Tôhoku Math. Journ. 21(1969), 144-151.

A NOTE ON INVARIANT SUBSPACES

KOH-ICHI KITANO

(Received October 28, 1968)

In this note the following theorem will be proved. We base our arguments on T. A. Gillespie's paper [4], F. F. Bonsall's lecture note [2] and P. Meyer-Nieberg's paper [5]. For the sake of completeness, the proof below repeats the relevant arguments in [4].

THEOREM. Let X be a normed linear space over C (the complex number field) of dimension greater than one or over R (the real number field) of dimension greater than two and let T be a bounded linear operator in X such that $\liminf \|T^n e\|^{1/n} = 0$ for some non-zero vector e in X. If the uniformly closed algebra generated by T and the identity contains a nonzero compact operator S, then T has a proper closed invariant subspace.

In [1] the present theorem is proved in the case X is a Hilbert space over C.

We need the following notations and some results. X will denote a normed linear space over K (= C or R); we assume if K=C, dim X > 1 and if K = R, dim X > 2; an operator means a bounded linear operator in X and a subspace means a closed linear manifold. In order to prove the existence of an invariant subspace, there is no loss of generality in assuming the existence of a unit vector e in X such that $\liminf ||T^n e||^{1/n} = 0$ and the vectors e, Te, $T^2e, \dots, T^n e, \dots$ are linearly independent and have X for their closed linear span, i.e., if let E_n be the linear span of $\{e, Te, \dots, T^{n-1}e\}$, then $X = \bigcup_{n=1}^{\infty} E_n$ (cf. Lemma 3 of the present note).

(i) If E is a non-empty subset of X and $x \in X$, the distance from x to E, d(x, E), is defined by $d(x, E) = \inf\{||x-y|| : y \in E\}$.

(ii) Given a sequence E_n of subspaces of X, define $\liminf E_n$ to be

 $\liminf E_n = \{x \in X \colon \lim d(x, E_n) = 0\}.$

It is clear that $\liminf E_n$ is a subspace of X and $\liminf f_{j(n)} = \liminf E_n$ for any subsequence $\{j(n)\}$ of $\{n\}$. If for every $n \ge 1$, G_n is a subspace of F_n , then

$$\liminf G_n \subset \liminf F_n.$$

(iii) Given a finite dimensional subspace E of X and $x \in X$, there exists a point $u \in E$ such that ||x-u|| = d(x, E). Each such u we call a nearest point of E to x.

(iv) Given finite dimensional subspaces E, F with $E \subset F$ and $E \neq F$, the canonical map $x \to x'$ of F onto F/E is a bounded linear map of norm 1 and attains its bound, since F has finite dimension; hence there exists $v \in F$ such that ||v|| = 1 = ||v'|| = d(v, E). We call each such v a unit vector orthogonal to E. In the sequel, let e_n be a unit vector in E_n orthogonal to E_{n-1} .

LEMMA 1. Let T be an operator given in the theorem. Then there exists a subsequence $\{j(n)\}$ of $\{n\}$ such that

$$\lim_{n\to\infty} d(Te_{j(n)}, E_{j(n)}) = 0.$$

PROOF. Since E_n is the linear span of $\{E_{n-1}, T^{n-1}e\}$, for each integer *n* we have

$$e_n = \alpha_n T^{n-1} e + f_n$$

with $\alpha_n \in \mathbf{K}$, $\alpha_n \neq 0$ and $f_n \in E_{n-1}$. Thus we have

(1)
$$e_n \equiv \alpha_n T^{n-1} e \pmod{E_{n-1}}.$$

By the definition of E_n , $TE_{n-1} \subset E_n$, this gives

(2)
$$T^r e_n \equiv \alpha_n T^{n+r-1} e \pmod{E_{n+r-1}}$$

for $n \ge 1$, $r \ge 1$. Also, replacing n by n+r in (1), we have

(3)
$$e_{n+r} \equiv \alpha_{n+r} T^{n+r-1} e \pmod{E_{n+r-1}},$$

and so, by (2) and (3)

(4)
$$T^{r} e_{n} \equiv \frac{\alpha_{n}}{\alpha_{n+r}} e_{n+r} \pmod{E_{n+r-1}}$$

K. KITANO

for $n \ge 1$, $r \ge 1$. We note that, since $d(e_n, E_{n-1}) = 1$, it follows from (4) that

(5)
$$d(T^r e_n, E_{n+r-1}) = \frac{|\alpha_n|}{|\alpha_{n+r}|}$$

for $n \ge 1$, $r \ge 1$. On the other hand, by (2)

$$d(T^r e_n, E_{n+r-1}) = d(\alpha_n T^{n+r-1} e, E_{n+r-1}),$$

that is,

(6)
$$d(T^{n+r-1}e, E_{n+r-1}) = \frac{1}{|\alpha_{n+r}|}$$

for $n \ge 1$, $r \ge 1$, therefore we have

$$d(T^n e, E_n) = \frac{1}{|\alpha_{n+1}|} \qquad n \ge 1.$$

We also have

(7)
$$||T^n e|| \ge d(T^n e, E_n) = \frac{1}{|\alpha_{n+1}|} \qquad n \ge 1.$$

By hypothesis, $\liminf \|T^n e\|^{1/n} = 0$, so we see that

$$\liminf d(Te_n, E_n) = \liminf \inf \frac{|\alpha_n|}{|\alpha_{n+1}|}$$
$$\leq \liminf \left(\frac{1}{|\alpha_{n+1}|}\right)^{1/n} \leq \liminf \|T^n e\|^{1/n} = 0$$

Thus, there exists a sequence $\{j(n)\} \subset \{n\}$ such that

$$\lim_{n\to\infty} d(Te_{j(n)}, E_{j(n)}) = 0.$$

This completes the proof of the Lemma 1.

The following lemma is proved in [5], but we give a proof for convenience' sake.

LEMMA 2. Let $\{F_n\}$ and $\{G_n\}$ be two sequences of subspaces of X such that $\liminf G_{j(n)} = \liminf G_n$ for any subsequence $\{j(n)\} \subset \{n\}$ and $G_n \subset F_n$, $\dim (F_n/G_n) \leq m$ for all n, then

146

dim (lim inf F_n /lim inf G_n) $\leq m$.

PROOF. Let v_0, v_1, \dots, v_m be vectors of $\liminf F_n$. By the definition of $\liminf F_n$, there exist sequences $\{v_{n,p}\} \subset F_n$, with $v_{n,p} \to v_p$ as $n \to \infty$ for $p = 0, 1, \dots, m$. Since $\dim (F_n/G_n) \leq m$, we can choose scalars $\alpha_{n,0}, \alpha_{n,1}, \dots, \alpha_{n,m} \in \mathbf{K}$ such that

$$\sum_{p=0}^{m} \alpha_{n,p} v_{n,p} \equiv 0 \pmod{G_n}$$

and

$$\sum_{p=0}^{m} |\alpha_{n,p}| = 1.$$

Here, there exists a sequence $\{j(n)\} \subset \{n\}$ such that $\alpha_{j(n),p} \to \alpha_p$ as $n \to \infty$ for $p = 0, 1, \dots, m$. Therefore it follows that

$$\lim_{n\to\infty}\sum_{p=0}^m \alpha_{j(n),p}v_{j(n),p} = \sum_{p=0}^m \alpha_p v_p$$

and

$$\sum_{p=0}^m \alpha_p v_p \equiv 0 \qquad (\text{mod } \liminf G_{j(n)}),$$

 $\sum_{p=0}^{m} |\alpha_p| = 1 \text{ is valid. Thus } \dim (\liminf F_n / \liminf G_n) \leq m.$

LEMMA 3. If T is an operator in a finite dimensional normed linear space X over K, then there exist subspaces L_0, L_1, \dots, L_n of X such that $(0) = L_0 \subset L_1 \subset \dots \subset L_n = X, TL_j \subset L_j$ $(j = 0, 1, \dots, n)$ and (a) if K = R, $\dim(L_j/L_{j-1}) = 2$ or 1 $(j = 1, 2, \dots, n)$, (b) if K = C, $\dim(L_j/L_{j-1}) = 1$ $(j = 1, 2, \dots, n)$.

This lemma is well known results (see, for example, [3]). We turn now to the proof of the theorem.

PROOF OF THE THEOREM. We consider the operator T_n of E_n into itself $(n \ge 1)$ defined by

$$T_n | E_{n-1} = T | E_{n-1}, \quad T_n e_n = u_n,$$

where u_n is a nearest point of E_n to Te_n . We show that

(8)
$$||Tx-T_nx|| \leq d(Te_n, E_n)||x|| \quad x \in E_n, \ n \geq 1.$$

Let $x \in E_n$. Then $x = y + \lambda e_n$ for some $\lambda \in K, y \in E_{n-1}$

$$||Tx-T_nx|| = |\lambda| ||Te_n-u_n|| = |\lambda| d(Te_n, E_n).$$

On the other hand, for a unit vector e_n orthogonal to E_{n-1}

$$\|\lambda e_n + y\| \geq |\lambda| \qquad \lambda \in \mathbf{K}, \ y \in E_{n-1}.$$

In fact, this is trivial if $\lambda = 0$. If $\lambda \neq 0$,

$$\|e_n+\frac{1}{\lambda}y\|\geq d(e_n,E_{n-1})=1$$

Therefore

$$||Tx - T_n x|| \leq d(Te_n, E_n) ||x|| \quad x \in E_n, n \geq 1.$$

From Lemma 1 and (8), we see that if $\{x_n\}$ is a bounded sequence, $x_n \in E_{j(n)}$, then

(9)
$$\lim_{n \to \infty} ||Tx_n - T_{j(n)}x_n|| = 0.$$

It follows from (9) that if H_n is a sequence of subspaces of $E_{j(n)}$ invariant for $T_{j(n)}$, then for every subsequence $\{H_{n_k}\}$ lim inf H_{n_k} is an invariant subspace for T.

We prove next, by induction on k, that for each positive integer k there exists a constant M_k such that

(10)
$$||T^k x - T^k_n x|| \leq M_k d(Te_n, E_n) ||x|| \quad x \in E_n, n \geq 1.$$

The case k=1; given by (8), $(M_1 = 1)$. We suppose that (10) holds for some k, and deduce there of that it holds for k+1. On this hypothesis, we have for all $x \in E_n$,

$$\begin{split} \|T_n^k x\| &\leq \|T^k x\| + M_k d(Te_n, E_n)\|x\| \ &\leq (\|T^k\| + M_k\|T\|)\|x\| = A_k\|x\| \ , \ \ \text{say}. \end{split}$$

148

Since $T_n^k E_n \subset E_n$, (8) gives that for all $x \in E_n$,

$$||TT_n^k x - T_n^{k+1} x|| \leq d(Te_n, E_n) ||T_n^k x|| \leq A_k d(Te_n, E_n) ||x||.$$

Thus for all $x \in E_n$

$$\begin{aligned} \|T^{k+1}x - T^{k+1}_n x\| &\leq \|T^{k+1}x - TT^k_n x\| + \|TT^k_n x - T^{k+1}_n x\| \\ &\leq \|T\| \|T^k x - T^k_n x\| + \|TT^k_n x - T^{k+1}_n x\| \\ &\leq (\|T\|M_k + A_k) d(Te_n, E_n) \|x\|. \end{aligned}$$

Hence, by induction, (10) is now proved. It follows at once from (10) that, for a given polynomial P(T) in T, there exists a constant K such that

(11)
$$||P(T)x - P(T_n)x|| \leq K d(Te_n, E_n)||x||$$

for $x \in E_n$, $n \ge 1$. Hence we can find constants $\{K_r\}_{r\ge 1}$ such that

(12)
$$||P_r(T)x - P_r(T_n)x|| \le K_r d(Te_n, E_n)||x||$$

for $x \in E_n$, $n \ge 1$, $r \ge 1$, where $P_r(\cdot)$ are polynomials such that $P_r(T) \to S$ (in norm) as $r \to \infty$. Since ST = TS and $S \ne 0$, we may assume that the null space of S is zero, for otherwise $S^{-1}(0)$ is a proper invariant subspace for T. Therefore $Se \ne 0$, and we can choose α with $0 < \alpha < 1$ and $\alpha ||S|| < ||Se||$. Since $T_{j(n)}$ is an operator of $E_{j(n)}$ into itself, by Lemma 3 there exist subspaces E_n^i of $E_{j(n)}$ invariant for $T_{j(n)}$,

$$(0) = E_n^0 \subset E_n^1 \subset \cdots \subset E_n^{i(n)} = E_{j(n)}$$

and

$$\dim (E_n^{i+1}/E_n^i) \leq 2.$$

We have $d(e, E_n^0) = 1 > \alpha$, $d(e, E_n^{i(n)}) = 0 < \alpha$. Thus for each *n* there is a greatest *i*, i_n say, such that $d(e, E_n^i) \ge \alpha$. Let $F_n = E_n^{i_n}$, $G_n = E_n^{i_{n+1}}$. Then

$$d(e, F_n) \ge \alpha, \quad d(e, G_n) < \alpha \qquad (n \ge 1).$$

It follows at once from the first of these inequalities that, for any subsequence $\{n_k\} \subset \{n\}$,

(13)
$$e \notin \liminf F_{n_k}$$
.

Since $d(e, G_n) < \alpha$, there exists a sequence $\{x_n\} \subset G_n$ is bounded, i.e., $||x_n|| < \alpha + ||e|| = \alpha + 1$. Using the compactness of S, we have a subsequence $\{n_k\} \subset \{n\}$ such that

$$\lim_{k\to\infty}Sx_{n_k}=x\in X.$$

We show next, that x belongs to $\liminf G_{n_k}$. For any $\varepsilon > 0$, there exists n_0 such that

$$\|S-P_{n_0}(T)\| < \frac{\varepsilon}{\alpha+1}.$$

By Lemma 1, there exists k_0 such that

$$d(Te_{j(n_k)}, E_{j(n_k)}) < rac{arepsilon}{K_{n_0}(lpha+1)} \qquad k \ge k_0$$
 .

By (12)

$$\|P_{n_0}(T)x_{n_k} - P_{n_0}(T_{j(n_k)})x_{n_k}\| \leq K_{n_0}d(Te_{j(n_k)}, E_{j(n_k)})(\alpha+1)$$

for $k \ge 1$. Therefore $k \ge k_0$ implies that

$$\begin{split} \|Sx_{n_{k}}-P_{n_{0}}(T_{j(n_{k})})x_{n_{k}}\| &\leq \|Sx_{n_{k}}-P_{n_{0}}(T)x_{n_{k}}\| + \|P_{n_{0}}(T)x_{n_{k}}-P_{n_{0}}(T_{j(n_{k})})x_{n_{k}}\| \\ &\leq \|S-P_{n_{0}}(T)\|(\alpha+1) + K_{n_{v}}d(e_{j(n_{k})},E_{j(n_{k})})(\alpha+1) \\ &< \varepsilon + \varepsilon = 2\varepsilon \,. \end{split}$$

Since $\lim_{k \to \infty} Sx_{n_k} = x$, there exists $k_1 \ge k_0$ such that

$$\|Sx_{n_k} - x\| < arepsilon \qquad k \ge k_1$$
 .

Thus if $k \ge k_1$,

$$\|x - P_{n_0}(T_{j(n_k)})x_{n_k}\| \leq \|x - Sx_{n_k}\| + \|Sx_{n_k} - P_{n_0}(T_{j(n_k)})x_n\| < \varepsilon + 2\varepsilon = 3\varepsilon$$

Since G_{n_k} is invariant for $T_{j(n_k)}$, we have $P_{n_0}(T_{j(n_k)})x_{n_k} \in G_{n_k}$ and so

$$d(x,G_{n_k}) \leq \|x - P_{n_0}(T_{j(n_k)})x_{n_k}\| < 3\varepsilon \qquad k \geq k_1.$$

Therefore $\lim d(x, G_{n_k}) = 0$, and $x \in \lim \inf G_{n_k}$. Now, on the other hand,

$$\|Se - x\| = \lim_{k \to \infty} \|Se - Sx_{n_k}\| \leq \alpha \|S\| < \|Se\|$$

15Ô

151

Thus we have $x \neq 0$, and so $\liminf G_{n_k}$ will be a proper invariant subspace for T unless $\liminf G_{n_k} = X$. By (13) and (ii) $\liminf F_{m_k} \neq X$ for every subsequence $\{m_k\} \subset \{n\}$. Now, if $\liminf F_{m_k} = (0)$ for every subsequence $\{m_k\} \subset \{n\}$, by Lemma 2

dim (lim inf G_{n_k}) ≤ 2 .

Therefore $\liminf G_{n_k} \neq X$. This completes the proof of the theorem.

References

- W. B. ARVESON AND J. FELDMAN, A note on invariant subspaces, Michigan Math. J., 15 (1968), 61-64.
- [2] F.F. BONSALL, Compact linear operators, Lectures notes, Yale Univ., 1967.
- [3] I. M. GEL'FAND, Lectures on linear algebra, (Translated by A. Shenitzer from the Rivised Second Russian Edition), 1961, Interscience, New York.
- [4] T. A. GILLESPIE, An invariant subspace theorem of J. Feldman, Pacific J. Math., 26 (1968), 67-72.
- [5] P. MEYER-NIEBERG, Invariante Unterräume von polynomkompakten Operatoren, Arch. Math., 19(1968), 180–182.

Mathematical Institute Tôhoku University Sendai, Japan