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We shall use the notations and the terminologies employed in [9] and suppose
that C*-algebras in considerations are all separable. In [5], A. Guichardet studied

the quasi-dual space of the tensor product AI@D,A2 of C*-algebras A, and A,
and showed that there is an almost Borel isomorphism O of lefi;, the
cartesian product of quasi-dual spaces El of A, and [L of A,, into the quasi-dual
space (AIQQAQ“’ of AI@QAQ. Also he showed that there is an example in
which II is not an onto mapping. In this note we shall show that there is a Borel
isomorphism ﬁﬁ of A\lxﬁ\g, the cartesian product of dual spaces f/l: of A, and
;1\2 of A,, into the dual space (AI@BAQ/\ of each tensor product A1§BA2

of A, and A, with respect to a B*-norm | |z and that I/'I\,, is an onto mapping
if and only if one of A, and A, is of type I (or equivalently a GCR).
Combining this and [9; Cor. of Theorem 3], we shall conclude that the dual

space (G, XG,)"of G,XG,, the direct product of separable locally compact groups
G, and G,, is Borel-isomorphic to the cartesian product axé} of dual spaces
f}'\l of G, andC/}'\2 of G, if and only if one of G, and G, is a group of type L

For n=1,2,..., oo (countably infinite), let H, be a fixed n-dimensional
Hilbert space. We identify the tensor product H,®QH, and H,, under some
fixed isomorphism. For a separable C*-algebra A, Fac,(A) and Irr,(A) are the
set of all factor representations on H, and the set of all irreducible representations

on H, respectively. Put Fac(A) = U Fac,(4) and Irr(4) = U Irr,(A).

n=1,2,¢¢", n=1,2, ¢+,

Each Fac,(A) and Irr,(A) have the Borel structure induced by the simple
convergence topology respectively. The Borel structures in Fac(A) and Irr(A)
are defined as the unions of Borel spaces Fac,(A) and Irr,(A), n=1,2, «+« oo,
respectively. Of course, Irr(A) is a Borel subset of Fac(A) by [2]. The

quasi-dual space A of a C#*-algebra A is the quotient Borel space Fac(z/‘l\)/“x”
of Fac (A) by the quasi-equivalence relation “~” and the dual space A of A



DUAL SPACES OF TENSOR PRODUCTS OF C*-ALGEBRAS 333

is the quotient Borel space Irr(A)/“~” of Irr(A) by the unitary equivalence
relation “=”.

Let A, and A, be two C*-algebras. For a B*norm | | in the *-algebraic
tensor product A, (DA, of A, and A,, Az denote the completion A1<§,;A2 of
A(DA, under | ||¢. For a representation 7 of A, there exist representations
7' of A, and 7* of A, on the representation space of = such that

7l (x)mHx,) =7z, () =7(x,Qx,) for x, € A, and x, € A,

by [5; Prop.1]. We shall call 7' and #? the restrictions of 7= to A, and to A,
respectively. For each representations 7 of A, and =, of A, the product
representation m ®m, of A,()DA, can be extended to a representation of Ag,
which is also denoted by 7, ®@m,. Putting II(m,,m,)=m Qm,, II is a continuous
mapping of Fac,(A)x Fac,(A) into Fac,.(A) by [5;Lemme 2]. Moreover the
relations 7=~m, and w,=~m, imply II(m,m)=II(mr, 7,’) and the relations
m =, and m,=~m, imply II(m,m)=II(7, ,m"), so that II induces naturally a
Borel mapping I of A, xA, into Ag and a Borel mapping T of ;l\le/l\z into
2,3, respectively. If 7! and #* are the restrictions of 7 ,®m, to A, and A,
respectively then ! and =® are quasi-equivalent to =, and to m, respectively,

~ as
so that IT and II are one-to-one mappings.

LEMMA 1. A 7 of Irr(Ap) is unitarily equivalent to m Qm, for some
m e Irr(A,) and m, € Irr(A,) if and only if one of the restrictions = and =*

of m is of type L

PROOF. Suppose m=~m Qm,, m <lrr(4,) and m,e€ Irr(4,). The unitary
operator, which implements the equivalence between 7 and 7, @1, induces the
equivalence between the corresponding restrictions of 7 and of = ,®m, to A,
and A,. Hence =' is quasi-equivalent to m;, so that the irreducibility of
implies our assertion. Similarly 72 is of type L

Conversely suppose ' is of type I. Let M; be the von Neumann algebra
generated by 7'(A,) for i=1,2. Then M, and M, commute each other and
generate B(H,), which is the full operator algebra on the representation space
H, of = M, contains M, and M, contains M,;, both M, and M, are factors.
By the assumption for =, M, is a factor of type I, so that B(H,) is isomorphic

to M,®M, under the natural correspondence >_ x;x/ <—> >_ xz,Qx/, x;€ M,,
=1 i=1

z,/ €M, and i=1,2,---,n, where M,®M, means the tensor product of M,

and M, as von Neumann algebras. The von Neumann algebra R(M,, M,)

generated by M, and M, is isomorphic to M;®M,, because M, is containd

in M,. Hence we get M,=M,, so that M, is also a factor of type I and

m~m'@m’. Both 7' and 7* are factor representations of type I, so that there
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exist 7, € Irr(A,) and m, € Irr(A,) such that =, and , are quasi-equivalent to
7! and 7? respectively. Hence 7 is quasi-equivalent to =7 ®m, by the remark
preceeding our lemma. The irreducibilities of both 7 and = ®m, and their
quasi-equivalence imply their unitary equivalence. This completes the proof.

THEOREM L Tl is a Borel isomorphism of f/l\lxﬁg into A\B for each B*-
norm- || |g in Ai(DA,.

PROOF. We shall prove that ﬁ(l/E\,X/Eg)z/E is a Borel subset of Az for
every Borel subsets E\l of 21 and /E\Jq of 1/4\ Let ()1,()9 and ® be the canonical

mapping of Irr(A,), Irr(A4,), and Irr (Ag) onto AI,A and A,g respectively, then
it sufﬁces to prove that O 1(E) is a Borel subset of Irr(Ap). Putting E, =0, (E,)
E,=0; 1(Ez) and E=06" l(E), we shall prove at first

Q) E= {7 Irr(Ap); m'=~m,, m’=~m, for some (m,,m,) <€ E, X E,},

where 7' and 7* mean the restrictions of = to A, and A, respectively. Let F

be the set of the right side of the above equation. If 7 belongs to E, then we
Pas

have (7)=T1I(mr,,m,) for some (7/:-\1,/7;2) € EI@/EZ. By the definitions of E, and E,

aN N
there exists (7, m) € E, X E, such that ©,(7)=m, and O,(m,)=m,. From the
commutativity of the diagram of mappings

11
Irr(A,) x Irr(A,) —— Irr(Ay)
| &xo, . |
A A m 2
Al X Az AB

ar is unitary equivalent to = ®,, where ®,x 0, is the mapping defined by
®, X O,(mr,, m)=(8,(m,), ®y(7,)). Hence we get =, ~m' and m,==’, that is, 7
belongs to F. Conversely, suppose = belongs to F. That is, =' and 7’ are
quasi-equivalent to 7, of E, and m, of E, respectively. The irreducibilities of
and 7, imply that 7' and #* are factor representations of type I. From Lemma

pay
1 and its proof = is unitarily equivalent to 7, @mr,, so that we have O(m)=I1

(®,(m,), By(m,)). Hence we have O(xr) e E The definition of E implies m< E.
Thus we established the equation (¥).
Since E, is a Borel subset of Irr(A,), E;a Borel subset of Irr(4,) and these
are saturated under the unitary equivalence, the saturations E,” of E, and E,
of E, under the quasi-equivalence are Borel subsets of Fac(A4,) and Fac(4,)
respectively by [2; Lemma 5]). Moreover the mapping IT'; ‘Fac(Ag) > 7 — (7!, 7?)
€ Fac(A,)x Fac(4,) is a Borel mapping by [5; Lemme 3). Hence E=IT"'(E,
X Ey)NIrr(Ag) is a Borel subset of Irr(Ap).
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N\
Let % be the family consisting of all subsets E of 1/4\1 X/AZ such that ﬁ(g)
AN N\
is a Borel subsets in Ag Since Il is an one-to-one mapping, it preserves all

set-theoretic operations, union, intersection and difference. 8 is a o-ring of subsets
A i . ~ ~

of A, X A,. Since B contains all product sets of Borel subsets of A, and A, as

N N\
proved above and the Borel structure of A, X A, is the smallest ¢-ring containing
A N\

all product sets of Borel subsets of A, and A,, ¥ contanis the Borel structure of

Ay X A,. Thus TI(E) is a Borel set in A; for every Borel set E in A, X A,, that
ay

is, I1 is an into Borel isomorphism. This completes the proof.

LEMMA 2. If M, and M, are von Neumann algebras whose commutators
M, and M, are continuous hyperfinite factors, then there exist normal
representations m, of M, and w, of M, on thz samz Hilbert space such that
(M) =my(M,) and equivalently m (M,)=m,(M,).

PROOF. If M, is finite, then it is a continuous hyperfinite factor by [8;
Theorem XV). By the unicity of continuous hypzrfinite factors M, is isomorphic
to M, and also to M,". Hence there exists an isomorphism =, of M, onto M,
so that the couple of 7, and the identity representation , of M, is the dzsired
one. If M, is an irfinite factor, there exist a factor of type II, and an infiaite
factor N of type I such that M,=M®MN. Hence we may assume M, =M’
® {1}, representing N as the full operator algebra on a Hilbert space.
Hence M, is isomorphic to M’, so that M is a continuous hyperfinite factor
by the finiteness of M. Thus M is isomorphic to M,. On the other hand,
the ampliation M, 5> z,—x,®1 € M,® {Al} is an isomorphism and (M,®{n1})
=M, Q N=M®N=DM, Taking m, as an isomorphism of M, onto M,QN,
the couple of of the representation 7, of M, and the representation 7, of M,
which is obtained by m,(x,)=x,®1 for x, € M, is the desired one.

THEOREM 2. 1l is a Borel isomorphism of A\le/l\z onto 1/4\” if and only
if one of A, and A, is of type I (or equivalentely a GCR). In this case the
v-norm in A (DA, coincides with the a-norm.

PROOF. Suppose that neither A, nor A, is of type I. By the proof of [3;
Theorem 1] there exist representations 7, of A, and 7, of A, such that the
commutators of 7 (A;) and 7,(A,) are continuous hyperfinite factors respzctively.
Then there exist normal representations p; of the von Nsumann algebra M,
generated by m(A,) and p, of the von Neumann algebra M, generated by
my(A,) such that p,(M,) and p,(M,) are commutators in each other frorh Lemma
2. We define a representation = of A, as the extension of the representation
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of A,(DA, defined by

k=1

"T(Z X, QX k)z Z(P1°77'1)(xl,k)(onﬂ'z)(xz,k) for Z X, Qs € A1®Az-
k=1 k=1

Since the von Neumann algebra generated by 7 (A,) contains p,(M,) and py(M,),
7 becomes an irreducible representation of A,. But = can not be represented
as a tensor product of representations of A, and A,. Because if m is represented
as 0,0, o, and o, representations of A, and A, respectively, then o, is quasi-
equivalent to pjom,, o, to pyom,, and then = must be of type II, which is a
contradiction to the irreducibility of 7. Hence 7 does not belong to II(Irr(A,)

x Irr(A,)). Hence iT is not an onto mapping. The converse implication is an
immediate consequence of Lemma 1. The final assertion is nothing but [10;
Theorem 3]. This completes the proof.

Combining our theorem and [9; Cor. of Theorem3], we get the following
application to the dual space of direct product of locally compact groups.

COROLLARY. Let G, and G, be separable locally compact groups. The
natural mvpping T of the cartesian prodhct é\l X é\z of the dual spaces 61 of G/\l
and 82 of G, into the dual space (G, sz)/\of the direct product group G, X G,

is a Borel isomorphism. 1 maps /(\}1 X/E;z onto (GIXGQ)/\if and only if one of
G, and G, is of type L

In general, for a locally compact group G, there is a natural mapping of

G onto C*(G)A which is also a Borel isomorphism, the proof is directly followed
from Theorem 2 and [9; Cor. of Theorem 3].
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