: x D\ Φ is clearly a one-to-one continuous mapping onto 5β.
For F = Σ/ΐ (g) gr* £ A © 5, we have (F o Φ) (z, w) = Σ (/* ° T) (2;) (^ o σ ) (^),
which is an analytic function on Dι x D\ Since, for every Fz Sί, Foφ is
uniformly approximated by such functions on LΫxD1, F o φ is also analytic.

THEOREM 7. If A is dirichlet, A (g) C(Y) is dirichlet.

PROOF. Since CR(X)QCR(Y) is dense in CR(X x Y) as a real algebra, it
is sufficient to show that every Σ ^ (g) ̂  in CR(X) Q CR(Y) can be approximated
by members of 9ΐe(A (g) C(Y)). But this is easily seen from the fact that if
fzflieA are chosen to be near to ut then Σ/i (g) t̂ i is in 9ΐe(A (g) C(X)) and
near to ^ut ® vt.

REMARK 1. If SI is dirichlet, each component is dirichlet. In fact, suppose
that A, say, is not dirichlet. There then exists a non-zero real measure μ on
X which annihilates A. Choose a non-zero real measure v on Y. Then,

μXv annihilates 21, because, for Σ/* ® gι^ AQB, we have J (Σ/t (g) </*) ύ?(μ x v)
Xx X

= Σ I fί dμ I gidv = 0. But, clearly μ x v φ 0, which contradicts the assump-
Jx Jr

tion that 81 is dirichlet.

REMARK 2. In connection with Theorem 7, it will be of interest to note
that, in the case when A = A(G) and B=A(H), A = C(X) or B=C(Y) provided
that §1 is dirichlet. In fact, let Γ+ ̂  G, A+^=H and let (70, λ0) be such that
Ύo i" Γ+, λ0 € A+, then (Ύo, λ.71) i" (Γ+ X Λ+.) u (Γ+ x Λ+)"1. Thus, A(G x H) cannot
be dirichlet ([8]).

4. Examples. From Theorem 7 we see that many dirichlet algebras are
constructed the parts of maximal ideal spaces of which are of the form
Px(one-point set), because every part of the algebra C(Y) is a single point.
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AJI example is the algebra 2ί generated by polynomials in z, t where (z9 t)
lies on the cylindrical surface X = {(z, t): | z \ — 1, 0 rg t ^ 1}. We denote by
Ao the disk algebra which consists of all continuous functions on T which are
extended analytically on D\ It is clear that 21 = Ao® C(0,1). 501(21) is the
solid cylinder {(z,t): \z\ S I , O g ί g l } ; every point of X is a trivial part
and Dι x {t) is another type of part for each t, O g / g l (See also [11], p. 88).

Let 21 be the algebra which consists of the continuous functions F on
T 2 such that, for every integer n, the function fn on T defined by fn(eiθ)

= J F(eι\eιφ)emφd(p has Fourier transform vanishing on the negative integers
0

(([6]), p. 303). Then, we have Sί = A0

Next, let Ao = {F\Fe C(T*), f ( F(eίβ, e*) etmθ ein* dθdφ = 0, for m > 0

or n > 0}, and let A be the bicylinder algebra, i.e., the algebra of all functions
which are continuous on DxD and analytic on DlxDl ([7], p. 230). Ao = Ao

(g) A09 and Ao^ Ao ® Ao c A. Conversely, A\T2 c Ao which is seen by
considering the limit of Fourier coefficients of F(reiθ,reiφ), F € A, for r—>1.
Thus Ao = A\T2 and, since every function of A attains its maximum on the
skeleton T2, Ao ~ A. By Lemma 3, the parts are identified as follows : Dι x Dι

is a part; for every z09 \zo\= 1, {(zo,w): \zv\<l] constitutes one part and,
similarly, {(z, zv0) : | ^ | < 1 ] is a part for w0, \wo\=l, and every point of T 2

is a trivial part ([11], p. 89).

These are special cases of a typical example, P(Z). Let Z be a compact
subset of C2, the product of two complex planes, and let P{Z) be the algebra
of all functions on Z which are uniform limits on Z of polynomials in z and
w ([11]). If Z = X x Γ , X, Y subsets of C, then P(Z) - P(X) ® P(Y). P(X)
= C(X) if and only if X* = J0Γ and Xc is connected ([11], Theorem 7.3). The
analogous result holds componentwise for P{X x Y), that is, P(X x Y) = C(X x Y)
if and only if Xί = Yι = J3 and Xc, Yc are connected. In the case of one complex
variable, the theorem of Walsh states that if X is a compact subset of C with
Xc connected and if Xo is the boundary of X then every continuous real
function on Xo can be uniformly approximated by real parts of polynomials
in z9 so P(X0) becomes a dirichlet algebra. That this does not hold in the
case of two complex variables can be seen as follows: Let Z=DxD and Zo

be the boundary of Z. Since P(T) = A09 we have P(T2) = Ao, hence JP(Z0)
= A\Z0. But AQ is not dirichlet, hence A\Z0 is also not dirichlet. Besides
these, there are properties of Ao which does not remain to hold in the case
of Ao. Ao is maximal, but Ao is no longer. The Rudin-Carleson theorem
holds for A09 that is, if £ is a closed subset of T of Lebesque measure zero
then A0\E = C(E). This fails to hold in AQ. In fact, let x0 be a fixed point of
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T and K = T. Then K x {x0} is a closed subset of T2 and (μ x μ)(K x {*<>}) = 0,
where dμ = dθ/2τr. Let i£0 be a closed subset of X such that i^0 ^ ^ , μ(.KQ)
> 0. Let / be a continuous function on K x { r0} such that / Φ 0, / | (X"o x {*r0})
= 0. For any F € ^40, FXo belongs to Ao. Hence, if iζ-0 = / , then i^0 must
vanish identically on Kx [x0] by the theorem of F. and M. Riesz, which
contradicts the choice of/. Thus, Λ0\(Kx {x0}) Φ C(Kx {x0}).

On the other hand, the F. and M. Riesz theorem holds in the following
sense ([12]), p. 321).

THEOREM 8. If Fz Ao vanishes on a closed subset of the torus of positive
measure , then F— 0.

PROOF. Let X b e a closed subset of T 2, (μXμ)(K) > 0, and let F vanish
on K. We denote by Kx the ^-section of K, i.e., Kx = {y\(x,y) £ K}. Let
E — {xe T\μ(Kx) > 0), then μ(j£) > 0. By regularity of μ, we may assume
that E is closed. Every Kx is closed. For arbitrarily fixed x £ E, Fx € Ao

and Fx(y) = 0 for yz Kx. By the F and M. Riesz theorem for AO9FX = 0 on
T. Thus, F(x,y) = 0 for (x,y)s ExT. Hence, Fy = 0 on E, for every j/£ T,
so ft = 0 on T. Thus, ^ , ^ ) = 0 on T2.
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