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1. In [3] J.Schwartz has proved the following result.

Let T be an operator on a Hilbert space $ of more than one dimension.
Write T = A+iB, where A and B are selfadjoint, and suppose that the
imaginary part B of T  belongs to one of the classes C,, where 1 = p << oo.
Then the Hilbert space admits a proper closed subspace which is invariant
under 7.

The purpose ot this note is to show that the above theorem may be
generalized to an operator such as 7" is the sum of a normal operator A
with some spectrum condition and a compact operator B with some condition.
In fact, we shall show the following theorem :

THEOREM. Let T be an operator on a Hilbert space $ of more than
one dimension. Write T=A+B, where T is the sum of a normal operator
A, whose spectrum lies on a Jordan curve J, which consists of a finite
number of rectifiable smooth arcs, (it may well be the case that the spectrum
separates the plane), and a compact operator B, which belongs to one of
the classes C,, where 1= p<<oo. Then the Hilbert space admits a proper
closed subspace which is invariant under T.

Throughout the present note, an operator means a bounded linear operator
on a Hilbert space § which we assume to be separable. We denote by
o(T), o(T), 0(T), 0(T) and p(T") the spectrum, the point spectrum, the
continuous spectrum, the residual spectrum and the resolvent set of an
operator 1" respectively. For the sake of convenience, we shall list some
results on the classes C, ([2], Part 1I, Section XI. 9).

Let T be a compact operator on a Hilbert space and H = (T*7T)"*. Let
B, P s " * 5 My, =+ be the eigenvalues of H, arranged in decreasing order and
repeated according to multiplicity. We write u,(7) for the n-th eigenvalue



314 K. KITANO

of H. we write

1/p
1T, = {Z Dy} 0<p=co,

in case p= oo, |T'],, as usual, has the meaning |7T'||. = sup p;(T") = p,(T).
J
The class C, is the set of all compact operators 7" such that |7, is finite.

THEOREM A. Let T <cC,, where 1 = p<< oo, and let N, = N(T) be the
eigenvalues of T, repeated according to multiplicity. Then

@ [Zinmief” =1,
(b) if k= p, the infinite product
Sk(T) = E [(1+7\:i) exp ‘I -\ + ‘7\'22 ‘‘‘‘ + (?lk),f_:;hitl'}jl

converges absolutely,

() if k= p=k—1, there exists a finite constant K, depending only on
p, such that

18(T)| = exp{K,[|T||3} ,

(d) for each T, €C,, the function §(T +=2T,) is an analytic function
of =z.

THEOREM B. Let 1=p<<oo and T <eC, Let k=p=Fk—1, and let
8(T) denote the infinite product of the preceding theorem. Then the
operator 8, (T)YI+T)" depends continuously on T, and satisfies the inequality

18:(TYI+T)"|| = exp{Ke| T3} ,

where K, is a finite constant depending only on p.

Before going into discussions, the author wishes to express his hearty
thanks to Professor M. Fukamiya and Professor M. Takesaki for their valuable
suggestions and constant encouragement.

2. In order to prove our theorem, we need the following lemmas.

Now, we shall understand a smooth arc to be such that it has a continuous
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second derivative when parametrized with respect to arc length. We assume
that the curve J is positively oriented and, for a fixed Ay on J, J has a
parametrization A=g(s), 0 = s < I(J), in terms of arc length s from A,, g(0)=2n,,
9(s)=g(s+I(J)), and g(s) is continuous on J and g'(s), g”(s) are continuous
except the points A=g(s;), S < Sg+1, £ =1,2,-++,7 on J, where /(J) denotes
the whole length of J.

LEMMA 21. ([4]) Let J be as above. Then for each pair of the
points Ne=g(5), $; < Sa < Sjr1, Mg =g(s), Sx < g < Sis1> Sa < Sg on J and for
any sufficiently small number & we have a closed simply connected domain
D(s., sa) containing the subarc (g(s.), 9(ss)) of J in its interior such that

@) OD(sa 5p), boundary of D(sa.,ss), ts a rectifiable Jordan curve
traversing J at N, and Ng only,

(b) for each Ne3D(s,, s5)N{N; IN—g(s)| < &/4}, AN, J) = [ Mv—g(s.)]
and also for each N e OD(s.,s5)N {N; |AN—g(sp)| < &/4}, dN,J) = [A—g(ss)]

(c) max d(\, arc [g(s.), 9(sa)]) < €.

AeadD(+)

LEMMA 2.2. (due to T. Yoshino) If an operator T is the sum of a com-
pact operator C and an operator S, then

o(T) C o(S).

PROOF. Suppose Meo (1) and Mep(S). Then there exist unit vectors
z, €9 such that Tx, — Az, —0, because N <o (T). Here by the compactness
of C, there exists a non-zero vector ye< $ such that Cx, — y — 0, because if
y is a zero vector, then

ie., Meo(S) and this contradicts with M e p(S). On the other hand, A < p(S)
implies S—A is invertible. Let 2=(S—A)'y, then clearly 2 is a non-zero
vector and

2 +2ll = [(S=2)7H [(S=N) 2 + vl
= [S=M)7 [(T—N) 2, — (Cx =)l
= [(S=M) {1 Tz —Aza| + [Czu—yl} — 0.

Therefore,
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IT2=nz| = [Tz+Tz,| + [Tz, =z, + Az, +7z]

ie., Meay(T), this contradicts with N € o(T"). Thus o (T)Co(S).

LEMMA 2.3. Let T be a quasi-nilpotent operator which is the sum of
a normal operator and a compact operator, then T is compact.

PROOF. By virture of that a normal quasi-nilpotent operator is zero.
This lemma may be proved just in the same way as in the proof of Lemma

2.2 of [3].

LEMMA 2.4. Let f(z) be a function analytic in the unit disc and for
some p=1 the following condition be satisfied

Refley=(1—|=z[)"" for [z] <1.
Then, there exists a finite constant K, independent of =z, such that
| f(D] = KA-|z|)*"  for |z| <1.

PROOF. Let » be an arbitrary real value, satisfying 1/2 <r <1, then
using the Carathéodory inequality for the disc [2| <7, we have

) = fO = 211—r)* = Re fiO) 721
for |2| <. Thus we have
K,(1—-nr)" K,

for all |z|=2r—1, where K, (7 =1,2,3) are finite constants. On the other
hand, let = be an arbitrary point of the unit disc|z| <1, then there exists
the real value 7, satisfying |z|=2r—1, therefore, it follows that the right hand
side of the inequality (1) is equal to 2?*'K,(1—|z|)?"! + 2K,(1—|2]|) + K.
By p=1, we obtain the following inequality

| f(2)] = KQ—|z])*",

where K is a finite constant independent of z. The proof of Lemma 2.4 is
now completed.
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3. We return to the proof of our theorem. We shall divide the proof
into portions. Theorem follows immediately in each case where the following
condition is satisfied: (i) o, (7)== @; (i) o(T)~ @; (i) o(T) is disconnected.
Therefore, we may prove this theorem under the condition that o(7)
coincide with ¢,(7") and is connected. Since the operator 7" may be translated,
we may assume without loss of generality that either o(T)={0} or o(T) is
a connected subarc of J. In the case o(7T") = {0}, from Lemma 2.3, it follows
that the Hilbert space admits a proper closed invariant subspace under 7T, using
Aronszajn-Smith theorem ([1]). Therefore, we have only to show that there
can exist no operator T'=A+DB, where A is normal such that ¢(A)cJ and
BeC,, for some finite p=1, and o(7') is a connected subarc of J and £
admits no proper closed invariant subspace under 7. i

Let % be an integer such that k= p=%k—1. Let 3(\) = §,(—B(x—A)™).
By Theorem A, 8(\) is defined and analytic for all A< p(A) and satisfies
the inequality

18(\)| = exp[K{d(n, o(A)} 7],

where diy = d(\,0(A)) denotes the distance from A to the spectrum o(A) and
K denotes some finite constant. By Theorem A, we have 8(A) = 0 for every
M€ p(A). Thus we have (V) =exp{a;(\)}, where a,(\) is defined and analytic
in the interior of the Jordan curve J, which we denote by D,, and a,(A\) is
defined and analytic in the exterior of the Jordan curve J, which we denote
by D,. Then a;(A), (j=1,2) satisfy the inequalities

Rea;(\) = Kdy?.
Let 2 =¢,(A) be the conformal mappings of the domain D, onto the unit
disc and let A = ¥r;(2) be its inverse for j=1,2 respectively. Then a,(y;(2))
are functions analytic in the unit disc, which satisfy the inequality
Re a;(A) = Re a;(y4(2)) = K;(1—[z])7”
for some finite constants K; (j=1,2). It follows by Lemma 2.4 that
la;(pi()| = Kj(L—|=])™!

for some finite constants K; (j=1,2). Thus, returning back to the domain
D,, D, respectively, we find that

la, M| =K'di*t (j=1,2)
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for some finite constant K'. In particular,

Rea;(AN) = —K'dy ! (7=1,2)
so that

()™ = exp{K'dy7"7'} .

Since

A=A SMUI=Bhr—A)™)

(7\’ - T)_l = 8()\,) >

it follows by Theorem B that there exists a finite constant K, such that
(2) [A=T)""| = exp{K,di?} .

This growth condition of the resolvent of 7' near its spectrum o(7T) plays an
important role in our considerations.

LEMMA 31. Let T be as above. For each pair of the points N,=g(s.),
Ne=g(sg), where s, <sg on J and s, #s;, ss75;, (j=1,2,+++,n) we put

(3) &(Sa, Sg) = {x; W—=T) 'z is continuable to a function which is
analytic near the arc (g(s.), 9(ss))}

and )

(4) S(Sar 55) = {x3; W—=T)"'z is continuable to a function which is

analytic near the arc (g(sg), g(s. + ()} .

Then both &(s,,ss) and @(sa, sg) are closed linear subspaces of the Hilbert
space 9, invariant under T.

Proof of the first assertion of Lemma 3.1. Because both of the linearity
of &(s.,ss) and the invariantness under 7 are plain, we have only to prove
that &(s,,sg) is closed. Let x,<¢&(s,ss), and x,—x. Let RN, T :x,)
denote the analytic continuation of (A—7T)'x,, then for every aep(T),
R\, T :x,)—>(A—=T)"'xz. For any sufficiently small positive number &, let
Dy(s,+¢&, ss—&) be a closed simply connected domain containing the subarc
(g(s+€), g(ss—€)) of J indicated in Figure (%) in relation to given domain
D(-) in Lemma 2.1 (we can consider that D,(-) with sufficiently small o
has the same properties of D(-) in Lemma 2.1). Then R(,7T :x,) are
analytic in the interior of Dy(s,+&, ss—&). Here we define the function
such that
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QN :5.+E 5.—8)
m(\) = if N~ g(s.+E) and A #= g(sz—E&)
] 0 if n=g(s.+E or A= g(ss—E&)

where QA :5.+E,55—&) = exp[—exp{(A—g(s.+8&))7! &2+ — exp{—(AN—g(ss
—&) et WY 0, = argi-s-g'(s.+&) and 0, = argi-s-g'(ss;—E). Then, m(\)
is analytic and nonvanishing in the interior of Dy(s,+&, ss—&). We define the
function f,(\) on Dy(s.+&, ss—&) as follows:

m(\) R(n, T : x,)
fo\) = it A~ g(s,+8) and N # g(sz—&)
0 if N=g(s.+& or A= g(sz—8).

Then f,(A) are analytic in the interior of Dy(s,+&,ss—&) and strongly con-
tinuous on 9D (s.+&,ss—E), which follows from the inequality (2). By the
maximum modulus principle, {f,(A)} is a uniform Cauchy sequence with
respect to A, hence the limit function f,(A) is analytic in the interior
of Dy(s.+&,ss—E) and so

Zo(N) = fo(N) QN 2 50 +E, 55—8)7!

is also analytic in the interior of Dy(s,+&, ss—&). It follows that W—1)"'x
has an analytic continuation to a neighborhood of the arc (g(s.+¢&), g(ss—¢&))
for each sufficiently small & and hence to a neighborhood of the arc

(9(sa), g(sp))- Thus xe S(sa,s5). The assertion for the S(5a,55) may be
proved in just the same way.

J . y
HSpe)t 159056 )
355t) °¥ssep
4aete) ADs(5rE 3¢ )

\

F(SateVt L5g'5,0€) , 05558/

Figure (*)
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LEMMA 32. Let T be an operator as above, and let S(s,,ss), %(sa, Sg)s
QN :sg, so+I()) and Dy(sg, s«+IU(J)) be as the same as in Lemma 31. For
any vector x in the Hilbert space, the function f(\) is defined such that

QN sg, SaHIND)W—T)"'x
S = if N e€ODy(sp Sat+U(J)) — {g(se), g(sa+UJ))}
0 if AN=g(sp) or N=g(s.+I())).

If b(z) is any nwnerical-valued function, analytic in |z| <1 and continuous
on |z| =1 and if 7 is the conformal mapping from Dy(sg, s.+I(J)) to the
unit disc, then the contour integral

(5) v = [ o) flr () dx

belongs to the space S(s.,sg) of (3), where C, is the boundary of the unit
disc. Moreover, unless x belongs to the space S(s.,ss) of (4), there exists a
Sunction b(z) analytic in |z| <1 and continuous on |z| =<1 such that the
vector vy defined by (5) is non-zero.

Before proving Lemma 3.2, we notice that it implies our theorem.
Indeed suppose that 1" were an operator satisfying the hypotheses of Lemma
32. By Lemma 3.1, we have only to prove that &(s,ss) and €(s.,ss) are
non-trivial. 'We may assume o(7") lies on both arcs (¢(s.), g(ss)) and
(9(sp), g(s.+1(J))), because we can choose the pair of points A, = g(s.) and
Ms = g(sp) arbitrarily on J. This implies &(s., sg) = and @(sa, sp) = 9. Thus
we have only to prove that &(s,, sg)= {0} and é(sa, sg) 7 {0}. By Lemma 3.2,
S(Say 55) 7D, S(Say 55)7~ D imply S(sa, 55)7 {0}, S(sa, s0)7 {0} respectively.

ProorF OF LEMMA 3.2. Clearly, the function f{(7"!(2)) is continuous on
C,. Using the resolvent equation, we have

(w=T)" ) = (=N SN) = (p=N) 7 QN 2 5, S+ UDN—T) '

for pe p(T) N Ext Dy(sg, s.+1(J)), where Ext Dy(-) denotes the exterior of
the domain D,(-), thus

=Tyiy = [ HOSEED g _ [ KGO s st DD 1
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for the vector y of (5). By Cauchy’s theorem, the second term is zero. Of
course, we have used the inequality (2) to guarantee the convergence of our
integrals. Therefore, we have

(6) w1y y = [ POST) g

for the vector y of (5). Since the equality (6) is plainly analytic in
the exterior of Dy(sg, s.+U(J)), it follows that ye &(s,, ss). Next, we suppose
that the vector y defined by (5) is zero for each b(z) which is analytic in
|z| <1 and continuous on |z| =1, ie., for all such b(2)

f b(z) flr-1(z)) dz = 0.

Hence the vector-valued function f(v7'(z)) defined on C, must be the
boundary value of a vector-valued function analytic in |2|< 1 and continuous
on |z| =1. Therefore f(A) must be analytically continuable in the
interior of Dy(sg, S.+4(J)). Thus (A—T)'x must be continuable onto the
arc (g(se), glsa+4(J))). Thus, xe &(s.,, sg)- The proof of Lemma 3.2 is now
completed.

As a immediate consequence of the above theorem and Theorem 9 of [4],
we have the following corollary.

COROLLARY 33. If T is the sum of a hyponormal operator A,
whose spectrum lies on a Jordan curve J, which consists of a finite number
of a rectifiable smooth arcs, and a compact operator B, which belongs to
one of the classes C,, for some finite p=1, then the Hilbert space admits
a proper closed subspace which is invariant under T.

In Mathematical Reviews (Vol. 26 (1963), #1759), L. de Branges states
that the method of [3] may be applicable in other cases, for instance when
T*T—1I is compact. In this direction, we have the following corollary via
the polar decomposition.

COROLLARY 34. If T¥*T—1I is an operator of the class C,, for some
finite p=1, then the Hilbert space admits a proper closed subspace which
is invariant under T.
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