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S

Introduction. Let E, ——~ X ——Y be an extended fibration. Then the
1-1 and onto correspondence &;': 7 (V, f) — n(V, E,) is defined easily (section
2). Moreover, let ¥ be the pair-map (g, g.): fi — f: in (1. 3); then the 1-1
and onto correspondence &3': my(V, V) — n(V, f,,,) is defined (section 3).
The object of this paper is to establish excision theorems on the pair of
maps by applying &' and &'. These excision theorems are described in
section 5.

1. Preliminaries. Throughout this paper we consider the category of
spaces of the homotopy type of CW-complexes with base points denoted by
%, and all maps and homotopies are assumed to preserve base points.

PX is the space of paths in X emanating from %, and QX is the loop
space. If f: X —Y is any map, Y U,CX is the space obtained by attaching
to Y the reduced cone over X by means of f. X is embedded in CX by
z —(x,1), and 32X is the reduced suspension. X XY is the Cartesian product
and XVY = XX % U % xY. Then the smash product X#Y is the quotient
space X xXY/XVY.

By applying the mapping track functor, any map f: X — Y is converted
into a homotopy equivalent fibre map p: E—Y,

B xSy
1.1 ‘:\ ~ lh comm.?
E— -l .y,
where E = {(z,n) e XXY'| flzx) = 5(1)}, p(x,n) = n(0),

E; = {(x,n) e X X PY| flzx) = n(1)}, i=the inclusion map,
Jrlx,m) =z, k(x) = (x,7,) and 7,(t) = flx) for ze 1,
~ in the left diagram means homotopy commutativity.
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f

Then the sequence E,—]f—>X ——7Y is called the extended fibration.
Dually, by applying the mapping cylinder functor, any map f is con-
verted into a homotopy equivalent cofibre map g: X — M,.

x21.m L.c
comm. ‘k ~ H

fi,if

(1.1)

S

where M, = the mapping cylinder of f, g(x) = (z,0),
k(x,t) = flx) for (x,£)e X XI and k(y) =y for yeY,

then the sequence X—I»YLCI is called the extended cofibration.
The join X*Y of X and Y is the quotient space obtained from X XIXY
by factoring out the relation: (z,0,y,) ~(z,0,y,) for all y,y,€¢Y and

(x,1,9) ~ (x5, 1, y) for all z,z,€ X. Let F—Z>E—£>B be a fibration and

let »: EU,CF — B be given by r|E=p and r(CF)=x.
Then we obtain

PROPOSITION 1.2. [2; Theorem 1.1]. There exists a weak homotopy
equivalence w: FxQB — F,, where F, is the fibre of r and given by
F, = {(a,B) € Ex PB| p(a) = B(1)} U(CF xQB).

We shall denote by j, the composite of w with the projection F, —

E U ,CF; then the triple Fx QB A»EU,CF—r-»B may be regarded as a
fibration [2]. We consider the diagram

1.3)

which is homotopy commutative (commutative). Such a pair of maps (g;, g,)
is called a transformation of f; to f,. If (1.3) is commutative, (g, ,g,) is called
the pair-map and we write it as (g, g2): f1 — fe-

2. The correspondence &*': =(V,f)—=(V, E,;). Let (g, g.) be a trans-
formation of f; to f;, and let F,: g;ofi=~fs09, be a fixed homotopy.
And we consider the following diagram
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B 2. N p
. 1) '!]1,2 ] ‘gl =~ l'gz
.Ef’ Jn X f2 ,

where g1,: E; — E;, is defined by g:.(a,8)=(g:(a),8) for ac A, B¢ PB with
fil@=BQ), and B € PY is given by

] 9:8(2s) for 0=s5=1/2,
1 Fy,_(a) for 1/2=s=<1.

Then the left diagram in (2.1) is commutative.

S

Now let E, Jrx I, Y be an extended fibration. Then we consider the
correspondence &*': m(V, f) — n(V, E;) defined as follows:

For any element {(a,,a,)} € 7,(V,f), @;: V—>PY is defined by a,(v)(s)
= ay(v, 5); then &'{(a;, a;)} = {Uwnan}> Uta,an(¥) = (a1(v), @y(v)). Thus defined
&' is well defined, and 1-1 and onto.

PROPOSITION 2.2. Let (g, 9:) be a transformation of f, to f, with a
fixed homotopy F, or a pair-map. If g, and g, are homotopy equivalences
then there exists a 1-1 and onto correspondence n\(V, f) — mi(V, fo).

PROOF. We consider the sequence

ef_.l gl,z* Ef:
7V, f) —— =V, E;) —— a(V, E) —— =V, f2),

where &, is the inverse correspondence of &;!. Since g,, is the homotopy
equivalence by [8; Lemma 6], g,.4« is 1-1 and onto. Hence &0 gy 24 © &7 is
the desired correspondence. If (g,, g.) is the pair-map then we have (g, g»)«
=&/ 0 g1 © 8;,1 .

If we now consider the pair-map (1,¢,): fi—f: =g:°f1 and (g,,1): fi
=faic g1 %

A1 .4 A9 ,x
fi fe=g:ofi fi=fogq sz

g:

then we have
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COROLLARY 2.3. If g,: B— X is a homotopy equivalence, then

1, g2)x: m(V, f) > m(V, 910 /)
is 1-1 and onto.

COROLLARY 24. If g,: A— X is a homotopy equivalence, then

(91, Dx: m(V, fao 9) > m(V, f2)

is 1-1 and onto.

COROLLARY 25. If fi=f.: A— B, then there exists a 1-1 and onto
correspondence 7V, f1) — m(V, f2).

REMARK. (i) Corollary 2.3 and 2.4 are extensions of Proposition 2.2 and
2.3 in [1], respectively.

(ii) We may define the dual 1-1 and onto correspondence &': =,(f, W)
- ”(C,f ’ W)'

3. The correspondence &;': 7,(V,¥)—n(V, f1,). We consider the pair-
map ¥ =(g,, g») : f1 = f:- Then any element { (Z:Z: }e w(V,¥) is represented

by the commutative diagram

Ve— a: A
TSN ep—a Ty
cv Ve J{ b

%CZV 6: \

L
(3.1)

where (C: CV—C%W and Ci: CV —C*V are given by (v,t) —(v,¢,1) and
(v,s) — (v,1,s), respectively. Maps b,: V—PX and %,: CV—>PX _are
defined by &,(v)(s) = by(v,s) and by(v,2)(s) = by(v,t,s), respectively. The

correspondences

&' 71'2(V, \I’) —m(V, fxz) ’ f;.z : Ea, - Ean >

are defined as follows: &{(592)} = (Utwsss Uwan)} € 7V, £u), where Utaay(2)
= (a,(v), (), Utaw(®, ) = (as(v,t), b5(v,2)). Then the "definition of &' is
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well defined, and if (Z;Z:) (Zigz) then 8;1{ (Z;g:)} = 6‘;‘, Z;Z:)}
PROPOSITION 3.2. &': my(V,W¥) — m,(V, f1.2) is 1-1 and onto.

PROOF. First we shall prove that &' is onto. For any {(f; g)} € m,(V, f1,5)
we consider the commutative diagram

f E iﬂl

\%4 o1 PX

*‘cv 9 | Mgp o | PL by
1 ]I lPX PY
A a[ g % fi

where i,(a, ®)=w for ac A, w € PX and ¢,(b,n)=n for be B, n< PY.
Then maps a,: V—A4, a,: CV—B, b,: CV—X and b,: C*V ->Y are
defined as follows:

a, =joof, @ =js,°g,
bi(v,5) = (i, ° fV)Xs)
and bs(v,2,5) = (45, © g(v, £))(s)-

Then we may show that the diagram (3.1) is commutative, and we obtain

& { (zlg“)} {(f, 9)}. Thus &' is onto.
Next we shall see easily that &' is 1-1.

REMARK. Also we may define the dual 1-1 and onto correspondence
&' my(¥, W) — my(f1, W), where f1,: G, —C,.

4. Transposition. We recall the notation of the transpose of a map [1;
p-291]. In the diagram (1.3), the transpose of the pair-map ¥ = (g1,9:): f1
— f, is the map ¥* = (f1,/2): g1 — g:- Then the 1-1 correspondence between

maps ®—¥ and maps ®" —¥7 is given by the transposition Z‘Zﬂ>—>(“1bl)
‘ 1v2

agbg >

where ®=(,C) (cf. (3.1)).
This correspondence induce a 1-1 and onto correspondence T,: (P, ¥)
— 7(®7,¥7). Let u: C*V - C?V be the homeomorphism given by u(v,t,s)

= (v, s, t); then (% zlt) induces a 1-1 and onto correspondence 7,: 7(®D,¥)—
(D7, ¥), where ®=(;,«C). And we get the 1-1 and onto correspondence

r=ror w0 - mV, ) given by 7{(Fe) = {(45 )] for {(Bip))
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e my(V,W¥).

Now we consider the following diagram induced from (1.3):

E,, 2. g, T2 g,

jﬂ:.l . jﬂl jﬂl
Jfl fl B

lgl,z ] l gi g2
Ef' ]fl X f‘z I’ s

where  E; .= {((@, @), (8, p)) € E, X PE,| g:(a) = (1), fi(a) = B(),
So(a(s)) = p(1,s) and p(s, 1) = g:(8(s)},

E, ., = {(a,8), (o, P)) € E; X PE.| g:(a) = o(1), fi(a) = BQ),
fu(o(s)) = P(s,1) and p(1,5) = g2(B(s)},

p,p: I#+I —Y,, and maps set as follows:

Fisla, ©) =(fi@), @) for acA, ocPX with o'(s) = fi(e(s)),
g15a,B) = (g:(a),B8) for a<A, Be PB with B(s) = g:(8()),
jra,B) = a, ju(z,n) = z, jr,.(a, @), (8,p)) = (a, @),
Jola, ©) = a, ju(b,n) = b, j,.(a,B), (e, P)) =(a,B).

Maps d: E;,, — E,,, and d’: E, ,— E;,, defined by

d((a, ®), (8,p)) = ((a,8), (w, po)) and d*(a, B),(w, P)) = (@, ®), (8, Pa)),

respectively, are homeomorphisms, where o: I#I—I#1I is defined by
a(s,t) = (,5).

PROPOSITION 4.1. dy: n(V, E;. ) — n(V, E,,,) is equivalent to v: ny(V,¥)
— 7y(V, W) in the sense that the diagram

d
2V, E,,) ———> n(V,E,,)

& &,
7V, f1) (V5 91,3)

&t &7
7V, W) — > (VW)

is commutative.



302 H. ANDO

PROOF. For any element {(%'%2)! ¢ m,(V,¥) we see that
b.b,

-1 -1 a1 Q2\| _ g1 -1 [{(aby
. o&pomeo {(b1b2)} = Guro b {(%bzu)}
= &mlUaans Uoioa)

= {U(U(al-a!)'v(bhb!u))} 4

where U(U(.,,,a,).%.,b,u))(v)=(Um:a.)('v), Utauw()), U(bx.bgu)(v)(s)’:(bl(v’ s), byu(v, s)),
and b,u(v, s)(t) = by(v, t, s).
On the other hand,

- — a -
dy o &1, 0 &1 { (b,'gf )} = o &l Wnin Ueean)]
= d*{U(U(q,,,b,)'U(ag,bx))}
= {d ° U(U(al,bl)'v(a:-bl))} ’

and U(U(a,,,,l).v(a,,b,))(v) = (Ua,0(0)s Utan (1)) = ((@1(0), 5y(0)), (@o(v), E(‘U))) where
5.: V—>PX, a,: V—>PB, b,: V— P(PY) and 5,: CV — PY are maps such
that  B,(v)(s) = bi(v, ), @y(V)E) = ay(v,t), by(v)E) = by(v,t) and By(v, £)(s)
= by(v,t,5).

’i‘here exists a homeomorphism 6 : Y =~ (Y?)! defined by 6(f)(&)(s)=1(¢, s),
and hence 5,(v) may be replaced by §-25,(v) such that (6~5,(v))(¢, s)=(B(v))(£)(s)-
Thus we have

do U(U(a,,b,):u(ag,h))(v) = d((a,(v), b:(v)), (@5(v), 67 bzz('v)))
= ((:(v), @x(0)), (B:(0), 67 by(v) 0)

such that (671 5.(v)0)(s, ) = (67 b (V))(E, 5) = ba(V)(EX(S) = Bo(w, £)(s) = bo(w, 2, ).
Therefore we have the desired result.

5. The excision theorems. In this section we consider the excision
theorems on pair of maps. Let ¥, ¥’ be pair-maps

A B fi
)191 4 ng
——— )

1>.,

—_

A B’
A u‘l' g2

'’ ﬂ' ’
———*% ,

ShE=
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ll lg

and 1
et mm

) be a map from ¥ to V.
2

PROPOSITION 5.1. If A=(,0): i—=fi and ® = (m,my): f, —f,
and 1,1, my, and m, are homotopy equivalences, then (A,©®)y =<i‘1 %z) :
17182/ %

7y (V, V) = z,(V, ¥) is 1-1 and onto.

PROOF. We consider the following commutative diagram

n,

EUI 01’

E
fl,z lﬁ:z
Ny

E0| (]

where fi; and f; are defined as before by fi, f2 and f, fi, respectively, and
n, and 7, are defined as follows:

na, o) = (l(a),®) for a<cA, wc PX with &(s) = m,(e(s)),
ny(b, n) = (I(b),5) for beB, e PY with #%(s) = my(y(s)) .

Then 7, and 7, are homotopy equivalences by the assumptions and we
obtain the commutative diagram

(”1, nz)*

ﬂl(V,f:,z) —_— 771(V,f1:z)
&t &t
A, ® ,
ms(V, ) (A, O n(V, ¥ ,

and (n;,n,)x is 1-1 and onto by Proposition 2.2; hence (A, ®)4 is 1-1 and onto.

COROLLARY 52. In Proposition 5.1, if l,,1, are the identity maps
and m,, my are homotopy equivalences, then (1,0)y: 7,(V,¥)— n,(V,0 o ¥) is
1-1 and onto.

Similarly we have
COROLLARY 53. In Proposition 51, if m,, m, are the identity maps

and 1,1, are homotopy equivalences, then (A,1)y: moy(V, ¥ o A)— 7y(V, V)
is 1-1 and onto.
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REMARK. Corollary 5.2 and 5.3 are extensions of Proposition 6.27and
6.3 in [1].

Let ¥ be a weak fibration (i.e., g; and g, are fibrations) with fibre frr:

fX,Y

Fy — > Fy
w |
AT B
9: \U’W g:
X LY

Then there are excision correspondences
&y: m(V, frr) — m(V, V),
82,]1 M ”2(V, H) —— ﬂg(V, _f:_))

defined as follows: Let IIy and ¥* be pair-maps such that

Fy _fer Fy

* —_— X —’-fz——-> Y

For any element {(i“?)} € my(V,Ix) = m(V, fxp), 8""'{(?*1"1*2)}
={<jxfl jl;“’)} € my(V, ¥), and for any element {(bl;?)} e my(V, ID), 82-11{ Z:gﬁl’
R

We consider the following diagram

*

?

G
=7
\
€x

o
X aﬂl ja. ’ ”

(%‘Y 80, \ﬁQ‘E jﬂs f B X\f;

Oy

E\f X. \fz

il

Y

ey
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where eda) = (ja),*) for aeFy, er(b) = (jr(b),%) for beFy,
90(0) = (+,0) for @<OX,  By(m) =(rn) for neqy,

and ey, ey are homotopy equivalences [2]. Then we have the commutative
diagrams

(ex er)x A, 1)*

TV, frx) —— m(V, f19) wy(V, II) —— =(V,1II')
&y &' &n &,
7(V,¥) = mV,¥) , mV,f)) =——= n(V,0f) .

where A = (er,er): frr— fis and II' = (J,,J0) : fra—S1-

In the above diagrams, since &' and (eyer)x are 1-1 and onto we get
that & ¢ is 1-1 and onto, and since II' is a weak fibration with fibre Qf,
the excision correspondence & p is 1-1 and onto, and also (A, 1)y is 1-1 and
onto by Corollary 5.3. Hence &y is 1-1 and onto.

The results obtained above are summarized as follows :

THEOREM 1. If ¥ is a weak fibration as before, then the excision
corres pondences

61,1:: ﬂl(V,fX,Y) _— ﬂg(V, \I,) >
&u: m(V,II) —— my(V, f2)
are 1-1 and onto.
REMARK 1. Theorem 1 is an extension of the dual Theorem 6.5*% in [1].

REMARK 2. Note that Theorem 1 and results in the preceding sections
can be dualized.

Eckmann and Hilton defined homology groups of maps and pair-maps
[1],[3]. If f and ¥ are a map and a pair-map, H(f) and H(¥) are defined
and Abelian for all gq.

S b4

Now let P—>Q-——F be a cofibration; then the homology excision
homomorphism &f,: H,(f) — Hy(F) is given by

&z, y) = py for xzeCoy(P), y<Co(Q),

hereafter we use the same symbol for a map and the chain map which it
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induces. It is well known that &, is an isomorphism for all gq.

S

z
Next let P—2>Q—L- C; be the extended cofibration, where f is any
map. Then by (1.1) we obtain the commutative diagram

HP) —L s v —T s H

Ey L, B
H(M;)—2— Hyq,)

Hy(P) —**—

k# . ‘ Egaf
H,(Q) > H(Cy)

where each Tow is homology exact sequence and %y is an isomorphism and

S

H,(P)

P M f—»Cf is the cofibration. By the five lemma we deduce that (1, &),
is an isomorphism, and we have easily

& =&l o (LA : H(f)=H,C,) forall g,

where & is defined by &z, 2) = i,z for £ C,_,(P), z< C(Q).

Particularly, let P—f;»Q—vF be the cofibration as before; then &I,
=&, o (LK = ky' o &7

H(f) —— HyF)
](1, e e
&,
H,(g;) —— H/C)) ,

where % is determined by 1 and %, and a homotopy equivalence [3; Corollary
3.71.

Let ¥ = (g1, 9:): fi—f: be a weak cofibration with cofibre frr or an
extended weak cofibration with cofibre f, (¥ is any pair-map):

Ji

A B A — B
91 g jgl g:
x I,y x .y
i iy lz,, li,,,
. fxr
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where 7,(i,) is an inclusion map and f, is given by f.(z)= fu(x) for
ze XcC, and fAa,t) = (fi(a),?) for ac A.
If ¥ is the weak cofibration, the homology excision homomorphism

&y : H(V) — Hfzy)

is defined by &fy(a, b, x,y) = (i,x,1,y) for ac C,_,(A), beC,_(B), < Cpy(X),
y e C(Y).

If ¥ is the extended weak cofibration, the excision homomorphism
éf*lr : Ha('\I,) - Ha(fc)

is defined by &y(a, b, x,y) = (i,x, isy) for aeC,_y(A), be C,o(B), z<C,(X),
ye C(Y).

THEOREM 2. (i) If ¥=(g1,9:): f1—f2 is the weak cofibration with
cofibre fxy then

&y H(W)=H/(f xy) for all q.
(ii) If ¥ is the weak cofibration with cofibre f, then

&y : H(V) = H(f) for all q.

PROOF. (i) Consider the commutative diagram

, [ J e]
e H1g) LI gy T meny P b ) —
= | &, - = | &, 8:’ o = | &
= Srrs = J — 3 -
- a(Fm) — Ha(Fa) I a(fX.Y) _— H—I(Fa.) _ ,

where the upper and lower rows are exact sequences of W7 and fyr,
respectively, and 8;,",1 is defined by Efﬂ(a, z,b,y) = ({1x,1,y) for aecC,_y(A),
z2eC (X)), beCy(B), ye C(Y). Then by using the five lemma we obtain
that &7,z is an isomorphism for all g. The chain map 7: C(¥)—C(¥") is
defined by 7(a, b, x,y)=(—a,z,b,y) and a chain isomorphism; hence  induces
a homology isomorphism 7y : H(¥)= H(¥") for all g (see [1], [3]). Since
&, = war o Ty, &, is an isomorphism for all q.

(i) We consider the commutative diagram
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1»J2 J a 1»J 2
Hgy Yo% gy b 2 b gy Yol g ) —
= 82 g1 = 8_21,]01 82 3T = 82701 ; g—fﬂx

fen J o f

—’Ha(Cﬁ)——’Hq(Co.)—_) Ha(fc) _'_’Hq—l Ca.) _ﬂt) Ha—l(Ca )

where the upper and lower rows are exact sequences of W7 and f,, respectively,
and &7 e 1S defined similarly as &l,r- Then &7, and &7, are isomorphisms,

and hence by the five lemma 82_ 4o is isomorphism for all g. And since &f

Z—f oT © Tibs &7, is an isomorphism for all q.
By Theorem 2 (ii) we have easily

COROLLARY 54. If W is the extended weak cofibration, then the
sequence

1,92 a1 a. ac
) 99 ppy Goolals gy O

H, (f)) —

is exact, where Oy, = Oy o & 7.

The Whitehead theorem [5; p. 167] may be rewritten as follows:

LEMMA 5.5 (Whitehead). In the sequence E, X f Y Cy, () if
X and Y are arcwise connected and E, is (n—1)-connected (n > 0), then C,
is homology n-connected. (ii) If X and Y are simply connected and C, is
homology n-connected, then E; is (n—1)-connected.

LEMMA 5.6 [7; Theorem 2.1]. Let ¥ be the pair-map (9., 9,): f1 —fs
in (1.3) such that A,B,X and Y are 1-connected, n{g,) =0 for 0 < q<m

(m>1), and =n(f;) =0 for 0<q <n(n>1). Let (A) and (B) be the
JSollowing statements :

A) HW) =0 for g=r, (B) n(¥)=0 for 1<g=r.

Then if 1<r=m+n—2, (A) implies (B), and if 1 <r<=m+n-—1, (B)
implies (A).

Let ¥ be a weak fibration with fibre fyy as before, and we assume that
A, B, X and Y are l-connected, g, is m-connected (m > 1), f, is n-connected
(n>1), Y is (r—1)-connected (r > 1), and #(¥)=0 for g=1! (I > 1).
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Consider the following diagram

Forox 2% ooy
i Jja
.7 C,, PN C,,
T

X fi Y

where j,, s, 7z and 7r are maps given in section 1 [2], and 7‘= fuUCfir
Then the upper diagram is homotopy commutative (c.f. [2; Proposition 1.3])
and the lower diagram is commutative.

PROPOSITION 58. frr*QJf, is Min.(m+n,l+r—1)-connected.

PROOF. Since frr* Qf; = (1% Qfy) o (frr* 1), we shall prove that 1+xQf,
and fyy#*1 are (m+n)-connected and (/+r—1)-connected, respectively.
Now we introduce the homotopy commutative diagram

1
Frx QX —*% Fyx QY
wx Wy
2(1#01,)

E(FX# ‘Q'X) - E(Fx # \QY) —_— E(Fx# \QY) U S(1#0Qf) CZ(FX#QX) ’

where w’s are maps defined in [9; p.134] and these maps are homotopy
equivalences by Proposition 1.2, and the lower row in the diagram is the
extended cofibration. Then we have :

S(Fx # QY) Usasory CE2(Fr #20X) = 2((Fx # QY) Uigas C(Fx # 0X))
= S(Fx # (QY Uq, CQX)) (ci.[10])
= Fx* (QY Uq, CQX),

where X =Y implies that X and Y have the same homotopy type. Since
QY Uy,CQX is homology (n—1)-connected (see Lemma 5.5) and simply
connected, we see that QY U o,CQX is (n—1)-connected, and also Fy is (m—1)-
connected. Hence Fy#* (QY U q;,CQX) is (m+n)-connected. On the other hand,
we get H(1+Qf,) = HEAH#Qf,) = H(Fxr* (QY U g, CQX)) for all q. Hence
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1% Qf, is homology (m+n)-connected, and the Whitehead theorem [5] we
deduce that 1xQf, is (m+mn)-connected. Similarly, frrx1l is ((+r—1)
connected. Therefore we have the desired result.

Now we introduce the commutative diagram

=T

a7 —s Ty (7r)

&y &
Uy

7 E: ) —  wfE,)

Wy w,

r(Ferax) =Y ooy

¥

where B? = (£, £.): rx—7r, and u is determined by f and f2 and w's are
maps given by section 1 [2]. Then &}, &7, w,, and w,, are isomorphisms,
and frr*Qf, is Min.(m+n, I4+r—1)-connected, E* is Min.((m+n, [+r—1)+1)-
connected ; hence so is B = (r5,7¢): f— fo. Since f, is n-connected and rr
is (m—2)-connected [2], and Min.(m+n,l+r—1)+1<m+n+2, we may
apply Lemma 5.6 to the pair-map E in (5.7), and we have By = (ry, 7r)g:
H(f) — H{f,) is monomorphic for g =<Min.(m+n, [+r—1) and epimorphic
for ¢ =Min. (m+n, [+r—1)+1.

Now the homology excision homomorphism &% : H(II) > H(f;) defined
by &h(=, y,a,b) = (9.4, ;) for < Cp(Fy), y € Ci(Fy), a < Cpi(A), b C(B).
If we consider the extended weak cofibration II with cofibre f, then &Fy:
H(II) — H{(f) is isomorphic for all g, and we have &% = By o0&y Thus
the results obtained above is described as follows.

THEOREM 3. Let ¥ be a weak fibration with fibre fxy:

fIY

Fx _—> FY
J]x ‘U’H l]r
S
A —-— B
g1 ‘U’W ‘[gz
X .f‘z
— 5 'Y

and we assume that
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A, B, X and Y are l-connected, g, is m-connected (m > 1),
f2 is n-connected (n>1), Y is (r—1)-connected (r > 1),
7(¥) =0 for ¢g=1 (I>1).

Then the excision homomorphism

87’51 : Ha(H) - Hq(fz)

is isomorphic for g =Min.(m+n, l4+r—1) and epimorphic for g = Min.
(m+n,l+r—1)+ 1.

LEMMA 59 [6; Lemma 4.1]. Let f: X—Y be a map, and if the
induced homomorphism fy: H(X) —> H(Y) is isomorphic for q <N and
epimorphic for ¢ = N, then f*: (Y, W)—>n(X,W) is 1-1 for = (W) =0,
g = N+1 and onto for (W) =0, ¢g= N.

COROLLARY 5.10. Under the assumptions of Theorem 3, the excision
correspondence

&t 7f1(fz, W) — my(II, W)

is 11 for n(W)=0, g=Min.(m+n,l+r—1)+2 and onto for w (W) =0,
g =Min.(m+n,l+r—1) + 1.

PROOF. We consider the following commutative diagram

A h B
N, 7 N,

N\ 9: xC 7>
e o
/rx.f; ifg ‘/’;:

X Y c,

where C;=C;, U7 CC,, and C,=Y U,CX, and f=f, UCfxr and 7=ryUCrx.
Then we obtain the commutative diagram

& ~ &
H{M) —— H(f) —— H(C3)
# _ ;:#
8231'[ eff:

Ha(H) —> Hq(f 2) —_— Hq(cfa)

—
=)
o
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Since €&ln, &7 and &, are isomorphic we obtain 7s is monomorphic for
g=Min.(m+mn,l+r—1) and epimorphic for ¢ =Min.(m+n,l+r—1) + 1.
Hence by Lemma 5.9 we get 7*: n(C,, W) — z(C7, W) is 1-1 for z(W) =0,
g=Min.(m+n, l+r—1) +2 and onto for = (W)=0, g=Min.(m+n, [+r—1)+1.

Next if we consider the following commutative diagram

/-1 /-1

BLW) -2 2(FW) -2 x(Cr, W)
=k ;'*

=1

2. 8
(1, W) &- (fo, W) —2— 2(C, W),

then &' &' and &' are 1-1 and onto (see remarks of section 2 and 3).
Therefore we have the desired result.

[11
[21]
[3]

e

e

SN0 o

5 © ®
e b b d e b
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