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A PROOF OF CARTAN’'S THEOREMS A AND B

YuMm-TONG Siu

(Received December 13, 1967)

In this note we give a new proof of the following theorems of Cartan:

THEOREM A. If § is a coherent analytic sheaf on a (reduced) Stein
space X, then T(X, &) generates &, for all xe X.

THEOREM B. If § is a coherent analytic sheaf on a Stein space X,
then H*(X,§)=0 for p=1.

The known proofs of these theorems depend on one of the following:
(i) Cartan’s Lemma of invertible holomorphic matrices ([2], [3]), (i) methods
of partial differential equations ([5]), and (iii) methods of differential geometry
([1]). In the proof here essentially we make use only of Dolbeault’s Lemma
(1.D.3,[4]) and Schwartz’s Theorem (App.B, 12, [4]). Theorem B is first proved
and then Theorem A is derived from it.

NOTATIONS. ,O=the structure-sheaf of the complex #n-space C". For
>0, B® or B, denotes the ball in C* with radius » and centered at the origin.
The boundary of a set Ein C" is denoted by 9E. Suppose g=(g;,---,9,) is
a p-tuple of complex-valued functions defined on a set K. Then |g|x denotes
sup{|g{x)|| 1=i = p, z< K}. If U is an open covering of a topological space,
then M) denotes the nerve of U.

DEFINITION 1. Suppose 7, <98; and 8, >0, 1=7=n. The domain
{2=(21,°++,2,) € C*"|V; <|2:| << 8;, 1 =17 =mn} is called a polyannulus.

In this definition ¥, can be negative. Hence a polydisc is a polyannulus.

DEFINITION 2. Suppose p;, 1 =j = n+r, are polynomials on C" such
that p,=z, for 1 =7 =<n. Suppose a;<@B; and 8,>0, 1 <j<n+r. The
domain D={zeC" | a; <|p(2)|< B, L =j = n+r} is called a polynomial
polyannulus. Suppose (ky,«++,k,,,) is a permutation of (1,--.,n+7) such
that @, =0 for 1 =j=m and a;, <0 for m <j=n+r. The polynomials
Py 1 =j =m, are called essential defining polynomials for D.

Trivial modifications of the proofs of 1.D.1,2, 3 in [4] give us:
(1)  Suppose P is a polyannulus in C". If ¢ >0 and  is a C~ O-closed
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(0, g)-form on a neighborhood of P, then there is a C (0, ¢g—1)-form
n on P such that On=w.

By using (1) instead of 1.D.3,[4], we can easily modify the proof of
1.F.5,[4] to obtain:

2) Suppose D is a polynomial polyannulus in C*. If ¢ >0 and » is a C
O-closed (0, g)-form on a neighborhood of D~, then there is a C
(0,g—1)-form n on D such that 9p=e.

By using (2) instead of I.LF.5,[4], we can easily modify the proot of I.F.8, [4]
to obtain:

3) Suppose D is a polynomial polyannulus and p;, 1 =< k = m, are essen-
tial defining polynomials for D. Let G={zeC" | p(2)#0, 1=k =m]}.
Then any holomorphic function on D can be approximated uniformly
on compact subsets of D by holomorphic functions on G.

DEFINITION 3. Suppose § is a coherent analytic sheaf on a o-compact
complex space (X, ) and K is a compact subset of X. Suppose @: O =&
is a sheaf-epimorphism such that ¢ induces an epimorphism ¢ : (X, O7)
- T(X, $). For feT(X, ), IfI% is defined as inf{lglx|g € (X, D%), 3(g)=1}.

LEMMA 1. Under the assumptions of Def. 3, the norms {||-|%|K is a
compact subset of X} define a Fréchet space topology in I'(X, §).

PROOF. Let f=Ker ¢. I'(X, ) is a closed subspace of the Fréchet
space I'(X, 07) with the topology of uniform convergence on compact subsets

(cf.VIILA. 2, [4]).The surjectivity of @ implies that the topology defined by
the norms | - [|2 in I'(X, §) is identical with the quotient topology induced

by @ and that the quotient topology is a Fréchet space topology. q.ed.

This Fréchet space topology of I'(X, &) is independent of the choice of
@ and hence is canonical.

PROPOSITION 1. Suppose @2, -+ ,9™ are real-valued C* functions
on C" satisfying: o

(*) lpi(z)| <(6n*)™ and |@iF(z)—8,| < (3n?)™

for zeC* 1=i,j=n, and 1 =k =m, where §,; is the Kronecker delta,

2
(k) —

2. (k) 8 (k)
§ =2, and iy =5 L Suppose D={z< C" | p®(#)<0, L=k =m)

Pii T 920z2;
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is a bounded domain. Then H*(D, ,£)=0 for p=1.

PROOF. First we prove that
4) for 2°=(23},--+,2%) € 9D, there exists a polynomial f
such that f(2°)=0 and f is nowhere zero on D.
Fix 2°€¢9D. Then ¢‘%(2°)=0 for some k. Define a polynomial f(2)
n k)
= 322" (%)=, — 2). Then p®(x)=2Re (fl)+ 3 @f(e*)z—2)z—=)
i=1 t

a 1=i,j=n

+ 2 @piz*)N=i—2)(z;—=)) for some 2* depending on=z. (*) implies that

1=i,j=n

@ (2) = 2Ref (2)+ —é—( > ]zi-—zi-’lz). Hence f is nowhere zero on D.
i=1

Construct open subsets P, of D, 1=k < oo, such that (i) P, is a
union of topological components of a polynomial polyannulus whose essential

defining polynomials are nowhere zero on D, (ii) P,C C P, ,, and (iii) U P.=D.
k=1

This is possible by (4).
Now by using (2) and (3) we can complete the proof in almost the same
way as the proof of 1.D.5, [4]. q.ed.

COROLLARY. Suppose & is a coherent analytic sheaf on D admitting
a finite free resolution. Then H*(D,§)=0 for p=1.

PROPOSITION 2. Suppose & is a coherent analytic sheaf defined on an
open neighborhood G of B; in C". Then dim. H?(B,, &) <oo for p=1.

PROOF. Choose in C" balls U,c cV,ccG, 1=k=m, such that (i)
9B, C U Uy, and (ii) & admits a finite free resolution onV,. Let 4, be a

k=1

C~ non-negative function on C™ such that 4»,=0 outside V;, and ¥, > 0 on U,,

n

1=k=m. Let o =3" |2,|?—7% Choose positive numbers \,, 1 =k =< m,
1=1 k
so small that @® =g — 3" N+, satisfies (¥) for zeC", 1=4¢,j =n and

i=1
1=k=m. Let D;={2eC"|@p®(2)< 0}, 0=~k =m. Then D,=B,c CD,,
D,=D,_,u(D.nVy,), and D,_,NV,=D,_,nN(D.NV,). By Cor. to Prop. 1,
H?(D,NV,,F)=0 for p=1 and 1=k=m. From the exactness of the
Mayor-Vietoris sequence H?(Dy, F) — H*(Dy_,, §)DH (D, NV}, &) — H?(D,_,
NV &), we conclude that H?(D,, §)—H"(D,_;, &) is surjective for p=1 and
1 =% =m. Hence



210 Y.-T. SIU

5) the restriction map H?(D,, %) — H*(B,, ) is surjective, =1

Choose two finite collectlons of balls in G, (Ui, i=1,2, such that
i) U}C CU}", (ii) B,cC UU,, (iii) D, C UU,, and (iv) on U? we have a
sheaf-epimorphism £;: D”’—» & which 1s part of a finite free resolution. Let
Uj= Uj NB, Ui= U’ﬁD,,,, and U,={Ui}!.,, i=1,2. Fix p=1. Since H (U,
N--+NUj, Ker £;,)=0 by Cor. to Prop. 1, the map I'(Ui, N - - - NUE, ,O%)
— I‘(U}io N-++ NUL,$) induced by &;, is surjective for l;jo, c++,jg=1 and
¢=1,2. By Lemma 1 (U} N- - - NU%,F) has a canonical Fréchet space topology.
ZP(NW,), 3), i=1,2, and C*~'(N(11,),F) can be given Fréchet space structures
canonically. Let p:Z?(N(U,), F)—Z*(NU,),F) be the restriction map and §:
CP'(N(U,), §) — Z°(IN1,), F) be the coboundary map. Since H¥U% N
NU;,&)=0 for s=1,i=1,2,1=j,,+-+,j, =1 by Cor. to Prop.l, H*(NU,),¥)
~HB,, §) and H"(NW,),$)=~H*(D,,¥). By (5) pDs: Z»(NU,),F)dC"!
(N, F) — ZP(NU,), ) defined by (pD8) (aDb) = p(a) + 8(b) is surjective.
Since Ujc cUj the map p®0: Z*(NU,), F)HC*(NU,), F) — Z»(NUW,), F)
defined by (pP0)adb)=p(a) is compact. By Schwartz Theorem (App.B, 12, [4]),

0P8=pPH8—pPO0 has finite-dimensional cokernel. Hence § has finite-dimensional
cokernel. dim H?(B,, §F) < oo. q.ed.

PROPOSITION 3. Under the assumption of Prop.2, H"(B,g&)=0 for
p=1.

PROOF. By shrinking G, w.l.o.g. we can assume dim Supp & <oo. Fix
p=1. Use induction on dim Supp & The case dim Supp F=0 is trivial.
Suppose the proposition is true for dim Supp § < d. Now assume dim Supp &
=d >0. Let Supp F=(U;X:)U(U;wsX;) be the decomposition into irre-
ducible branches, where dim X; < d and dim X,=d. Let =: C* — C be the
projection 7(z,,- -, 2,)=%2,. After a linear coordinates transformation in C"
we can assume that no X is contained in #~'(a) for any a<C. Let M be
the set of entire functions on C. Take f< M— {0}. Let @, :F—F be the sheaf-
homomorphism defined by multiplication by for and let ®,=Ker @, and

2,=Coker @,. Then dim Supp #; <d and dim Supp 8, <d. By induction
hypothesis

(6) HYB, &,)=HYB,,8,)=0 for ¢=1.

The exact sequence 0 ; ad & T/ Ry 0 (where a is the inclusion)

implies that H?(B,, ¥) = H*(B,,&/R,) by (6). The exact sequence 0 — F/ R,
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d & 2 0 (where 8 is induced by ¢,) implies that H?(B,,J/8&,)

=, H*(B,,J) by (6). Hence @, induces an isomorphism

) oF : HY(B, ) — H?(B,, ).

Suppose O0+#w< H?(B,,§). Define ®: M— H(B, ) by ®f)=¢fe) for
feM—{0} and ®0)=0. Then & is a linear injection by (7). dim.H*(B,,J)
=dimM =00, contradicting Prop.2. q-ed.

A proof similar to [6] gives us

COROLLARY 1. Under the assumption of Prop.2, § is generated on B,
by T(B,, &)

COROLLARY 2. Suppose § is a coherent analytic sheaf on a Stein space

X and G is a relatively compact open subset of X. Then & is generated on
G by I'(G, ).

PROOF. Follows from the fact that some open neighborhood of G~ in
X is biholomorphic to a subvariety of a ball in a complex number space.

g.ed.

COROLLARY 3. Suppose D is an open subset of a Stein space (X, D)
and @: X — C" is holomorphic such that (i) for some open neighborhood G
of D~ @ maps G biholomorphically onto a subvariety of some open subset
H of c" and (ii) @(D) is a subvariety in a ball B, in H. Then T(X,0) is
dense in 1'(D,D) with the topology of wuniform convergence on compact
subsets.

PROOF. Let  be the ideal-sheaf of @(G) on H. Since HY(B,, ¥)=0,
the natural map: I'(B,, ,0) — I(B,, .0/JN=I(D, D)) is surjective. This
means that the map a: I'(B,, ,0) — I'(D, D) induced by @|D is surjective.
Let 8: I'(C", .0) — I'(X, ©) be induced by .

I(C*, .0) (X, )
o,
I(B,, .0) (D, )

is commutative, where p and o are restriction maps. Since I'(C*, ,0) is dense
in I(B,, .0) (I.LF.9,[4]), I'(X, D) is dense in I(D, D). q.ed.



212 Y.-T. SIU

PROOF OF CARTAN’S THEOREM B. Suppose & is a coherent analytic
sheaf on a Stein space (X, O). We construct open subsets X, and holomorphic

maps ¢® : X —C™ 1 = k<oo, such that (i) X =\_J X, (ii) X,C C X,,,, (iii)
k=1

»® maps X,,, biholomorphically onto a subvariety of an open subset of C™,
and (iv) @®(X,) is a subvariety in a ball of C* By Cor.2 to Prop.3, there
exist sheaf-epimorphisms ®: D" —>F on X, for £=1. By Prop. 3,
H'(X,,Ker ¥*+9)=0 for 2=1 and s = 1. Hence

8 Pis: DXy, O*)-D(X,, §) induced by ¥+ is surjective for k=1
and s=1.

By Lemma 1 I'(X,, %) has a canonical Fréchet space structure for 2 =1. For
k=1 and s=1,

I'(X sy, Om1) ——— (X, D7)

:l;kﬂ‘l ";k. s+1
(X & ——> (X B)

is commutative, where the horizontal maps are restriction maps. By (8) and
Cor. 3 to Prop. 3,

©) (X4 &) is dense in I(X,,J) for =1 and s=1.
By Prop.3 H*(X,,F=0 for p=1 and k=1. Let I®={X,}k., for
k=1, and X={X,}n-;. Then HP(NEX®),F)=0 for £=1 and p=1, and
H'(X, &)=~ H(N®Z),§) for p=1.

Fix ¢ =1 and o€ ZY(N(%X), &) Let o®=¢|NX®). Then o® =3a® for
some a® e CT-{(N(E®), §). a® —at= e Z&-( N(E*-D), §).

Case g=1. Construct by induction on 2 8% e C'(IM(X®), ) such that 38

=g and sup 8% —B%-1| X, | #” <2-*: Choose 8" =a®. Suppose we have
3=j= -t
chosen B, ... B%-D Then a® —B%*-V js a section of § on X,_,. By (8)
and (9) there exists < [(X,, &) such that sup |l7—(a® —8%-0)| X,_,|$” < 2.
3=j=k 2

Set B® =a® —+. The construction is complete. Define B¢ C(MZ), ) by
B(X,c)=,£i>1}‘1 B™(X,). It is easily verified that 8 is well-defined and 38=0.

Case ¢ >1. Since a® —a%-D ¢ Z*-{(N(X*-9), F), there exists 8%~ ¢
CI(N(X*-1), F) such that §3%-1 =q® — - on N{X®). Define ¥ € C*"'(M %),

F) by Y=a® —§ (L mei 8™) on NIE®). 7 is well-defined and 8v=¢. qed.

PROOF OF CARTAN’S THEOREM A. Follows from Theorem B by [6].
q.ed.
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