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Some years ago, Professor S.Sasaki proposed an open question on the
integrability conditions of (¢, y)-structure defind in his paper [1]°. A (¢, ¥)-
structure on an z-dimensional differentiable manifold M ™ is defined by two tensor
fields ¢,y of type (1,1) satisfying the conditions as follows :

rankp =1, ranky=m, [+m=mn

¢y =Yp=0, & +&YP =1,

where 1 denotes the unit tensor and &, & are plus or minus one. Such structures
contain as a special case the almost contact structures [2].

In this short note we intend to show that the integrability conditions of
(¢, ¥r)-structure can be obtained by using a result on the integrability conditions
of m-structure by the first author, provided that the structure is of class C®.
At the same time, we also improve some results by the both authors [4], [5].
It is furthermore shown that the integrability of the structure f satisfying
f* + f =0 studied by K. Yano and S.Ishihara [6] can also be derived in this
way, if the structure is of class C®.

1. An n-dimensional manifold is said to be endowed with an r-m-structure
if there exist r distributions (differentiable) T°, - - -, T, of (complex) tangent sub-
spaces such that 7,° = T,,+ -+ +7T,, (direct sum) holds at each point, where
T,° is the complexification of the tangent space at P and T3, is the subspace at
P belonging to the distribution T, ; t =1,---,7.

An r-m-structure defined by 7 distributions 7, is said to be integrable if at
each point of the manifold, there is a complex coordinate system such that the
subspace 7, of complexified tangent space is represented as dz* = (), i.e. dz"=0
except dz* where a, varies from 7+ «-+ +n,_; to n+ -+ +n, (n,=dim T,
n,=0) t=1,---,r.

1) Numbers in brackets refer to the reference at the end of the paper.
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It is proved that an r-m-structure of class C* is integrable if and only if [3]
(1) T(u,v) = — Y P.N(P)(u,v) =0
a=1

for any pair (%, v) of vector fields, where N(P,) denotes the Nijenhuis tensor
for the projection tensor field P, to the a-th distribution given by the
r-m-structure.

This is equivalent to the following set of conditions:
(2) P, N(P)(u,v)=0,+++, P, N(P)u,v)=0.
For example, the first condition can be written as
(3) P,[Pu, Pv] — P\[u, Pv] — P,[Pu,v] + Pjlu,v] =0.
Another expression for this condition is
(4) P[(Py+ «++« +P)u,(Py+ -+ +P)v]=0,
which is also equivalent to the following set:
(5) PAPu, Pl =0; j k=27

These are obtained from (4) by putting Pu, P,v in the place of # and v.
Thus the integrability conditions (2) is also given by the following set :
(6) Pi[P]'u7PIcv]:07i:17"'7r

J, k being any number in {(1,2,--.,7)—(1)}.

2. Now suppose there are given two tensor fields F,, F, of type (1,1) and
of class C® such that [4]

(7) E*=MI, Fi’=MI and RF = FEF

where I also denotes unit tensor field. If we put FF, = F,F, = —F;, then it
follows that F3® = A\,2A2I, M\, are non zero complex constants.
It is shown that such structure either defines a 3-w-structure (this case is

characterized by —1—F2 —LFJl ———1—F3 = [ for suitably chosen square roots
N2 N My
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M of A2 and A, of A2) or a 4-m-structure. Such structure is said to be integrable
if at each point of the manifold, there exists a coordinate system in which
the fields F,, F,, F; have simultaneously numerical components.

It is also known that such structure is integrable if and only if the cor-
responding 3-m-structure or 4-w-structure is integrable [4].

CASE 1. If it defines a 3-w-structure, then we can express them as
(8) F1=7\'1(P1_P2_P3), Fﬂ=7\'2(P1+P2"‘P3),
.F‘3= _NIXQ(Pl_Pg""Pg), I:P1+P2+P3,

where P,, P,, P, are three projection tensors to the distributions defined by the
structure {F,, F,}.

It is well-known that the integrability condition of the structure defined
by F, is [F,, F]1=0, that is

(9) (Py+P)[Pu,Pv]=0 and P,\[(P,+Pyu,(P,+P;)v]=0.
This latter condition is equivalent to P, N(P;,) =0.

Therefore, the integrability conditions (6) for the case =3 is equivalent
to

10) [F, 11=0, [F,F]=0 and [F,F]=0.
Thus we have

PROPOSITION 1. The integrability condition of the class C® structure
{F,, F;} giving a 3-w-distribution is the set (10).

It can be shown that

PROPOSITION 2. The integrability condition of the class C° structure
{F,, F,} related to a 3-w-structure may also be given by

11) [F, F1]1=0, [F,F;]=0 and [F,F]=0
where [F,, F,] is defined by the following:

(12) [F,, Fz](u’ "U) = [Fu, Fyv] — F\[u, Fyv] — F)[Fu, v] + F\F,[u, v]
+ [Fyu, Fiv] — Fylu, Fiv] — F\[Fu,v] + F,F\[u,v].
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Since it is trivial that
(13) [aF,+BF,, AN+ pF,] = 200 Fy, Fi] + 2BulF,, F,] + (allf+/87\')[Fu F],
the set (11) is equivalent to the set

(14) [F1>F1]=0, [Fz,Fz]=O and [aF1+BF2,aF,+BF2]=0

1

with a@B2<0. From (8) we have (1/2)(I + %
1/v2

=0, it follows that

F)=P,. As [LI1=0 and [F,I]

(15) (PPl = [/ (I+ 55 F). /(T4 55 F) | = gor [RF.

P, can also be expressed as P2=(1/2)(%F2—Y1—F1) , therefore
. 2 1

1 1 1
@) [PiP) = W) 5 F =5 Fo 3o B3 B

The above proposition follows from (15) and (16).
It is to be noted that

PROPOSITION 3. The condition

1 1 1 1.1
(17) [—)\'TFI +)\’—2F2, '):—Fl +7\,—2F2] =0

‘alone also gives the integrability condition of the class C* structure {F,, F,}
related to a 3-w-structure.

By (8), this condition may also be written as
(18) [Pl_PsaPl"'Ps] =[P, P,] + [P;, P;] — [P, P;] = 0.

As P,+P;=I-P, we have [Py, Pyl = [P, +P;, P+ P;] = [Py, P\] + [P;, P4]
+[P;, P;]. Thus (17) is written as

(19) 2[P1,P1]+2[P3,P3]_[P2,P2]=0-
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This is equivalent to
(20) 2P,[P|,P\] + 2P,[Py,P;] — P,[P,, P,]=0; =123,
from which we have

P,[P,u, P,v] + 4P,[Pu, P;v] + 2P,[Pu, P,v] + 2P,[Pu,P,v] = 0
(21) P,[Pu,Pv] + P,[Pu, P;v] — P[P, Pw] — P,[Pu, Pv] =0
4P,[Pu, Pv] + Py Pu, P,v] + 2P, Pu, P,v] + 2P,[Pu,P,v] = 0.

This system is equivalent to (6) for the case r=3.

3. The above result can be used to derive the integrability conditions of
the structure defined by a non-null tensor field f of type (1,1) and of class
C° satisfying f2+ f = 0 [6]. ' If the rank of f is r, then in the tangent space
at every point, the kernel of f is an (n—7r)-dimensional subspace and the range
of f is the complementary r-dimensional subspace on which f acts as f?= —1.
Thus we get a 3-m-structure such that

(22) f=idP,—Py), f°+1=P, P+ P, +P=1,
and therefore, (18) is equivalent to [f, f] = 0. Thus we have:

PROPOSITION 4. The necessary and sufficient condition for the structure
f of class C*® to be integrable is [f, f1=0. By the above mentioned result,
this is equivalent to the fact that there exists a coordinate system in which
f has constant components. [6)

4. CASE II. If the structure {F), F,, F,;} defines a 4-m-structure then we
have

(23) {FIZNI(P1+P2_P3_P4): F2=7\'2(P1—P2+P3_P4),

F3= —hlhg(Pl_Pg—P3+P4), I=P1+P2+P3+P4,

with P; as the projection tensors to the four distributions. In this case the
integrability condition [F}, F,]=0 for the structure F, is written as:

(P1+P2)[(P3+P4)u» (P3-I-P4)‘U] =0,

24
(Ps+P)(P+Py)u, (P,+P,)v]=0.
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This set is equivalent to the following set.

Pl[Pku,PfU]ZO, PQ[Pku,Pl‘U]=O; k,l=3,4,
PPa, Pl =0, PJPu Ppl=0; ij=12.

(25)

Thus we have

PROPOSITION 1. The integrability conditions for the class C° structure
{Fy, Fy, F3} related to a 4-w-structure is given by

(26) [F,Fi]=0, [F,,F,]=0 and [Fy,F]=0.
Because this set is equivalent to the integrability conditions (6) for the

case r=4. This proposition together with Proposition 1 improve a theorem
stated in [4] by deleting a redundant condition.

It can also be shown that

PROPOSITION 2. The integrability conditions for the class C° structure
{F,, F,, F,} giving a A-mw-structure are [5]:

(27) [F,F]=0, [F,,F;]1=0 and [F,F;]=0.

It is obvious that in the set (27) the condition [F}, F,]=0 may be replaced
by

(28) [aF,+BF,,aF,+BF,] =0 with aB=0.

Take ozF1+ﬂF2=(1/_2)<%Fl+ 7%F) = P,—P,, then (28) can be written
1 2

(29) [Pl_P4,P1"P4]=[P1P1]+[P4P4]"[P1P4]=O
which is in turn equivalent to
(30) Pi([PlPl]'l'[P4P4]—[P1P4])=O; 1=1,23,4.

These conditions are respectively written as

P[(P;+P;+P)u, (P,+ P;+P,)v] + P[Pu P,v]
+ P\[(Py+ Ps+P)u, Pl + P\[Pu, (P,+P;+P)v]=0
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P,[Pu, Pv] + P,[Pu,Pv] — P,JPu,P,v] — P[Pu,Pv]=0,
G\ PP, Piv] + PP, Pw] — P{Pu,Pw] — P[Pu,Pw] =0,
P,[(P,+ Py+ Py)u, (P,+ P,+ P;)v] + P,[Pu, Pv]
+ P,Pu, (P,+P,+P;)v] + P,[(P,+ P,+Py)u, Pv] =0.

These give 26 conditions in all, and which cover all conditions supplied by
[F,F] =0 (e, [P+ P, Pi+Pl =0 or [Py+P,P,+Py]=0).

Since [P,—P,;, P,—P,] =0 gives analoguous conditions which together
with (31) cover all conditions in (6) for the case r=4, we have

PROPOSITION 5. The following set is also the integrability conditions
for the class C° structure {F,, F,, F;} giving a 4-w-structure:

(a2 F+ B, /2 (3 F o+ %—F)] — [P,—P,, P,~P]=0,
@)
(2(3-F =5 F). W2(5-F— 5 F)| = PP PP = 0.

5. We are now going to discuss on the integrability conditions for the
(¢, Y)-structures of class C®. (¢, y)-structures can be divided into the following
three cases:

1°. ‘l"2_¢2=1’ ¢,\P.=0, W:._O and ‘l"s‘_:‘l":d’s:_d’;
2°. Y+pP=—-1, ¢Y=0, Y¢=0 and ¥*= —, ¢*= —¢;
39, 11,.2+¢2:1, ¢"l’=0’ ‘P’¢=O and "1’3="I",¢3=¢-

For the case 1°, put ¥*=P, and —¢?= P,. Then P,+P,=1 and P,P,
= P,P,=0. Thus we have two projection tensor fields. The subspaces of
complexified tangent space at a point corresponding to P, and P, are denoted
as R, and R, respectively. Then R, consists of the vectors of the form %«
=P,u, R, consists of the vectors of the form —¢*» = Pu. Since yPu=+‘u
=Y (Yu)=P,(Yu), YyPu=—yd*u=0, and *P,u= P?u= Pu, the transforma-
tion Yy acts on R, as Y*=1 and kernel Y=R,. Similarly, ¢Pu = ¢P*u=0,
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¢Pu=—¢*(¢pu)=P,(¢u) and ¢*P,u= — P,>u= —Fu, so ¢ acts on R, as ¢*=—
and kernel ¢=R,.

The proper values of Y on R, are 1 or —1. If 4 has only one proper
value 1 on R,, then YP,u=P,u and Yyu=v(P,+ P,)u=vPu=P,u for all u.
Thus =P, and Y?*=P,’=P,=+. If 4 has only one proper value —1 on R,,
then YPu = ——Pgu and Yu=+(P,+ P)u=+yPu=—Pyu for all u. Thus
=—P, and §*=P,*=P,= —+.

If 4 has both proper values 1 and —1 on R,, denote the subspaces of R,
corresponding to 1 and —1 as R,, and R,;. Let P, P,; be the projection
tensors to R,, and R,;, then P,=P,,+P,; and P,P,,=P,,P,=P,P,,=P,,P,=0.
Then Y Pu=0, yPyyu= Pyyu, YPyu= —Pyu and Yyu=+(P,+ Py + Py)u=Pyu
+ Y Pyu=(P,y;— Py;)u. Therefore yr=Py,— Py; and Y*= Pyy+ Py;=P, # .

Since ¢ acts on R, as ¢?=—1, so R, is even dimensional and ¢ has proper
values 7 and —:. Denote the subspaces of R, corresponding to i and —i as
R,, and R,,, the projection tensors to these subspaces as P,, and P, then P,
=P,+P, and P,P,=P,P,,=P,P,=P,P,=0. Then ¢P,u =0, ¢ P,,u=:iP,u,
¢Pu= —iP,u and ¢u = $(P,+Py+ P)u = ¢Pu+¢Pyu = i(P,,—P,y)u.
Therefore ¢=14i(P,;—P,,) and ¢* = —(Py,+ Py,) # *¢.

Consequently, if y*= =4, then the (¢, )-structure defines a 3-m-structure
expressed by ¥=P, (or —P,), $=i(P,;—P,,). If y*#=%, the (¢, J)-structure
defines a 4-m-structure expressed by = P,y — P,;, ¢=i(P;;—P,,).

For the case 2°, if we put —y*=P, and —¢*=P, we can show that both
Y and ¢ act on R, and R, respectively as {’=—1 and ¢*= —1. Therefore
this case always defines a 4-m-structure which is expressed by ¢=i(P,,—P,),
'\l":i(Pzz_st)-

For the case 3°, if we put Y*=P, and ¢*=P, we can show that both
and ¢ act on R, and R, respectively as *=1 and ¢?°=1. So as in case 1°,
if Y?==2 and ¢*==+¢ then the structure defines a 2-w-structure F given by
F=P,—P,. If ¥y’==x+ and ¢p*’~+¢, (or Y* # =4y and ¢* = *¢) then the
(¢, ¥)-structure defines a 3-m-structure expressed by = P, (or —P,) and
¢=P,,—P,, (or yr=P,;—P,;, $=P, (or —P,)). If both y*#=++ and P>~ =4,
then the (¢, )-structure defines a 4-m-structure expressed by +r=P,,—P,;,
¢’=P n— P

It is to be noted that for a structure satisfying *= —1, it can not happen
that Y?*=+. For, if Y?*==% then P*==%? = x(*y)=+. Thus from the

above argument we have

PROPOSITION 6. A (¢, y)-structure defines a 2-m-structure if and only
if Y*=t and ¢* = +¢. It defines a 3-m-structure if and only if y*==Ap
and ¢*#+¢ or V'# =ty and ¢*= *¢. It defines a 4-m-structure if *# =+
and ¢’ .
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6. If the (¢, )-structure defines a 2-m-structure F= P,—P,=2P,—1, then
¢==+P, and Yy==+P,, so F==+2¢—1. Consequently, the integrability condition
is given by [F, F] = 4[¢,¢] = 0 (or [, y] = 0.)

If the (¢, ¥)-structure defines a 3-m-structure and ’=z+ and ¢*#=*¢,
then ¢=P,,—P,, or ¢=i(P,,—P,,) according as ¢*=1 or ¢*=—1 on R,
Thus [¢, $]=0 gives [P,—P,, P,—P;] = 0 (where P,=P,,, P,=P,,) and this is
the integrability condition as already shown in the proof of Proposition 3.
Thus we have:

PROPOSITION 7. If the (¢p,v)-structure of class C° satisfies y?*== (or
¢*==¢) then the integrability condition is given by [$, $]=0 (or [y, y]=0).

Now, if we put ¥ = 1+f? ¢ = f in the case of structure f satisfying
P+ f=0, then we have ¢pyr=p=f*+f=0, so it defines a (¢, Y)-structure of
case 1° with y’=+ and the integrability condition is [¢, p]=[f,f1=0 as shown
above.

A (¢, &, )-structure on (2n+1)-dimensional manifold is a structure defined
by a tensor field ¢, a contravariant vetor field & and a covariant vector field
n; satisfying

g =1, rank¢ =2n, ¢;'¥=¢";n, =0 and @ipi= —d+&7,.

Therefore, if we put i = &'y, then we have ¥*—¢?* =1, ¢y = Yp = 0 and
?=+). This is a special case of the above structure f, and the the integrability
condition is also [¢, ¢] = 0.

Finally, if the (¢,)-structure defines a 4-m-structure (that is, if 2=+
and ¢*#=*¢), then ¢p=P,;—P,, or ¢=1i(P;,;— P,,) according as ¢*=1 or ¢p>*=—1
on R,; and y=P,,—P,; or y=i(P,,—P,;) according as y*=1 or ¥*=—1 on
R,. Thus [¢,¢]=0 gives [P,—P,, P,—P,]=0 (where P,=P,, P,=P,,) and
[Y, ¥1=0 gives [P,—P;,P,—P;] = 0 (where P,=P,,, P;=P,;). It is shown in
the proof of Proposition 5 that these two conditions give the integrability
conditions of the corresponding 4-m-structure. Thus we have

PROPOSITION 8. If y?£ =+ and ¢’#=+¢p, then the integrability con-
ditions for the (¢, )-structure of class C° are [¢, $]=0 and [y, ¥]=0.
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