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1. Introduction. In [5], I.Kaplansky introduced a class of C*-algebras called
AW*-algebras. For these, while being algebraically defined, much of the Murray-
von Neumann structure theory for von Neumann algebras, in particular, the lattice
structure theory of the set of projections can be developed. Dixmier showed that
this class of AW*-algebras is exactly broader than that of von Neumann algebras
[1]. Therefore, it is an interesting problem for us to investigate the difference
between AW*-algebras and von Neumann algebras. From this point of view, we
shall extend Feldman’s result on “Embedding of AW*-algebras” to semi-finite
AW*-algebras, that is, we shall show that a semi-finite AW*-algebra with a
separating set of states which are completely additive on projections (c.a. states)
has a faithful representation as a semi-finite von Neumann algebra on some
Hilbert space (Theorem 5. 2). He showed that a finite AW*-algebra which possesses
a separating set of c.a. states admits a faithful representation as a von Neumann
algebra [3].

In the previous paper [7], we constructed the algebra C of ‘“measurable
operators” for a semi-finite AW*-algebra M in algebraic fashion and studied the
structure of C. Throughout this paper, we always assume M to be a semi-finite
AW*-algebra with a separating set & of c.a. states and C to be the algebra of
“measurable operators” for it.

The contents of this paper are as follows. Section 2 is preliminary. We
review briefly the definitions and elementary properties of M which will be used
later. In section 3, along the same lines with [10], we shall prove the existence
theorem of a dimension function (Theorem 3.2) for M and introduce the notion
of convergence nearly everywhere of sequences in C. Section 4 concerns with the
existence of a faithful semi-finite numerical trace 7 on M and the non-commutative
integration theory with respect to 7. We shall show that the set . of square
7-integrable elements in C is a Hilbert space under a suitable norm (Theorem 4.7).
Section 5 is the main part of this paper and is devoted to prove the theorem:
M can be represented faithfully as a semi-finite von Neumann algebra (Theorem
5.2). As a corollary, we give the alternative proof of Theorem 2 in [6], more
precisely, an AW*-algebra of type I whose center is a W%*-algebra admits a
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faithful representation as a von Neumann algebra of type I

2. Definitions and preliminary results. By an AW%*-algebra we mean a
C*-algebra M with the following two conditions :

(a) In the set of projections, any collection of orthogonal projections has a
least upper bound.

(b) Any maximal commutative self-adjoint subalgebra is generated by its
projections.

Let M,,, M*, M,, M,;, and M, be the set of all self-adjoint elements, positive
elements, projections, partial isometries and unitary elements in M, respectively.
Denote the two-sided ideal generated algebraically by all finite projections in M
by M, then M contains only finite projections. If every non-zero projection in
M contains a non-zero finite projection in M, then M is called semi-finite. For
informations about AW®-algebras, especially the lattice structure theory of
projections, and the algebras of “measurable operators” for them, see [3],[6] and
[71.

Let N be a W*-algebra, namely a C*-algebra with a dual structure as a
Banach space, Ny be the predual of N, that is, the Banach space of all bounded
normal functionals on N. Then N can be represented faithfully as a von Neumann
algebra ([2]) on some Hilbert space [9] and in particular, N becomes an AW*-
algebra. For other informations about W*-algebras, see [9].

Now we prove the fundamental results which will be used later.

LEMMA 2.1. For e in M,, let z(e), c(e) and s(e) be the least central
projection=e, Sup {ueu*,u<c M,} and Sup{f; f~e, fc M,}, respectively I[5,
Corollary 31, then z(e) = c(e) = s(e). We say that z(e) is the central carrier

of e.

PROOF. First, we shall prove c(e) < Z (the center of M). For ve M,, we
have wvc(e)v*= v(Sup {ueu*, u € M,} )v* = Sup {vue(vu)*, u € M,} = c(e). Therefore,
ve(e)v* = c(e) and v*c(e)v =c(e), that is, ve(e)v*= c(e). Since every element of
M can be written as a finite linear combination of elements in M,, it follows
that c(e) € Z. Thus c(e)=z(e)=e. On the other hand, z(e)= uz(e)u* = ueu* for
all e M, and z(e¢)=c(e), which implies 2z(e) = c(e). By the definition of s(e) and
c(e), s(e) = c(e)==z(e), while f~e implies f=z(e). Consequently s(e) = c(e) = z(e).
The lemma follows.

REMARK. By [5, Corollary 1], the right annihilator of eM is M(1—z(e)).
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LEMMA 2.2. For ec M, and z < Z,, 2(ez) = zz(e).

PROOF. From the above remark, the right annihilator of zeM=M(1—z(ze)).
It is easily seen that M(1—zz(e))Cright annihilator of zeM. Hence it suffices
to show the converse assertion. If x < right annihilator of zeM, then zx < right
annihilator of eM(=M(1—z(e))). zzxz(e)=0, that is, x € M(1—=zz(e)). Therefore we
have z(ze) = zz(e).

LEMMA 2.3. For any e in M,, the center of the AW*-algebra eMe ([5,
Theorem 2. 4)) is Ze. Moreover, Ze=Zz(e).

PROOF. Let (eMe)? be the center of eMe, then it is clear that (eMe)? 2 Ze.
Hence from this fact and the spectral decomposition theorem, it is sufficient to
show that (eMe); S(Ze),. If g <(eMe)}, then g=e and g =ez(g). Noting that
the right annihilator of gM = M(1—2(g)), if we put k=ez(g)—g, gMk = gMek
= geMek = eMegk = 0. Therefore k< M(1—2(g)), which implies £#=0, that is,
g =exg)e(Ze),. For x < Zz(e), put Y(x) = xe, then Y is a *-homomorphism of
Zz(e) onto Ze. We shall show that Y is one to one. In fact, if xe=0 for
some x¢€ Zz(e), then ebx=0 for all be M, that is, x<right annihilator of
eM( = M(1—z(e)). Therefore we have z(e)r=0. This completes the proof of
Lemma 2. 3.

LEMMA 2.4. Let N be an arbitrary AW™*-algebra and let p and q be
projections in N such that p~q. Then, there exist orthogonal families of

projections {p}r. and {q}%, in N such that p=) p,q=>_q, and for
i=1 i=1

each i, p, is unitarily equivalent to q, in N.

PROOF. The proof is the same as that of [10, Remark 1.1]. But for the
sake of completeness, we sketch them. Since, by [5, Theorem 4. 2], there exists
a central projection e in IN such that Ne is finite, N(1—e)=0 or properly infinite
and N= Ne® N(1—e), we have only to consider two cases: (a) p and g are
finite, and (b) p and ¢ are properly infinite. For the first case, the assertion is
clear from [5, Theorem 5.7]. Therefore it suffices to show this for case (b).
Suppose that p and g are properly infinite, then, there is a central projection z
in N such that (1—¢)2<(1—p)z and (1—¢)(1—2)>(1 —p)(1 —2)[5, Theorem 5. 6].
Hence we may suppose 1—p>1—q without loss of generality. By the similar
reason, we may assume that: either (a) 1—gq is finite or (b) 1—gq is properly
infinite ; either (@) 1—p=<p or (B) p<1—p. Since p and ¢ are properly infinite,
by [5, Lemma 4.5], there exist projections p; and ¢, in N such that p,
=p,p—pP~p~Pa=qand ¢—q,~¢q,~q. If (@) holds, then 1—p, = p—p,
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+1—p=Zp—p+p=p~p, and it follows 1—p,<p,. On the other hand since
1—p, =p—p,~p,, we have 1—p, ~p,. Next we show that 1—qg,~¢q,. In fact,
1-¢,=(q@—q)+1-9=<9—9¢,+9,=¢~¢, and 1—¢, =g —q,~ q,, which implies
that 1—¢q, ~¢q,. Therefore 1—p,~1—¢q,, py~q, and p, and q, are unitarily
equivalent in N. By symmetry, p—p, and ¢—gq, are unitarily equivalent. In case
(@B), 1=1—q¢+q=<q—¢,+q,=q and 1 ~p, thus 1—p<p and we can arrive at
case (a). If (b8) holds, we may suppose without loss of generality that either
¢g<1—q or 1—¢=<q. If 1-¢=<q, then 1-¢<¢~¢—¢, and 1=1—¢+¢=<q9—q,
+q,=¢q. Case (a) reappears. If g=<1—g¢q, then noting that there exists a
projection ¢, in N such that ¢,'=1—¢ and 1—¢~¢q,’~1—q—q,, we have
1=1-¢+¢=<1—¢—q,/+¢,/=1—¢,1—g~1 and 1—p~1, which implies that p
and ¢ are unitarily equivalent in N. This completes the proof.

Let © be a fixed separating set of states on M which are completely additive
on projections, and & be the set of finite linear combinations of elements in
(a*wa, € S, a < M}, where (a*wa)(x)= w(axa*) for all x < M. For any positive
number € and any positive integer 7, put V, (o, @y, -+, ®,)0)={a; |o;(a)]
<EI=1,2,c4, 0,0, 0y, 0, € Cg} , and we define the o(&)-topology of M
by assigning sets of the form V,,(@;, @y -+, ®,)(0) to be its neighborhood
system of 0. Since & is a separating set of continuous linear functionals on M,
this topology is the separated locally convex topology defined by the family of
semi-norms ¢,(x)=|w(x)|w < &. Then we have the following

LEMMA 2.5. Let {e.}..4 be an orthogonal set of projections in M such
that e=Sup[)_{e.,ac l}; ADI< F| where F is the family of all finite subsets
of A, then ) {e.,acl} {e(I<F) in the o(S)-topology.

PROOF. By [3, Lemma 3], o(3_{e.,ac I} )~ o(e) for all o< S. Hence the
assertion is clear from the definition of the o(&)-topology.

LEMMA 2.6. Any abelian AW*-subalgebra N, especially, the center Z,
of M is a W*-algebra and the o(©)-topology restricted to this subalgebra is
equivalent to the o-topology on bounded spheres.

PROOF. For any increasing net {a.}..s of positive elements in N with
supremum a and w € &, by [4, Lemma 2.2}, we have o(Sup {a.,a € A} )=Sup {0(a.),a
€ A}. Therefore N has a separating set of normal positive measures and the first half
part of the result follows from [1, Theorem 1]. Since the o(&)-topology is weaker
than the o-topology and the unit sphere of N is o-compact, while the ¢(&)-topology
is separated, it is equivalent to the o-topology on bounded spheres of N.
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THEOREM 2.1([4),[11]). Let N be a finite AW*-algebra with a
separating set & of c.a. states. Then N has a center-valued trace ®(-) in
the sense of [4, Definition 1] with the following continuity property: If {a.}
is an increasing net of positive elements in N such that a,| a in the
o(&)-topology for some a in N, then Sup®(a,) = P(a) in Z (the center of N).

We sketch the proof after the fashion of [9, Chap. II, 4]. By [5, Theorem 6]
and [6, Lemma 18], N is a direct sum of an AW®-algebra of type II, and
homogeneous AW#*-algebras. Therefore, it is no loss of generality to suppose that
either N is homogeneous or of type II,. In the former case, there is a finite family
{e;}7-1 of abelian projections in N such that 1=)e;, e¢,~e, for all i and

i=1
e.e;=0 if i#j. Let v,; be a partial isometry in N such that v,;*v,; =e, and
v,,0,,¥=e, for each i. Put v,,=e,. Since 2(e;)=1, by Lemma 2.3, ¢;Ne, is
#-isomorphic to Z. Let ¥ be the #-isomorphism of Z onto e;Ne, defined in the
proof of Lemma 2.3 and ¢ be its inverse map. Then if we put P(x)

n
= (1/n)Z¢(elv”*.rv”el), it is easy to show that ® is the center-valued trace in

i=1
the sense of Definition 1 in [4]. For any directed increasing net {x.} of positive
elements in N such that x, 1 x in the ¢(&’)-topology, by the definition of the
a(&’)-topology, e,v,;*x.v,,e,— e, v,;¥xv,;e, for the ¢(&")-topology. By Lemma 2.6
and the o-continuity of ¢, it follows that ®(x,)— ®(x) for the o-topology on Z.
Now we assume that N is an AW?*-algebra of type II,. Before going into the
proof, we need following definitions and lemmas.

DEFINITION 2.1. We say that a projection e in N is fundamental if there
exist a central projection z and a set of orthogonal equivalent projections

-
{e;, €3,+ ¢+, e} in N such that e=¢, and > ¢,= z.
i=1

First, note that z and 7 depend only on e. In fact, let 2, and {e,’, &,,+-+, €}
2n 2™ 2n

be another such family for e. Suppose 7 <7, then 2,=> e,/ ~> e, D> e, =2
i=1 i=1 i=1

and 2, = 2z(e) = z by Lemma 2.1, which contradicts the finiteness of N. Hence,
we can define unambiguously a center-valued operation ® on all fundamental
projections as ®(e) = 2 "z. Then we have

LEMMA 2.7. For any pair of fundamental projections p, and p,, P(p,)
= D(p,) if and only if pi~ps.

PROOF. Since “if” part is clear, it is sufficient to prove that ®(p,) = ®(p,)
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implies p,~p,. By [5, Theorem 5. 6], there exists a central projection z such
that p,2<p.z and p,(1—2)>py(1—=2), hence we may assume p,Xp, without loss
of generality. Thus there is a set of orthogonal projections {fi’,f: ,--- fe} such

that e, ~ f,;'= fi, where e, ~py, fi; ~ ps €,6;= 0@ #7), fif5= 0@ +#7), Zei = 2(p1)

and 2fi: 2Z(p,). Thus it follows that 2"-®(p) =D e, ~D fi §Zfi:2"-<1>(p2)
=1 i=1 im1 i=1

and this is a contradiction. The lemma follows.

LEMMA 2.8. Let e, and e, be two fundamental projections such that
®(e,) = 27"z and P(e,) =2 ™z. If m=n, then there exists a set of orthogonal

gm-n

equivalent projections {p;; i=1,2,-++,2™"" such that e,=)_ p;,, and p,~e,
i=1
for each i. Moreover, let ey, ey +<,¢5 f1, fo2c, fi and f be fundamental
s
projections such that {e;}i-, and {f;}}-1 are orthogonal. Putting e= ) e, and

i=1
t _ t s
=2"f» if fSeand ®(f)+3 O(f;)=> Pe;), then there exists a projection
= =1 =1
fi+1 Such that fm~f and fi.,.=e—f.

PROOF. Let {q,,qs *++, g} be a set of orthogonal equivalent projections

gm gm-n

such that e, = ¢, and z—zqz, then putting e;= Z‘h, e; is a fundamental

projection such that z(e;) = 2 = 2(e,) and it follows that D(e;) = 27 "2(e,) = Dle,),
which implies e,~ e;. Hence the first half part of the lemma follows. Now we
shall prove the second assertion of the lemma. If we decompose N suitably, we
may assume that e, e, «++, €, fi, far* * +» f and f have the same central carrier.
Thus we can write ®(e;) =2 "z, O(f;)=2"2, and ®(f)=2""2, for some
central projection z,. Denote the largest number of {n;, m;, m} by r. By [5, Lemma
4.12], there exists a fundamental projection p in N such that ®(p)=2""2, Then

2r—n 2r—m; 2r—m

by the above arguments, ¢;= Z(ei) fi= Z(f,)" and f= Zf" {(e;)*} (resp.

{(f)%, {(f*}) is a set of orthogonal equwalent prOJectlons such that (e~ p,

(f)f~p and f*~p. Since, by our assumption 2"~ + ZZ’ m < 22' m the
Jj=1 i=1

assertion follows from [5, Theorem 5.7].

LEMMA 2.9, If {e}acs is a set of orthogonal fundamental projections
and if e is a fundamental projection such that e=) {e.,ac A}, then PD(e)
=) {Ple.), ac A} in Z, that is, ® is completely additive on fundamental
projections.
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PROOF. By Lemma 2.8, we can easily show that >_{®(e.), a € A} = D(e).
Conversely let ¥» be a functional in &', put z,=1—Sup{z; ¥(2)=0, z€ Z,}.
Then, by the complete additivity of 4 and Schwarz’ inequality, we can easily
show that ¥ is faithful on Zz, Noting that »_ {®(e,-z,), @ € A} =P(ez,), by
[4, Lemma 2. 2], >_ {Y(P(e.- 2,), @ € A} =y{(D(ez,)) ; therefore without an exception
of countable set {(Yo(P(e;z,); 1=1,2,3,+-+}, Y(Ple,+2,)) =0, that is, e.-2z,=0.

Thus we may reduce the problem to the case »_ @(e;)+27"1 < d(e) for some
i=1

positive integer n. By [5, Lemma 4.12], there is a fundamental projection e,
such that ®(e,) = 27"1 and ¢,=e. Hence by Lemma 2.8, we can take a sequence
{e)/s ey, -++} of orthogonal equivalent projections in (e—e,) N(e—e,) with e,'~e,.

Thus it follows that e= > e,~> e, =e—e,>¢, which contradicts the finiteness
i=1 i=1

of N. Therefore > {®(e,) a< A} = ®P(e). The lemma follows.

LEMMA 2.10. Ewvery non-zero projection e in N contains a non-zero
Jundamental projection in N.

PROOF. Let {e;}:.; be a maximal family of orthogonal equivalent projections
such that e;~e for each 7€ I. By the finiteness of N, I is a finite set, say
{1,2,+++,n}. By [5, Theorem 5. 6], there exists a non-zero central projection z

n n

such that (1—>_e;)2Se,2. Thus we can write 2 =) e,2+¢€,,,, where e, is

i=1 i=1
a projection such that e,,;2<ze,~ze, and e,,,,2=0 for i=1,2,-+-,n By
[5, Lemma 4.12], we can find a family {f},fs,+**, fe»} of orthogonal equivalent
am

projections such that > f;==z and n+1<2". Again by [5, Theorem 5. 6], there
i=1

is a central projection 2z, such that e,z; < fiz, and e,(1—z,) > fi(1—=,). Now we

n+1

n
shall show ez, =0. In fact, if e,2, #0, then 22, =) e;zz+en22: <D fiza
i=1 i=1

gm
<> fizi==zz. Thus this is a contradiction because of the finiteness of N.
i=1

Therefore, it follows that e, > fi(1—=,). If fi(1—2,)=0, then fi=z,2(f1)
=2=2,6=1—2,=1—2 and ex=0. While by the above argument if e¢,2=0,

then 1— > e;> ¢, and this contradicts the maximality of {e;}%;. Thus this is a

i=1
contradiction. It follows that f,(1—2,) is a non-zero fundamental projection such
that e,> fi(1—=z,). This completes the proof.

Now let N7 be the set of all fundamental projections of N and put @(e)
= @(P(e)) for ec N} and @< Z,, =0 and |@|=1. For any positive number
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& let {2, and {Y.} be a maximal family of non-zero orthogonal central
projections and positive functionals in S 2= Yz P &) respectively, satisfying
the following: 1/(1+&W(f)=@(f) <A+&*Y(f) for fe Nz,NN} and for all
a. From now on, we shall show > z.=1. In fact, if 0=1—) z,, then there is

a positive functional ¥, in & such that ¥, (1— Zza>= ¢(1—Z z,,). Then,

LEMMA 2.11. There exist a positive number 6 and a non-zero projection

e in N(e=1-F =) such that O4.(p)=p(P)=6(L+EW(p) for all

fundamental projections p=e,.

PROOF. If the contrary holds, then for all fe N <1— > z,,) NN}, there is

a non-zero fundamental projection such that 05 fi=f and ,(f,)Z ®(f.). By
Lemma 2. 10, there exists a set of orthogonal fundamental projections {fs} such

that V¥(fe)>@(fs) and D fes=1—) z. Since ® is completely additive,
\!ﬁ(l -2 Zn) =2 Y (f)>2P(fe)= (1 - za) and hence this is a contradiction.
E E a

Therefore there exists a projection e; € NJN N(l -> z,) such that +r(e)#0

a

and for all pe NI with p=e;, ¥(p)= p(p). Let 0 be the least upper bound of
the numbers 7 such that n-yr(e,) =@(e,), then 6-(1+&)Yr(e;)=P(e,) and thus
Ori(e) = P(e,) =O(1L+ENri(e;). By the same argument as above we can prove the
lemma.

Thus we have Oy, (u*ew) = p(u*eu) = P(e)= 01+ EWry(e) for all ue (e,Ne,),
and e<e, with ec NJ. Therefore, ¥,(u*eu)=(1+&Wr(e) for all ec N} with
e<e, and uc< (e Ne)),. By virtue of the complete additivity of ¥+, and the
spectral decomposition theorem, it follows that (¥ au)=(1+€&)-y(a) for all
ac<(e,Ne,), a=0. Now by the finiteness of e,Ne, and the polar decomposition
theorem ([11, Lemma 2.1]), we can easily show vr,(a*a)=(1+&)-4r(aa*) for all
ac<eNe,. Let {q, Qs -+, qs} be a family of orthogonal equivalent projections

o

such that e;=¢, and >_ q,==2,2< Z, and w, (i=1, 2,+++, 2") be the partial isometry
i=1 2"

such that w;*w, = ¢, =€, and w,w,*=q,. If we define Y(a)= > Y (w,*aw,)
i=1

for a€ Nz, then ¢ Sz (¢=0) and putting a,;; = w,*aw,( <€ e,Ne,), we have
for ae Nz

Y(a*a) = Z ‘Pl(wi%a*iji%azvi) = Z ¥r(a;*a,;)
T I
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and

w(aa®) = 3 ¥(wFaw,;w¥a*w,) = 3 Yi(aa;%)
= Z 1+ &)-Ylay*ay) .

Therefore we have Y{a*a) = (1+&)-y{aa*) for all a€ Nz. Let f be a fundamental
projection in Nz such that ®( f)=2""z,(z, € Z,), then by [5, Lemma 4.12}, there is a
family {f1, f5 *+*, fer} of orthogonal equivalent projections such that f= i fi
Noting that f; is fundamental for each 7, ®(f;)=2""""2,=2""z=e,), Whic;1=;m-
phesﬁSel, that i 1s, there is a prOJectlon g, in N with giSe1 and f;~ g:. Therefore

o(f)= Z (fi)= Z¢(g¢)<9 (1+&)- Z‘P(gi)<9(1+5)22‘lf(fz) O(1+ &) - f).
Similarly we get ¢(f)=;¢(ﬂ)§ 9;‘1’(91)>9/(1+8)';‘l'(ff)=0/(1+s)"l’(f)-

Therefore it follows that

6/(1+8)- ¥ f) = P(f) = (1 + & (f) for f< NznNJ.

Putting ' = O & 2), {2, 2.} and {Y,Y,} has the same property as {z.} and
{¥.}, which contradicts the maximality. Thus >_z.= 1.
Now we define a functional on N} as follows: Yr(e)=> vY.(ez.) for

e< NJ. Then, (1/(L+ONO= (/1 + N (ez) =T pler) = 7 Tex. ) =7()
=5 (1+8)"ulezs) = (1+E)*Y(e) and hence V. is bounded on NJ. Therefore if
we put ﬁ(a) =) Y. (az,) for ac N, then 17!1 is a bounded positive linear

functional on N which is completely additive on projections. Since Yr(l)
r~7
=1+&@1), Yimn=1,2,--+} is a bounded set in N* and thus it is
~ ~S
o(N*, N)-relatively compact. Let 4r, be an accumulation point of {Yry,,7n=1,2,--},
~~
then 1/(L+1/minn(e)=<@(e)=(L+1/n)nn(e) for each ec N} implies that
\E(e)=¢(e) for all e< NJ. On the other hand, Jf\; is completely additive on
projections. In fact, for any orthogonal family of projections f{e.}... with
=> f{e, aac A}, we can write by Lemma 2.10, e.= ) {es prBa € A}, 1—e
=Y {fs,B< B} where {e., s} and {fs} are families of orthogonal fundamental
projections in N. Since D > o+ fo=1 D> Plews) + 2 P(fa)=1,
a Ba B a Ba B

which implies Z BZ VolCer ga)+ ;«17;( f2)=1. Moreover 4? Vo f) =¥ ( Zﬂ: S a)
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=\]70(1 —e), which implies > Z\E(ea, ) = \F;(e). On the other hand Z\F; (€as )
a Ba a Ba
g@;( >33 e B,,) =(e), therefore it follows > 5" (e, ss) = Vole). Since
a Ba a Ba

Z%(eay pa) = ‘E ( > eu,ﬁa) = \Fo(ea), Pro(e) = Z%(e.,), which is the desired
Ba Ba a
property. Now let {e.}.cq and {fs}scs be two families of orthogonal fundamental

projections such that > e,=>_ fs then ¢(Z<I>(e,,)) =2 Ple) =D Yo(e.)
a B aed aed aed

:%(Zea)é{ﬂ(Zea)é%(l):(p(l) for all @< & and for all finite subsets

aed

Jof A and ¢<Z<b(ea)): (p(zq:(fﬁ)) for all @<Zy, =0 and |@]=1.
a B
Therefore >_®(e.) and >_ D(f3) exists in Z and moreover it follows that D ®(e,)
a B a
= > ®(f3). Since for any projection e in N, there is by Lemma 2.10, a set
A

{€s} <4 of orthogonal fundamental projections such that e= > _e,, then put ®(e)
= > ®(e,). By the above arguments, ®(e) can be therefore unambiguously defined.

Thus @ is extensible on all projections of N; suppose that > a,;p; =0 (p, < N, «a,
i=1

is a complex number for each 7), then <p(Zn: a,~D( Pi)>= ,"Z (1) =\% (Xn:dih)
=1 i=1 i=1

=0 for all @€ &, which implies > a;P(p;)=0; on the other hand since elements
i=1

of the form Zn:aipi is uniformly dense in N and S‘Cb(iaipi)wgll\iaipi“ , then
i=1 } i=1 i=1 J

® has a unique continuous extension (denote it by the same symbol) on N. It is
easy to see that this unique extension satisfies all the properties mentioned in
Definition 1 in [4]. Now let {@,} be an increasing net of positive elements in N
such that a, 1 a@ in the o(&’)-topology for some @ in N, then Y{a—a,)=0 and

Y(a—a,)—0 for all yre & with Y =0. Thus we have Y((a—a,)z.)—0 for all
such ¥ and a, therefore V.((a—a,)z.)-—0 for all @. On the other hand, by
Lemma 2.10 and the spectral theorem it follows that

1/Q + &) Vula) = p(Pa)) = (1 + &) Yu(a)

for all @ € Nz,, a=0. Hence @(®P(a—a,)z.))=1+&)*.((a—a,)z.)—0,p(Pla—a,)z.)
—0 for all @ and @< Zy with =0. From this fact, P satisfies all requirements.
This completes the proof of Theorem 2.1.

Now let M be the semi-finite AW *-algebra in the preceding paragraph of
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this section and Z be the center of M. Since Z can be represented as the algebra
of the complex-valued continuous functions on a hyperstone space Q, we identify
them. Let Z be the set of all continuous [0,+ oo]-valued functions on Q. By our
convensions we recall here that 0-+o00=0. If £, f € Z and A\ is a non-negative
number, then f+ f '€ Z and A f< Z. Since o— f(@)f (0)wec Q) is a lower
semi-continuous function, thus it coincides, except on a non-dense set, with a
unique continuous function ff’. Then we have:

LEMMA 2.12. If {a.} is an increasing directed set of elements in Z,
for any positive element b in Z, Sup{ba., a} = b Supf{a., a}.

PROOF. Let ¥ be a faithful normal pseudo-measure on Q ([1, Definition 2
and Proposition 7]), then since Sup{ba.}=5b-Sup{a.}, it is sufficient to show

that Y(b - Sup {a@., a})=Y(Sup {ba. a}). By [1, Proposition 7], we have only to show
that p(b Sup {a., a}) = u(Sup {ba., a}) for each positive normal measure x on Q.
Since the functions ® (@< Q)— b(0)Supfale)}) and © (0< Q)— (b Supia.})(w)

coincide except on a p-null set, we have

u(b Supla.}) = f b(w) Sup {a(0)} d(w)
= f Sup {H(w)a.(0)} (@)
- sgp{ [ b(a»)m(w)dp(m}

= Slip{ f (ba..)(w)dp(a))} (by [1, Proposition 1])

[ swpiteaxw)du(o)

= u(Sup(ba.)) (by the same reason as above).

This completes the proof of Lemma 2.12.

3. Existence of a dimension function for M and the convergence
“nearly everywhere” of sequences of elements in C. In this section we shall
construct a dimension function (Definition 3.1) on M, and using this dimension
function we introduce the notions of the convergence “nearly everywhere” of
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sequences in C and study some of its topological properties. The methods which
we use are similar to those of I. E. Segal [10].

THEOREM 3.1. Let M be a semi-finite AW*-algebra with a separating
set & of states which are completely additive on projections (c. a. states), Z
be its center and Z be the set of all [0, + oo]-valued continuous functions on
Q (the spectrum of Z). Then there is an operation ® from M* (the positive
part of M) to Z having the following properties :

(1) Ohy+ hy) = D)+ Dhy) h,h,e M*;

(2) ®Ah) = N-DP(h) if N is a positive number and he M*
(3) D(st)=1t-D(s) se M+, teZ+,

(4) Dluau™) = P(a) if ac M* and ue M,;

(5) for any ac M* with ®(a)=0, a=0;

(6) for every directed increasing net {a,} in M* such that a, | a in
the o(S)-topology for some a in M, ®(a,) | D(a) in Z ;

(7) for every non-zero a in M*, there exists a non-zero b € M* majorized
by a such that ®(b)e Z*.

PROOF. The semi-finiteness of M implies that there is a non-zero finite
projection p. Let {p.,ac A} be a maximal family of orthogonal equivalent
projections such that p~p, for each a, then by [5, Theorem 5. 6], there exists
a non-zero contral projection z as follows; poz(l—Zp,)z< pz#0; thus

acd

z = pot+ ( > p.,)z by Lemma 2.12; let v, be a partial isometry in M giving
ac A
the equivalence zp~ zp., v, a partial isometry such that v,*v, =zp and v,v,*=p,.

Let 2p@zp= {zp¥zp, V< @}, then 2pSzp is a separating set of c.a. states
(by [3, Lemma 3]) on the finite AW¥*-algebra zpMzp. Therefore by Theorem
2.1, there is a Zzp-valued (note that by Lemma 2. 3, the center of zpMzp is Zzp)
operation ®p on zpMzp. Since by Lemma 2.3, the map Y(a)=apz of Zzz(p)
onto Zzp is a *-isomorphism, then we define a *-isomorphism ¢(a) on Zzp as
¢(a) = ¥~ '(zpazp) and a new linear operation Pz on (Mz)* to Z as follows:

Dz(h) = Z;}qS(‘I)P((va)*hva)), for he (Mz)*,

Be Au{
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where D a,= Sup{ > a., BC AU {0}, finite set} , a. € Z. Noting that > vg(vg)*

ae AU{0} ae B BeAu{0}

=z, for he (Mz)* and u e (Mz),,

De(uhu*) = > H(Pp((ve)*uhu*vp)) .

Be Au{0}

Since (vg)*uh'*zh'*u*vze 2pMzp and 2= > vg(ve)* in the o(S)-topology, we

Be Au{0}

get that (vg)*uh'zh'\?u*vs= > (ve)*uh'*v,(v,)*h"*u*vs in the o(&)-topology

ve Au{0}

and therefore by Theorem 2.1, it follows that

2 HPp((va) uh' v, (v,) k' *u*vg)) = $(Pp(va) uhzu™ve))

ve AU [0}

and

Peluhut) = 3| 3 pop((wa)ub v o R wren) |

BeAdufo} " yedufo}

= | 3 O B b )|

BeAu(0} ' ve Au{0}

= 3 X sep(o b oo uh )

vedu(0} ' Be Au{0}
(by Fubini’s Theorem)

= Z, ¢'((I)P (('U'/)*h'vv))

ve AU {0}

= dz(h).
Next let 2 be in (Mz)* and a be in (Zz)*, then by Lemma 2.3, we have

H(DPp((ve)*havg)) = (Pp((ve)*hvezpa))
= ¢(zpa)- H(Pp((vs)*hvg))
= a-$(Pp((ve)*hvg)) .

Since ¢(Pp((vs)*hvs))=0, then by Lemma 2. 12, it follows that ®z(ha)=a-DPz(h).
To prove the faithfulness of ®z we argue as follows. Let 2 be in (Mz)* such
that ®2(h)=0, then since P(h)= 3  $(Pp((ve)*hve)) = HPp((ve)*hve)) =0 for

BeAu{0}
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all B AU {0}, we get that (vg)*hvg=0 for all B< AU {0}, that is, Apz=0
for all 8¢ Au {0}, which implies by [5, Lemma 2.2], ~=0. Suppose that {a,}
is a directed increasing net of positive elements in Mz such that a, 1 a for
some a € Mz in the ¢(&)-topology. We shall prove ®z(a,) 1 ®z(a) in Z. In fact,
since (vg)*a,vs T (vs)¥avs in the o(zpSzp)-topology for each B¢ {0} UA, we
have by Theorem 2.1, ¢p(Pp{(vg)*a,vg)) T H(Dp((vg)*avg)) for each Be {0} UA.
Therefore, it follows that > '¢p(Pp((ve)*a,ve))— D" ¢(Pp((ve)*avg)), that is,

Bef0jud Bef0jud
®z(a,) T Pz(a). To prove the semi-finiteness of ®z, we have only to show that
for any e in (Mz),, there is a projection f in Mz majorized by e such that
®2(f)e Z*. Since there exists a non-zero projection f in Mz such that f=e
and f<zp. By the definition of ®z and Lemma 2.4, we have ®z(f)= Dz(pz)
= ®z(p.z) for any € A and ®z(f)e Z*. Therefore Pz satisfies the conditions
(1)—(7) in Theorem 3.1. Let {2.} and {Pz,} be a maximal family of non-zero
orthogonal central projections in M and linear operations on (Mz,)* to Z
respectively satisfying the conditions (1) —(7) in Theorem 3.1, then from the
above arguments > z,=1. Define a new linear operation ® on M* to Z as

follows :

D(h) = " Pz(.h) he M+,

Zae{Za}

then by the same reason as above discussions we can easily show that ® satisfies
the desired properties. This completes the proof of Theorem 3. 1.

Now let B be the set {s€ M*, ®(s) € Z*} and M be the set {b; b M,b*¥b e R},
then we can easily see that M - M'(denote it by N) is the two-sided ideal such
that M* (the positive part of N)=P. Since every element of N is a linear
combination of elements of N*, by the properties of ® there is a linear operation

® on N to Z which coincides with ® on N*. If aeM and if we M, then
D(u*au) = D(a) ; therefore D(au)=D(uauu*)=Dd(ua); since every element of M
is a linear combination of unitary elements, we have ®(ab)= d(ba) for aec N

and b M. Let {¢t,} be a uniformly bounded increasing net of positive elements
in M such that £, 1 ¢ for the o(S)-topology for some ze M. If {D(£,)} is

uniformly bounded, then # e R and ®(¢)=Sup{®(t,); u}. In fact, by the property
of &, d(z,) 1 () in Z and Sup{P(t,), p} = P(¢) in Z. On the other hand

0=d(t,) = k1 for all p which implies that ®(¢) € Z*, that is, £ € R and D(¢)= D(2).
Next we shall show that every non-negative element of M is the least upper
bound of a set of non-negative elements in M. In fact, from the argument used
in the proof of the above theorem, there is an increasing mutually commuting
net of projections {fsz}ges in M such that Sup{fs B< B}=1. For every non-
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negative element a in M, a'?fza'*—a for the o(&)-topology and a'?fza'*€ N*.
Thus we have

THEOREM 3.2. In Theorem 3.1, let B be the set {se M,s=0,D(s)e Z},
then B is the positive part of a two-sided ideal N and there exists a unique

linear operation ® on M to Z which coincides with ® on B ; moreover this
linear operation satisfies the following properties :

(1) If teR with t=0, then dt)=0 and P(t)=0 only if t=0;

(2) dD(st) = D(ts) if se M and teN;

(3) D(st)=s-D(t) if s Z and teN;

(4) let {t,} be a directed increasing net of positive elements in M such
that t,—t in the o(©)-topology for some positive element t in M and

if {<'1>(tu)} is uniformly bounded, then t < R and <i>(t)=Sup{‘i>(tu), s

(5) every non-negative element in M is the supremum of a set of non-
negative elements in R,

LEMMA 3.1. Let N be a finite AW*-algebra with a separating set of
c.a. states and if the center of N is o-finite, then N is also o-finite.

PROOF. By Theorem 2.1, N has a center-valued trace ®'(+) in the sense
of [4, Definition 1]. On the other hand the o-finiteness of the center of N implies
there is a faithful positive normal measure g on the center. Now let {e.} be
a set of orthogonal projections in N with e= ) e.ec N,), then wu(d'(e))

= > u(®'(e.)). This implies that all but countably many must vanish and the
faithfulness of p and ® yields the desired property. The lemma follows.

Now we are in the position to prove the existence theorem of a dimension
function.

THEOREM 3.3. In M, we can define a dimension function IXe) with
values in Z for all projections e M, in such a way that

(1) D(e)(w)<<oo except on a non-dense set if and only if ec M;

(2) if pg< M, and pq=0, then D(p+q)= D(p)+IXq);
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(38) for any indexed chain of projections {e;; N A} in M, D(I\Q/Ae,,)
= Sup{D(e;), M < A} ;
(4) if wis in My, then D(u*u) = D(uu*);
(5) for ecZ, and pe M,, D(e)%O and D(ep) = eD(p).

PROOF. First note that if {e,} is any indexed set of mutually orthogonal
projections in Z such that D_e,=1, then in order to prove the existence of a
M

dimension function for M, we have only to show that Me, all admit dimension
functions. Since 1 is the sum of orthogonal central projections which are o-finite
with respect to the center, it suffices to consider the case in which the center Z
is o-finite. Now let p be a projection in M, then pMp is a finite AW*-algebra
with a separating set p&p(= {ppp, pc &}) of c.a. states whose center Zp is o-
finite and by Lemma 3.1, pMp is also o-finite. Therefore, by Theorem 3. 2 (5), there

is a sequence of mutually orthogonal projections {p,}7-, in N such that p=)_p,.

n=1

Now write D(p) = ni:l <I;(pn). In order to show that D(p) is well defined, suppose
p= ipn' with p, € N and p,p, =0 if n+m. By symmetry, we have only to
show that ni:lfl?(pn) Zni:fi)(p"') for all n. Let e, = :lei' and e,= ;nlpi, then
ene, en=e,pe,=e, and G.?(eme,,'em)é('b(em). Since @(emen'em):q')(emen')z<i')(e,,'e,,,e,,')
and e,’e,e, 1 e, pe, as m— oo in the o(S)-topology, we get D(e,e,’e,) 1 di(e,,')
for the s-topology in Z. Hence we have Ci)(en')égé(pn). Thus the definition is

unambiguous. Next, we shall show that D(p)(@)<co on a dense open set. Let
Q={0; 0 Q, D(p)ow)=o}. If (Q)"# @, denoting the central projection
corresponding to the clopen set (,)" by e and considering the situation on Me,
we have only to see that it is impossible that D(p)(@w)=cc on Q. On the other

hand { ®; iti)(pn)(co)<00} = { ®; ifl)( Po)@) # D( p)(w)} is a set of first category
n=1 n=1

and hence, by [1, p.10, Corollary], it is non-dense. Note that the closure of a

non-dense set is also non-dense, and we can easily show that { ®; iq}(pn)(w): oo }

contains a non empty clopen set. Thus by the same reason as above, it suffices

to show the statement that Zq.)(pn)(w)zoo for all we Q is false. In fact, since

n=1

Q is compact, by Dini’s theorem, Zd)(p")(w) 1 oo uniformly as m | o. Now,
n=1
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since ®(p,) is a bounded function, there is a positive interger 7, such that
(i)(Pl) = Z‘P(Pl) for all weQ;

similarly, dJ(Pg)é i <i>(p,-) for all @< Qand a suitable integer 7,>7, and by

i=n,+1
mathematical induction, we can choose a strictly increasing sequence {7} of
positive integers such that

B(p) =S d(p,) for all e Q.

J=n¢+1

N+t

By Theorem 3.2 and [5, Theorem 5. 6], we get that p,=5 > p; for each 7. Since

je=m+1

{p;}, and {Zﬂ p,-}; are families of orthogonal projections, by [5, Theorem

J=n;+1
5.5], p=p—p: and the finiteness of p implies p;=0. The arbitrariness in the
ordering of the p, now shows that all the p; are zero, so that D(p)=0 and
this is a contradiction. Thus the set {w; D(p)(@)<< oo} is a dense open set. Next
for any properly infinite projection p with the central carrier 2(p), D(p)(») is
defined as oo -z(p)@). For an arbitrary projection p in M with finite and properly
infinite parts p;, and p, respectively, D(p) is defined as D(p,)+ D(p,). Since the
assertion (1) is clear from the definition, it remains to show that D{-) satisfies
conditions (2) —(5). With regard to (2) and (4), it is easily shown from the
definition of D(-). In order to prove (5) we have only to consider the cases in
which p is either finite or properly infinite. If p< M and e< Z,, then there is a

sequence {p;}72. of mutually orthogonal projections in M such that p=>_p,.
i=1

Then ep= ) ep, and D(ep) = Z”:D(epi) = ieD(pi) = eD{p) by Lemma 2.12. For
i=1 i=1 i=1

the case where p is properly infinite the assertion is clear from Lemma 2. 2. Now
we are in the position to prove (3). Making use of (5), we may assume either
Sup{D(e;)(®), A} < oo on a dense open set or it is infinite on an open dense set.
Set e=V {&;, A€ A} and D(e)(w)=Sup{D(e,)(®); »< A}. Thus we have only to
prove the statement for the first case. First we note that the non-negative
continuous functions on Q( <€ Z) are order-isomorphic to the continuous functions
with values in [0, /2], via the transformation f— arctangent f. Thus it suffices
to show (3) in case where {D(e;)} CZ* and are uniformly bounded. Next we
observe that the supremum of any collection of the elements in Z* is the
supremum of some subcollection which is at most countable. Since Z is o-finite,
by [1, Proposition 7], there is a faithful positive measure g on Q such that,
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wSup{D(e), € A}) = Sup (W(D(e), < A}
= Sup{u(D(e,,)), for some Nj,Ng, - € A}

= w(Sup{D(e;), i = 1,2,---}),
that is, [Sup{D(e,), » € A})(®) = [Sup{D(e,,), i} (®@) except on a non-dense set. By
[1]’ it follows that SuP {D(el)’ A< A} = Sup {D(el¢)’i =123,-- '} . Since {el}leA
is an indexed chain, putting e'=571 e(=e), for any A€ A, =€ or e=e. If

e,=¢€, then D(e)=D(e)=Sup{D(e,),7=1,2,3,-}=Sup{D(e), N} = D(e;)
and so D(e,) = D(¢'), that is, €,e,€ M and e,~¢ or ¢,=e¢’, which implies that

e = e. Therefore, we have only to show (3) in case where e= t\Ze,,e, e M. Let
Si=e—e(i=1,2,3,-++) and s;= > _s,, where the s,; are mutually orthogonal
Jj=1
projections in N. Now by the definition of D(-), D(s,)=>_D(s,;) and by the
j=1

same reason, D(e) = i D(s;;)= >_ D(s,)=Sup{D(e;,),i=1,2,3,----}. This
i,7=1 =1

completes the proof of Theorem 3. 3.

In the previous paper [7], we defined a “measurable operator” for a semi-
finite AW*-algebra in algebraic fashion and studied the structure of the *-algebra
C of “measurable operators”. Now we are in the position to introduce the notion
of “the convergence nearly everywhere of sequences in C”.

DEFINITION 3.2. We say that a sequence {x(n)}5., of C converges nearly
everywhere (or converges n.e.) to an element x in C if for any positive &, there
exist a positive integer 7,(€) and an SDD{e, (&)} such that

(x(n) — x)[e.(€),11€ M for all n=n,€)

and

I(x(n) — 2)[en(€), 1]l <& for all n=n,€),

where we write |z|l.=|z| for x=I[x,1]

REMARK. We must note that a limit nearly everywhere is unique. In fact,
suppose that x(n)—x n.e. and z(n)—x n.e. (x(n), z and £’ € Cn=1,2,--+)
then for any positive number &, there exist a positive integer 7,(€) and SDD’s
{e,(6)} and {e,(€)'} such that (z(n)—x)[e,(€),1]€ M, (x(n)—x)e.(€),1]1€ M for
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all n=mny(8), |(x(n)—x)[e.(€),1]].<E and [(x(n)—x)e(€),1]].<<E& for all
n=ny(E). Let fu(€) = e.(€) A e,(€), then by [7, Lemma 3.1],{f.(€)} is also an
SDD. Moreover, (x—2)[ f,(€),11€ M and |(x—z) f(€), 1]]-<<2€ for all n=n,(€).
Write £—x = [x,,e,] and by (7, Definition 3.3], we have (x—x")e, A fu(€), 1]
= [xalen A fo(), 1] for each n. Thus by [7, The Remark following Theorem 3. 1],
it follows that for all n=n.(¢€),

|zn(en A\ fu(E) < 26
and for 1 =n=n,(), since x (€, A fu(€)) = Zun(n, N [nl&))en N fnlE)),
[ xalen A fa()I < 26

Therefore by [7, Theorem 5.3], z—x’ € M and |x—x'|l. <26, that is, x= 2.
Hence a limit n. e. is unique.

THEOREM 3.4. If {x(n)}n: and {y(n)}n-, are sequences of elements in C
converging n.e. to x and y in C, respectively. Then {x(n)+y(n)}y_, converges
to x+y nearly everywhere.

PROOF. For every positive number &, there exist a positive integer 7n,(€)
and SDD’s {e,(6)}, {fa(€)} such that (x(n)—x)ey(€), 1), (¥(n)—y)fu(€), 1] € M,
[(x(n) — x)en(€), 11| <& and [(y(n) —y)[f2(€), 11| <& for all n=ny(€). By the
same reason as above, {€,(€) A fn(€)} is an SDD. It is plain that (x(n)+y(n)—zx
n=n,(€). This completes the proof.

LEMMA 3.2. For any SDD{e,} and x<C, {x '[e,]}(where x7'[e,] is the
largest projection in M right annihilating (1—|e,, 1])x) is also an SDD.

PROOF. Using [7, Theorem 6.3 and 6.4], we can prove the assertion by
the same way as that used in [7, Lemma 3.1].

THEOREM 3.5. Let {x(n)}3., be a sequence of elements in C which
converges n.e. to x in C. Suppose that there is a central projection e which
is o-finite with respect to the center such that x(n)[1—e,11=0 for all n. Then
there exists a strictly increasing subsequence {n;} of positive integers such
that {x(n,)*}7, converges n.e. to x*.

PROOF. First of all, we suppose ¢ =1, that is, Z is o-finite. By the above
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theorem, we may assume x = 0 without loss of generality. Since Z is o-finite,
there is a faithful positive normal measure g on Q (the spectrum of Z). Write
x(n) = [x,(n), e,(n)]. First we note that the choice of {e,(n)} is independent on
the index n. In fact, since 1—e,(n) | 0 (m— ) and 1—e,(n)c M it follows
that D(1—e,(n)(®) | 0 p-a.e.(m— o). By Egoroff’s theorem, there are a family
{Q(m, n)} ;7 m-1 of clopen subsets of Q and a sequence {i(m, n)} of positive integers
such that

w(Q—Q0m, n)) < (1/m)2~"
and

D(l _ei(m.n)(n))(m) < 1/2m e Q(mi 7’[)

for each pair of positive integers m and n. Moreover, Q(m,n) } (m 1) and
i(m,n) 1 o as m and n | oo. Write Q(m) = (ﬂQ(m, n))’, Q(m) is a clopen
n=1

set and by [1, Corollary of Proposition 6], we get
HQ—00m) = p( 2=\ Q0m, 7))
n=1
< 2—1 wQ — Q(m, n))

< (1/m) i 2" =1/m.

Write Q,= UQ(m) and noting that Q(m) 1 (m1), we have wQ—Q,)

m=1

=u(Q—Qy) < wW(Q—Q(m)) <1/m for all m. The faithfulness of p implies that
Q—0Q,= @, that is, £, is dense in Q. If w<€ Q,, then o€ Q(m,) for some positive
integer m,. Since Q(m) 1 (m 1), it follows that @< Q(m) for all m=m, and
that

D(l—ei(,,l',,,>(751))(m) <1/2™ for all e Q(m) and m = m,.

Therefore,

i D(l'—ei(m.m)(m))(w) < o for all < QO .

m=1

Putting fi= A ecccnw(m) fi€ Myand £ 1 (k7). Since 1=fi= \ (1= €xscm.mo(m))
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we get that D(1—fi)(®)= > D1 —éx;cmm(m))(®@) <o on a dense open set .
m=1

Thus 1—f, € M, and D(1—e€kicm,m>(m)) | O implies that D(1—fi) | O, that is,
1—f | 0. Hence {f;} is an SDD. For any pair of positive integers j and %
Wlth Jg k, ki Cm, m)(m)fk = ZLkim, m> (m) €ki(m, m) (m)flc = Zjitm, md (m) €ki(m., m)(m)fk
=2 ;3 ¢m.m> S and similarly (i cm. m> (7)) * fe= (L 51.¢m, m>())* fie. Therefore {Zxicm, m>(m),
fi} is an EMO and since {e,()} implements the equivalence of {z.(m),ex(m)}
and {Zi;cmm>(M), fi}s T(M)=[Zsicm m> (M), fr], which is the desired property. On
the other hand, by the assumption, for any positive number &, there are a positive
integer 7,(€) and an SDD {e,(€)} such that x(n)e,(€), 1]1€ M and |z(n)[eq(€), 1]]-
< & for all n=ny(E). Write f(n, k, &)=fi, A((x(n)*)"[e,(E)]) A ea(€), D(1 — f(n, k,E))
—0 as 7 and k— oo on a dense set. Therefore by the same arguments as above,
we can take a subsequence {n,(€)} with 7,(€)=n,(1/7) for each 7 such that

iD(l —f(n,(&) n,(8), €))(®) < o= on a dense open set.

Take g.(&) = /1 f(kn,(&) kn,(€), €), then {g:(€)} is an SDD. Since D(1—g(1/n))

| 0 as k— oo, again by the same arguments as above, there is a subsequence

{k(n)} of positive integers such that iD(l—gk(,,,(l/n))(w)<oo on a dense open
n=1

set. Write g, = }iiq,k(,,,(l/n) and k; = jn,(1/7)k(j), noting that {g,} is an SDD

it follows that

Il

x(k;)*(9,, 1] = x(jn,(1/)k())*(9; 1]

x(jn 1/ Nk (9 secr(1/5), 11195 1]

x(in 1/ DG GRG)n(1/5), s*(i)n(1/7), 1/7), 1119, 1)

= x(jn,(1/ D) *(2(GR()n,1/7)*) esecpmcyn(1/1), 1115 1)

= (x(n,(1/7)k()eskcsnicn(1/7), 1D¥1 g5 1].

Since jn,(1//)k(j) Zn,1/5)=n,(1/7), we have x(k;)*[g;,1]€ M and |z(k;)*(g; 1]
<1/7 for each j. Thus we get the result for the case e=1. To prove the
assertion for the general case we argue as follows. First note that x[1—e, 1]1=0.

In fact, for every positive number & writing x = [x,,e,], there are a positive
integer 7,(€) and an SDD {e,(€)} such that

ll2a(1 — e)(en(&) A en)| < & for all n = n,(&).
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This implies that x[l—e,11=0 and x(n), x< Cle, 11(=C(Me) by [7, Theorem
3. 3]). Therefore by the above arguments, there exists a subsequence {n,}(7, 1 o)
of integers such that x(n)*—>x* n.e. (1—> o) in C(Me), that is, for every
positive number & we can take a positive integer 7,(€) and an SDD {e.(€)} in
Me such that for each i=n,(€),

(x(n)* — x*) [ei€), 11 € Me

and

[(x(n;)* — x*)[e:(€), 1]l < €.

Now put e,(&) =e,(E)+1—e and {e,(6)'} isan SDD in M and (x(n;)* —x*)[e,(€),1]
= (x(n,)* —x*)[e,(€), 1]. This completes the proof.

THEOREM 3.6. Let {x(n)}s., be a sequence of elements in C which
converges nearly everywhere to x in C and e be a central projection such
that x(n)[1—e, 1]=0 jor each n and that it is o-finite with respect to the
center. Then for any y in C, there exist subsequences {n;} and {m,} of
positive integers such that x(n,)y— xy (i— o) and yx(m,)— yx (i — o) nearly
everywhere.

PROOF. By the same reason as that used in the proof of the above theorem,
we may assume e = 1 without loss of generality. Now let y=/[y,,f,] then for
every positive number & we can take a positive integer 7,(7,€) and an SDD {e,(7,€)}
such that

(.r(?’l) - x) [en(j’ 5), 1] e M
and

I(x(n) — 2)[ea(j, &), Ul < &/|y; S5l for each 7= ny(j, &)
and for any positive integer j. For €= 1/j, we denote e,(j, 1/j) by e.(s). Taking
fG,n, ) =y"e(DIA fi» DA—f(n,n,5))—0 as n—oo on a dense set for each

J. Therefore, by the same argument used in the proof of Theorem 3.5, there is
a subsequence {n(7)}(n(7)=n,(j,1/5)) of positive integers such that

i_:,D(l — f(n(5), n(4), j))(@)< o> on a dense open set.

Write g.= A\ f(kn(j), kn(j), )
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DA-g)= z DA — fikn(j), kn(j) 7)),

which implies that D(1 — g,)(@) | 0 except on a non-dense set and {g,} is an
SDD. For each positive integer j, which satisfies 7, > kn(1), it follows that

(x(kn(ji)) — )Y Gir 1] = (x(kn(ji)) — D f(kn(Gi), knGi)s Ji)s 1)1 Gs 1]
= (x(kn(ji)) — ) leincso (i) 1Y G> 1]
= (x(kn(ji)) — ) [€kncs0(i) 11y [finars 1[G 1]
= (x(kn(ji)) — 2) [eincso i) W Yinc> fimarrs 111G 11 -

Since kn(j,) = ny(jr, 1/7:), we have that

(x(kn(],c)) — &) [€kncso (i) 1] € M

and

|(x(kn(ji)) — x)[exncso(Gid Ll < 1/7ellys fll -

On the other hand, j, > kn(1), which implies that (x(kn(j,))—x)y[gs, 11€ M and
I(x(kn(f)—x)y[gi» 11|l < 1/j, for all k. The first half part of the result follows.
By Theorem 3.5 and the above result we can choose a subsequence {m;} of
positive integers such that yx(m;)—yx n.e. (—> o). This completes the proof
of Theorem 3. 6.

4. A non-commutative theory of integration for a faithful semi-finite
trace of M. First we show the existence of a faithful semi-finite trace on M,
that is,

THEOREM 4.1. There exists a [0, ol-valued function v on M* having
the following properties :

(1) If a, be M*, then 7(a+b) = t(a) + 7(b);

(2) if ae M* and \ is a positive number T(ha) = \-1(a)
(we recall here 0-+ o0 =0 by our conventions);

(3) ifa eM* and u € M,, (u*au) = 7(a);

(4) 7(a) =0 (@< M*) implies a=0;
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(5) for any non-zero a in M?*, there is a non-zero b in M* majorized
by a such that v(b) << oo;

(6) let {a.} be a directed increasing net of positive elements in M such

that a, 1 a in the o(&)-topology for some a< M, then w(a,) 1 (a).

REMARK. We call such a function a faithful semi-finite trace on M*. A
gauge space ' is a pair {M, 7} composed of the AW*-algebra M and a trace .

PrROOF. By [1, Proposition 7(a)], there is a faithful normal semi-finite
pseudo measure u on . Now we define (@)= w(P(a)) for ac M*, then it is
plain that 7(+) meets all requirements. This completes the proof.

Then by the same arguments used in the proof of Theorem 3.2, there are a
two-sided ideal & whose positive part is {a; ac M*, 7(a)<<oo} and a linear
non-negative functional 7 on & coincides with 7 on {a; ae M*, v(a) < oo} with
the following properties :

(a) T(xy)=1(yx) if z or ye &, x and ye M,
(b) +(u*xu)= 7(x) if x€ & and uec M,.

Let & be the set {a; ae M, o(LP(a)) <o}, then F is a two-sided ideal contained
in & such that &,= %,.

Now we define
DEFINITION 4.1. For t¢ &, we define |¢t||,= Sup{|r(st)|; se M, |s]|=1]}.

The function ¢—|t]|, deserves the name “norm”, that is, it satisfies the
following properties ;

(i) 1£1,=0 for t< F and J¢],= 0 if and only if £ =0,

(1) Is+elZlslitlel, if ase @,

Gi) lazl, = |||, where @ is a complex number and £ < &,

(iv) el = I£*],= #(|¢]) where £ = u|¢| is the polar decomposition of #,

(v) if ve M and te &, then |vtl,=|v[lzll, and [zo], =v]]z]..

In fact, the first half part of the statement (v) is clear from the definition
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of ||zl On the other hand, ||zv],=Sup{|+(stv)|, [|s| =1, s € M} =Sup{|+(vst)|,|s]|
=1,se M}=|v|l¢ll,. Let £=wu|t| be the polar decomposition of #(¢< &F), then
u*t=|t| and |¢| € F. Therefore ||«*¢||; = |||, and [/ |2]],=]¢|:, which implies |z,
=||¢||,. Since + is non-negative, by Schwarz inequality, we have |7(s|¢|)|*
=[r([¢|Vs|e| V)P =(|2])-7([2]s*s|t| V%) = w(|£]) - 7(s*s|t]). [s*s|=1 implies
that |#(s[z])[*==(l¢])|Iz]], and that |||¢][,*=7(|¢])]|2]ll;. Therefore |z||,
= [ltlli==(¢]). Now [¢*¥],=|lzla*|,=|I¢l],=ltll, and by symmetry it
follows that |#||,=#¥|.. If |lz],=0, then 7(|¢|)=7(|¢|)=0. The faithfulness of

7 implies 2= 0. Tt is easy to verify the remainder of the above assertions.

Now we are in the position to introduce the class of integrable elements in

C via

DEFINITION 4.2. An element x in C is integrable if there exists a sequence
{x(n)}p-1 in &F such that [z(n),1]—>x(n.e) and |x(n)—x(m)|,—0 as n and
m—> oo, The integral of x, in symbol 7(x), is defined by 7(x)= limm(x(n)). The

set of all integrable elements in C is denoted by L*(I).

REMARK. Note first that the value #(x) of the integral of x in fact exists
and is finite and that it is uniquly determined by any particular such sequences.
Since |7(x(n))—(x(m))| = |Hx(n) —2(m))| =|z(n)—x(m)|,—0 as n m— oo, lim
7(x(n)) exists and is finite. To prove the second statement, we argue as follows.
Let {x(n)} and {x(n)’} be two sequences in &F which converge n.e. to x in C
and are L'-Cauchy, that is, |x(n)—z(m)||;—0 as n,m— o and ||x(n) —z2(m)|,—0
as n,m—>oo. Since {x(n)—x(n)'} converges to 0 n. e. and is L'-Cauchy, we have only
to show the following statement : If {z(n)};., is an L'-Cauchy sequence in & which
converges to 0 n. e, then 7(x(n))— 0(n— o). For every positive number &, there is
a positive integer 7,(8) such that |r(x(n))—7(x(n,(8)))| <8 for all n=n,(8). Since
z(n,(8)) € F, then RP(x(n,(8))) € F,. Therefore, | 7(x(n)(1 —RP(x(n,(®))))) | < | +(x(7)
—z(m(3)))| + | 7((x(n,(8)) —2(n))RP(x(n,(®)))) | + | 7(x(,(8))(1 — RP(x(m,(®))))) | <28
for all #=n,(8). Thus it suffices to show that +(x(n)p)—0 as n— oo for all
p<€ Jy. In fact, for every positive number & there are a positive integer 7,(€)
and an SDD{e,(€)} such that |x(n)e,(6)]| <& for any 7= n,(€).

px(n) = px(n)ea(€) + pa(n)(1 — eq(€))
= px(n)ea(€) + px(n)(1 — e4(8)) + pla(n) — z(n,))(1 — €,(8)) .
Therefore,
|7(plx(n) — 2(n))(1 — en(E)) | = () — 2(ny)], <& (n=m(3)),

and
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|7(px(n)1 — ea(O))| = |7((1 — ex(€)) p(m,)) ]
< (a(m)*z(ny)? - 7((1 — en(€) p(1 — ea(€)))"
= (z(m)*z(n,))*7(p(1 —en(€) ).

Since p(1—e,(6))p | 0 as n— oo in the o(S)-topology, 7(p(1—e,(€))p)—0.
Therefore taking € as &|p|, <8, we have T(p(1—e,(€)p)=8*(+(|x(n,)|*) " for
all 7=n,(8) for some positive integer 75(3). Combining the above estimations, it
follows that |7(px(n))| =38 for all #=max.(n,, 75, 7;). Thus 7T is unambiguously
defined. Morever by Theorem 3.4 and the above results 7 is linear on LYT).
Secondly we note that if x<€ &, then [z, 1] is integrable and its integral is equal
to 7(x). To prove this assertion, we argue as follows. We may suppose x=0
without loss of generality. Let » be the Cayley transform of x and {«}”"=C(Q)
where Q is the spectrum of {«}”. Then, noting that [, 1]=7(1+ [z, 1])(1 —[«%,1])*
in C, we have [z, 1](1 —[«, 1]) = i(1+[«%, 1]) and therefore 1+u< &. Let I',= {7;
lu(V)+1| >2/((x,)*+1)}~ where {r,} is an increasing sequence of positive numbers
such that 7,>|x| and 7, 1 oo(n— ), and f, be the projection in f{u}”
corresponding to the clopen set I', of Q. Then the function e I'y,— (1 +u(®))™!
is continuous. Therefore if we set wq(0)=(1+u(®))'(1—w(o))f,, w,< M, zw,
=f, and hence f,€¥F. Write x,= fox,2,€F and if n>m, then z,—x,
=2(fo—fn)Z0. |Zp—2nlli=7(xfa)—7(xfn). The fact that +(zf,) 1 (n— )
and 7(xf,)=7(x)<<oo implies that {x,}n-: is L'-Cauchy. Noting that z,—x
= 2(fo—1), |2, —x|| < 4r((rn)? +2)*((r,)* +1)"2—>0 as 7n— oo and therefore T(x,)
—7(x)(n— o). This is the desired property.

Next we show

THEOREM 4. 2. For any s< L'(I'),[s,11¢, t[s ,1] and t*< L'(I"). Moreover,
7([s, 1) = 7¢ls, 1]) and Tt*) = 7(t) (where a is the complex conjugate of a
complex number a).

PROOF. First note that we may assume that Z is o-finite without loss of
generality. In fact £ < LY(I"), there is an L'-Cauchy sequence {x(n)};-, of elements

in & which converges to t nearly everywhere. Let e= {ZLP(.r(n)) \V RP(x(n))

and z(e) be its central carrier. If {gx; A€ A} be a mutually orthogonal family

of projections in Z such that 2(e) =) _{gx, M € A} then m(z(e)(LP(x(n))V R x(n))))

=" g LP(x(n))V RP(x(n)))) and m(z(e)(LP(x(n))V RP(x(n)))) < oo implies
Aed

that the family of non-zero g¢gi(LP(x(7n))\ RP(x(n))) is at most countable for

each n. Therefore we have that the set of non-zero 2(e)gx is at most countable.
The assertion follows. Thus (1—z(e))x(n)=0 for all # implies [1—z(e), 1]z =0.
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Hence by Theorems 3.5 and 3.6, {x(n;)s} converges to t[s,1] n.e., {sx(n,)}
converges to [s,1]z n.e. and {x(7;)*} converges to t* n.e. for some subsequence
{n;} of positive integers. Moreover the sequences {x(7,)s}, {sx(n,)}, {x(n;)*} are
L'-Cauchy, which implies [s, 1]¢, #[s,1] and ¢*€ LY(I') and by the definition of
integral = and Theorem 4.1, it follows that =([s, 1]¢) = 7(¢[s, 1]) and 7(¢*) = 7(z).
This completes the proof of the theorem.

THEOREM 4.3. If p (e M,) is integrable, then pc F and T([p,1])= (p).

PROOF. First we suppose that 1 is integrable. We wish to show that M is a
finite algebra. If 1~¢,¢< M, and ¢ <1, then the semi-finiteness of = implies that
there is a non-zero projection ¢ in & such that g=1—-¢q(¢g+#1). 1—-g=g~1
implies 1— g ~1 and thus 1—g is also integrable. Since 7(1)=7([1—g,1]), it
follows that 7(1)=7([1—¢,1])+7(g) and 7(g)=0. That is, ¢=0. Thisis a
contradiction and the above statement is proved. Next we show that 1 can be
represented as a sum of orthogonal central 7-finite projections. In fact, let p be
any non-zero 7-finite projection, then D(p)#0 and there are a non-zero central
projection 7 and a positive integer 7 such that

27 r = D(pyr=2""r.

Then there exists a set {p;}%~, of orthogonal projections in M such that

gn g
Pupoc o pr=rp,~pr for each i and r— D p,=<D p; (see for example
j=1 =1

[8, Lemma 5. 1]). "r(Zp,-) = 2" i pr) = 2" p)< oo and +(7- - f:p,) < o0, which
Jj=1 j=1

implies that 7(7) <<oo. The finiteness of 7 shows the above assertion. Since 1 is
integrable, by the first paragraph of the proof of the above theorem, Z is o-finite.
Therefore there is an increasing sequence {p,};, of 7-finite central projections
such that p, 7 1(— c0). By the assumption, there exists an L!-Cauchy sequence
{t(n)} w1 of elements in & such that [#(2),1]—1 nearly everywhere. Now let us
consider the set {t(n)py,7=1,2,3,+--}, then it is L'-Cauchy and converges to
pi n.e. for each k Since jlrg T(#(n)pr) = T([pr, 1) = 7(p) = 7(pr) for each &,

there is a subsequence {n(k)} of positive integers such that
lim| He(2(k)pe) — 7(p)| = 0.

On the other hand, 7(p:)17(1), therefore, in order to prove that 1€ F and
(1) = (1), we have only to show that {#(7(k)p:} is L'-Cauchy and converges to
1 n.e.. For every positive number &, there is a positive integer k,(€) such that
for all %, and %, = ky(&)(k, = k,),
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le(n(k,)) = t(n(k)]l, < €
and
[t(n(k1)) e, = t(n(ks)) Pl
< | e(n(ky)) P, — E(n(ko)) P ||y + |6 R0)) i, = Pi) |1+ | (E((R2)) — t(7(Ro))) P, I
< 26 + |t(n(ko))(Pr, = Pr)lly
= 28 + 7((pr, — Pr) | t(n(ko))|)
= 2€ + ([ t(n(ko)) | /*(Pr, — Pr) | E(n(k)) | ?),

which implies that |#(7n(k,))pr, — t(n(ky))pr, !, — O(ky, ky;— o). Since ¢(n(k))—1 n. e.,
for every positive number 8, there are a positive integer 7,(8) and an SDD {e,(8)}
such that [|£(n(k)) —1)ey(8)| < & for all 2> ny(d). Write fi(d) = €,cr(®)pr, {fx(®)} is
an SDD and (¢(n(k))p; —1) fi(8)=t(n(k)) pencicy(8) — Prlncir(8) = (t(n(k))—1) prencis(8),
which implies the desired result. Thus 7(1)= lkllrelo T(t(n(k))pr) = 1k1_r£ 7(pe) = 7(1)
< 0. For the general case, for an integrable projection p, [p, 11CIp, 1]=C(pMp),
and set 7,(a) = 7(a) for a€ (pMp)*, by the above arguments, we have p< F(pMp).
Since F(pMp)= pFp, then p<c F and by the definition of integral 7, it follows
that 7,(1)=7(p)=7,(1)=7([p,1]) and the result follows.

REMARK. For any ¢ < LY(I'), we define ||£],= Sup{|+([s, 11t)|,s < M,|s|=1},
Then the function ¢z—|¢|,(¢ € L)(I")) satisfies actually the properties of a norm;

(a) 0=|¢t|,<oo for te LNI") and |¢|;=0 if and only if £=0,

(b) [s+eli=lsl+tl, if s, e LX),
(c) la-tl,=|allitll, if e L'(I") and a is a complex number,

(d) lelli= 1"l
(e) if se M, then ||[s,1)¢], = Islliz]l, and [z[s, 111, = [sllll¢]ls,

In fact, if |¢],=0, then 7([s,1]¢) =0 for all s€ M. Let ¢t = [w, 1]|¢|(w € M,;) be
the polar decomposition of ¢ (see [7, Theorem 6.3)), |¢| =[w¥, 1]¢ and 7(|¢|[s,1])=0
for all se€ M. Let [u,1] be the Cayley transform of ¢*¢ and |¢|=[¢,.e.] where
tpoen€ {u}’, tpe,=t, and 0=¢, 1 for all n, then by the same reason as that
used in the proof of [7, Theorem 6. 3] we can choose for each n,m=1,2,3,+--,
positive elements cp( € {#}”) and projecticns en( € {u}”) satisfying [7, Theorem 6. 3
(1) —(5)]. Moreover, |t|[cr, 11=1[en,1] and |£| € LYT') implies [e},1]e LX(I).
Therefore by Theorem 4.3, e, € &F, and 0= 7(|¢t|[cr 1])=7([en, 1)) =7(e%) for all
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n and m. Since e 1 RP(t), 7(RP(t))=0, that is, £=0. The remainder of the
above statements are verified by the same method as that used in the paragraph
following Definition 4. 1.

THEOREM 4. 4. The integral of a non-negative integrable element of C
is non-negative.

PROOF. Let ¢ be an integrable non-negative element in C and [, 1] be its
Cayley transform. Write ¢ = [¢,,e,], where 0=¢, 1, t.en=1¢, and ¢,,e,< {u}".
Note that by [7, Theorem 5.2], e, is the projection corresponding to the clopen
subset {0; |u(@)—1]>2((r,)*+1)"} (= Q,) of the spectrum Q of {u}” where
{r,} is a strictly increasing sequence of positive numbers satisfying 7, >|z.l
with ¢ = [z, g.] and 7, 7 co(n—o0). Let T, ={V; |u(¥)+1|>2((r,)*+1)'},
since the function Y(eT',)—(1+«(Y))™! is continuous, setting f, is the projection
in {#}” corresponding to the clopen set ", and w,(7)= (1 +2(7))"' (1 —2(V))fnens
then w,e M and t[w,, 1]1=[w,, 1]t =[e, f,1]. £ LY(T") implies that e,f,<€ %,
by Theorem 4.3. Let ¢, =¢,f,, then t,’=0 and ¢,’« & for each n First, we
show that {¢,} is L'-Cauchy. In fact, since for each pair of positive integers m
and n with m<m t,—t,) = tofo—tufm=tafo—tnlnfn=tafol—€nfn)=0, it
follows that ||t, —t. ||, = 7(1t, —tw |) = |7{ta =t )| = 7, ) —7(t, ). On the other
hand, 7(¢,) 1 (n1)and |7(¢,") | = |7t fuen, 11| =| ¢l < oo, which implies lim (¢,

n—oo

exists and is finite. Therefore {¢,} is L!'-Cauchy. Next we show that {[¢,,1]}
converges to ¢ n.e. In fact, [£,,1]1—¢=tle,fs, 11—2 = t([e, f»—1,1]), therefore
([ts's 1]1—2)[en, 11 = [ta(enfn—1),1]. On the other hand if w € Q,, then |(1—u(w))!]
=1/2)(7)2+ 1)V and (@) = (1 +u(0))(1 —u(@))~". Since |1+u(w)| <2/(7,)*+1)
for w € (T',), it follows that ||£,(1 —fI=1/((rn)*+1)"% for all n. Thus {[¢.,11} -1
converges nearly everywhere to ¢t. Hence 7(¢) = Lim 7(¢,')=0. This completes the

proof.
REMARK. If owe(I}), then |1—u(w)| =2((rn)?*+1) "2 <2 and 1+u(w)+*0.

Let y.(0)=(u(0)+1)"'(1—e,), then y,¢ M and (1+u)y,=y,(1+u)=1—e, On
the other hand 1 +[«, 1} e LY(T"), which implies 1 —e, € F for all # by Theorem 4.3.

COROLLARY. Let te LNI') with t=0, then there is an L'-Cauchy
sequence {t(n)};_, of positive elements in F such that t=[t(n),1] and [t(n), 1]

—t(n—> ) nearly everywhere.

PROOF. The assertion is clear from the proof of the above theorem.

THEOREM 4.5. Let t<C with t=0, 7(t)= Sup{#(s),se F,0=[s5,11=¢},



ON A PROBLEM OF FELDMAN 449

in the sense that if either side exists and is finite, then the other side exists
and has the same value.

PROOF. Suppose t< LY(I") with ¢t=0 and s F with 0=[s5,1]=¢, then
7(t—[s5,1])=0, which implies 7(¢)=7(s). Therefore by the above corollary,
7(¢t) = Sup{7(s),s€ F 0=[s,1]=t¢}. Conversely, let u be the Cayley transform of
t, {e,} and {f,} be the families of projections used in the proof of Theorem
4.4. Then tle,, 1] — tlen, 11 fos 11 = [£0, 1] — (20, 11[ fin» 11 = [£0, 11[1 — f3r, 11 = 0.
It is plain that for wel,, |1—wo)| = 2r,(r.) +2)V (rx)* +1)™' and for
0e, NI, 1A —wo)™| = (r.)? +1)/2r.((rn)? + 2)V2.. Hence t=1/r((rn)
+2)V? f,,, 1] for each m. Note that 7( f,,) = Sup{7(p),p€ Fp, P=fu}> T(f) <00,
that is, f, € F. Let [£,,1]= tles, 11[ fn, 1], then ¢,/€ F and 0=[¢,,1]=¢. For
each pair of integers m and n, with m>n, (|t —t,|)=+(t. —t.'), therefore
it follows that {t,} is an L!'-Cauchy sequence. Since the clopen subset of Q
corresponding to the projection 1—f, is contained in {w; |1+u(w)| =2/((r5)*+1)}
and |1 —#(w)| '=((r.)?+1)/2 for o<, making use of the functional
representation we have

(2 = [£a's 1DMens 1l < 1/((7)* + 1) for each n.

This implies that [¢,,1]—¢ n.e. and ¢e L'(I'). This completes the proof of
Theorem 4. 5.

Theorem 4.5 naturally leads us to the following

DEFINITION 4.3. For te(C with t=0, we define #(¢)= Sup{#(s),sec &,
0=1[s11=1¢}.

Thus by the above theorem, if ¢e LY(I')(¢=0), ?(t)z?(t). Moreover, if s,
teC*, then it is plain that T(s+2)= T(s)+ i(t)-

COROLLARY. For any t in C, =(t*t)= T(¢¢*).
PROOF. Let ¢=[v,1]t be the polar decomposition of # ([7, Theorem 6. 3]),

then t*t = |¢|? and #t*= [v, 1]]¢|}v%, 1] = [v, 11¢*¢t[v*,1]. The assertion is clear
from Definition 4. 3.

THEOREM 4.6. For any non-negative element t in C, the following two
statements are equivalent.

(1) te L\(I).
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(2) [ta1]e LYT) and Sup{#([t.,1]),n=1,2 ---} < ocofor some t= [t,e,]
(£,=0) in Theorem 5.2 in [7], and in this case, ¥(t)=Sup {7([¢,,1]),n
=1,2,+-4.

PROOF. Let te LXT') with t=0 and ¢ =[¢,, e,] by the representation in

Theorem 5.2 of [7], then t=[t,,11=0 and 7([£,,1]) < oo implies [t,,1]€ LT
and Sup{F([t.1]), n=1,2,-+ -} =7F(t)<<oo. On the other hand, (¢ — [, 1])
=7t)—7([t,, 1]) = 7(¢[1 —e,, 1])—0 by Proposition 4. 4. Therefore (1) implies (2).
Conversely, suppose (2), then let f, be the projection used in the proof of the
above theorem, f,e,< &F,. Therefore write ¢, =1t,fn, {t.}7-1 is an L'-Cauchy
sequence which converges to ¢t n.e. Hence #< LYI") and the statement (1)
follows.

The rest of our discussions in this section is devoted to the space L*I)
defined as follows.

DEFINITION 4.4. Let LX) (=9.) be the set {t; t< G t¥t=[t|*e L'(I)].

Then,

PROPOSITION 4.1. If s, t€ §., then s*t e L") and |7(s*t)| *’=7(s*s)-7(¢*t).

PROOF. Suppose s and ¢ are self-adjoint, then we have (s—#)(s—£)*=0,
(s+t)(s+t)*=0, which implies s?+¢*=ts+st= —(s*+¢t*) and ts+st< L'(I").
On the other hand, (s+:it)(s+it)*=0, (s—it)(s—it)*=0, which shows s?+¢?
=i(st—ts)= —(s*+¢*) and st—tse L'(I'). Therefore, st and ts< L'(I"). For the
general case, let s =s,+1s, and t=¢,+1t, with s;, s,, ¢; and £, € C,4, then by the
above argument, it follows that s*s< L'(I"). Now for any pair of complex numbers
A and g, A+ py)*(ANx+ py) =0, that is, AANTFx+Apx¥y+apy*x+ puy*y =0,
therefore, it follows that MAT(x*x)+apr(x*y)+Apr(y*x)+ ppr(y*y)=0 and by
the same way as that in the proof of Schwarz inequality that [7(x*y)|?
= F(a*x)-F(y*y). This completes the proof.

PROPOSITION 4.2. For any t<C, we define |t|, =(7(|¢|%)"2. Then ||t|,
=Sup {|ts|,lls]:=1, £s € L'(I")}. Moreover LXI")= {t € C, ||t||,<oo} is a prehilbert
space with respect to the norm | |,.

PROOF. First of all we note that it suffices to show the above statement
for ¢t with £=0. In fact, for £¢C, let ¢t = [w, 1]|¢] be the polar decomposition
of ¢. Suppose there exists a sequence {7}, in F with |7,]:=1 such that
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|t*|[7n, 1]€ LX) for each 7 and | |¢¥*|[ry, L1]s—| [£*|[.=£*[.=2]s. Write
sa=w¥r,(e F), it follows that |£*|[r,, 1] = [w, 1]]¢|[w¥, 1][7s, 1]1=[w, 1]|£|[sn, 1]
= t[s,, 1] € L'(I") for each n and | |¢*|[7y, 11|l;=|£[s,, 11[,—[£]o(n— o). Note
that [[sulls=F([$n*50, 11)"*= (7(5,%5,))"* = (7(rn*ww*r,))'? = 7(rp¥r,) 2= 1] . = 1.
Therefore the above statement follows. Making use of the same notations as that
used in the proof of the above theorem, let ¢=[¢,,¢,] and ¢, =t¢,f,, then in
order to prove the theorem, we have only to consider two cases: (a)|t, ||, < oo
for all n, and (b) there is an 7, such that |, |s= oo. Suppose that (a) holds,
since [2,,1]1€ LAI") and #,? = (1/r.*(r,)*+2)) fnen for each positive integer n, it
follows that [ fnes,11€ L'(I) and therefore e,f,e F. Thus ¢, € &F follows. Let
so= /|t )t (we may assume |[z,’[;#0 without loss of generality), then
5. €F and t[sn, 11 = [tnss, 11€ L'(T"). It is plain that |s,],=1 and |[s,, 111,
=||ta8alls = @/t I3 = 1222 = ({24, 11))¥%  On the other hand ¢, 1 and
[(.)% 11=2% it follows that F(t,%)"2— 7(¢2)"? = |||} < oo as n— oco. The result
follows. Next if we suppose that (b) holds, then for all positive integers n=n,,
there is a projection g, in F such that fr,e,=g, and || 9,[ls=7(g,)"*=r((r2)* +2)"*n.
Write s, = (1/19xll)ga( € F), then [s,lo=1 and ¢[s,, 1]1=[t,'s,, 11 F LY(T).
Since Sntn'sn = (1/rn((rn)2 + 2)1/2) (Sn)zenfn = (1/7‘n((7‘,,,>2 + 2)1/2) (sn)2 = (1/7‘,,, ((rn)2
+2)2 9,199, =0, therefore

(2[5, 111 [I8all = 1/70((70)* + 2)'* for each 7.

Note that ||s,]=1/llgall2 [£[5s, 11[1 =7 for all 7z and |¢[s., 11|l, —it], as n— oo,
Therefore the first half part of the statement of Proposition 4.2 follows. The
second part of the assertion is clear from the triangular inequality and Proposition
4.1. Thus L*I") is a normed linear space with the property that |[t*|,=]¢|, for
all ¢ < LXI"). This completes the proof.

PROPOSITION 4.3. G = {[x,1], x € F}) is norm-dense in L*(I") and LX),
respectively. Moreover T(xy)=7(yx) for each pair of elements x and vy in

LXI).

PrROOF. Let te L*(1") and ¢={[w,1]|#] be the polar decomposition of z.
First we show that it is sufficient to prove the statement for ¢ with ¢=0. In
fact, suppose for ze L*(1") (resp. € L'(I"), there is a sequence {s,};-; in &F such
that [[s,, 11— [#11:—0 (|[[s., 11— {2, —0 resp.). Observe that by Proposition
4.2, for any y< M, t[y,1] and [y, 1]t € LXD), [y, 11t[.=|yll¢]l; and [[y,1]],
=|lylll¢l,, it follows that [w,1][s,, 11(€¢ F)—¢ in L¥I)(resp. in L*I"))(n-— o)
strongly. Let ¢ be a non-negative element in L*T") (resp. in L'(I")) and u be the
Cayley transform of ¢, then we can write t=[t,, €,], t,, €, € {u}”, £,=0, t, T and
tne,=t, by Theorem 5.2 in [7]. Let {#,} and {f,} be the sequences of positive



452 K. SAITO

elements and projections in {«}" respectively, used in the proof of Theorem 4. 6.
Observe that ¢," € Fand t2—[¢t,2, 1] = [(tn)* (L —en fr), €n] = (¢ —[t,, 1])% it follows
that ||t —[¢,, 11| = T(*[1—e, fu, 1]) (resp. ||t —[¢,, 11|l = T(¢[1 —e, f, 1])). Therefore
by Proposition 4.4, |t—[t,, 1]],—0 (resp.|lt—[t,, 1]|,—0) as n—oo. By the
above argument and the properties of =, it is easy to show that 7(xy)= T(yx)
for all £ and y in L*I"). This completes the proof.

To prove the completeness of the spaces L*(I") and L!I'), we need the
following Proposition.

PROPOSITION 4.4. For te C(t=0), let p(x)=1(t"2xtV?)(x e M*)(we call
this functional @ an extended indefinite integral of t), then @ is completely
additive on projections.

PROOF. It is plain that @ is finitely additive on projections. Let {e,} be

an indexed family of mutually orthogonal projections in M such that e=) e,
u

for some projection e in M, then @(e)=)_ @(e,). Therefore if uncountable many

n
of the @{e,) are positive, then @(e)=> @(e,). Thus we have only to prove the
M
statement for the case p=7=1,2,---. We show that @(e)=> @(e,). Let s be

i=1

in & such that 0=[s,11=[e, 1]¢[e, 1], then se=s and s=1im)_s"%¢,;s"? in the

i=1
o(©)-topology = lim ) _s"%¢;s"*RP(s) in the o(&)-topology. Thus by the property
i=1

of 7, we have

7(s) = lim ) _ 7(s'%,;s"?)

n i=1
n

= lim_ 7(e;se;)

n =1

<1im Y F(en 1tlen 11) ((euse,, 11=Ie,, 1ltle,, 1)

n i=1

= lim 3" ple)

n i=1

= é ¢(ez) .
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This completes the proof of Proposition 4. 4.

Now we are in the position to prove

THEOREM 4.7. LX) (resp. LXY)) is a Banach space with respect to the
norm | ||, (resp. | |2). In particular, L*(I") is a Hilbert space (denote it by

Do)

PrOOF. Let {s(n)} be a | |, (p=1,2)-Cauchy sequence in L*(I')(p=1,2).
We show that there is an element s in LP(I') such that |s(n)—s),(p=1,2)
~—0(n— o). Since & is uniformly dense in L*(I')(p=1,2) and ||t]|,=]¢*|, for
all te LP(T)(p=1,2), we may assume that {s(n)} CF,, (we write s(n)=[s,,1])
without loss of generality. Moreover, we can suppose | [$,, 1]1—[Sn+1, 1]],<<1/4"7(p=

1,2). Now by the spectral theorem, there is a sequence {e,}7_; of projections in
M such that

1(Sp = Sprp)enll = 27" for all n
and
(g — $n41)' =271 —e,) for all n.
Since |5, —5n+1| =2 "(1—e,) and s,—S,,, € F, it follows that 1—e,< &F for each
n. Observe that 1/4">1/4"”> 8 11— [Sn41» l]llpZZ (71— e,,))”’J for p=1
and 2, write g,= \/(l e, g | and T(g,,)<}:~r(1 ek)<21/4" Therefore

7(g,) {0 as n— oo, that is, gn | 0. Note that ¢,=1—g,=1—g, if n=Fk, we
have

H(sn - Sn+1)(1 - gk)” = H(sn - Sn+1)en<l - gk)”

é !\‘i(sn - 5n+1)€n“

=2"" for all n==%k.
Let us consider the sequence {s,(1—gi)}.=r> then putting @, = (1—g)s.(1—9g,)
+(1— 9509+ grsa(1—g,) for each pair of positive integers n and &, it follows
that {a,®} CcM,, and

@, —af | =11 — g1)(sn — Sne)X — g+ 11X — 9i)(Sn — Snv ) el
+1g(sn — 5n+1)(1 Dl
=3[(sp = sps )1 — g5)| =8-27" for all n=%.
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Hence {a,*’} is a uniformly Cauchy sequence for each %, so that there exists
for each positive integer &, a self-adjoint element s*> in M such that for 4,
a, " — s (n— o0) uniformly. Observe that s,(1—g;)=a, 1 —g,)—s®1—g.)(n
— o0) uniformly, it follows that s,(1—gx,) = ss(1—g:)1—9k,) if & =%, implies
that s¥*)(1—gx,) = s*°(1—gx,). Therefore note that g€ F,cM,, {s*,1—g,} is
an EMO. Write t =[s*®,1—g,], € C... Since (s;—s®)1—g,)=s5.1—9,)—s®1
— )l Use, L1 —)[1— gy, 1] =27%*! for all %, so that [s,,1]—¢ n.e. (n— o),
Now in case of L!(I"), ¢ is integrable by the above arguments. Let s< M with
Isl=1, then [s,s—susli=\|s,—snli, which implies {s,s} is an L'-Cauchy
sequence and [s,,s, 1]—¢[s, 1] n.e. (> o) for some strictly increasing subsequence
{n,} of positive integers. Let [s,, 11—¢ = [w, 1]|[s;, 11—¢| be the polar decom-
position of [s,, 1]—¢, then we have

[[sn 1] —2lly = 7(|[s, 1] —2])
= 7(|[sn, 11 = 2|[gx, 11) + 7(1[5n, 11 — £](A — [ 91> 11))
= 7(|[sn, 1] = £][g&, 1]) + F((1 — g4, 11[w0,*, 11([s5, 1]
—1)(1 —[gx 1D)

and since for any projection p in &F with p=1-—g,,

tlp 1] = t[1 — g, 11[p, 1] = [s®(1 — g), 111, 1] = [s®p, 1],

it follows that for every p=<1—g, with pe M,

([ £, 1 sa, 11 — 2102, 1)) = 7([ p, 11[wn®, 11 ({50, 1] = 2) [p, 1])
= lj{_gl?([P, 1 [w,*, 11[(sn — sn)p> 11)

= lim Sup s, — Snl.

Now the complete additivity of the indefinite integral shows that [[s,, 11—z,
élir;l Sup ||s, —sk/l;, which implies the desired result. In case of L"), let se¢ &F

with [s]:=1, then [s,s, 11—s,1] n.e. ({— o) for some strictly increasing
subsequence {7;} of positive integers and {s,s} is L!'-Cauchy. Therefore #[s, 1]
e LY(I"). Now the completeness of L!(I") implies there is an integrable element 7
such that |[s,s, 1] —7|;—0(— o0). By the same argument as that in case of
LY(I"), we can take a strictly increasing subsequence {m,} of positive integers such
that [s,,s, 1]—7(f— ) n.e.. Therefore » = t[s, 1] and |[s, 11}|,= 7], =1im|ls,s],

=<lim Sup|s,|l.|s]ls<< o by Proposition 4.1. Since & is strongly dense in_mLQ(I‘),
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te L*(T") and |[¢t}l;=1im Sup [s,|l: by Proposition 4. 2. Next we show that |/[s,, 1]
—t];—0(n— o). In fact, {s,—Sn}m=1 is an L'-Cauchy sequence which converges
n.e. to [s,, 1]—t(m— o). By the same reason as above, it follows that |[s,, 1]
—t|l; =1im Sup ||s, —sn.|ls. The above statement follows and L*(I")=9. is a Hilbert

space. This completes the proof of Theorem 4.7.

5. Representation of M. Let B(D,) be the algebra of all bounded linear
operators on .. For any x€ M, we define 7,(x)a= [z, 1lala< §.) (resp. 7, (x)a
= a[x,1]), then we have | (x)al,=|x[|al, and |z (x)a],=|z| |a|.. Therefore,
it is easy to show that =,(x) and =,(x)€ B(9.) for all x< M. Moreover, it is
immediate that

(N + py) = Ay (x) + F’”l(y)’ mi(xy) = m(x)m ()
m(x)* = 7, (%), m,(nx + py) = A (x) + pr (),

”r(xy) = ”r(y)' 7[,-(.’1}'), ”r(x)* = ”r(x*)

for &, y in M and complex numbers A, g On the other hand if =,(x)=0
(resp. m.(x)=0), then [z, 1]la=0 (a[x, 1]=0) for all a in §.. Since T is semi-
finite, there is an orthogonal set {e.} of projections in & such that > e.=1.

Therefore FC §, implies that xe,= 0 (e, = 0) for all a. Hence by [5’.. Lemma
2.2], x=0. Therefore 7,(+)(resp. 7,(+)) is a *-isomorphism (resp. *-antiisomorphism)
of M into B(9.). Let {g:}:c; be a set of mutually orthogonal projections of
M with e=)_g, then

tel

9

2

Im(e)a — X mgalz = |[e~ L gul]a

ted ted

= ?(a*[e —->"9s 1}a>

ied

= ?(aa*[e—Zgi, 1])

ied

for any finite subset J of I. By Proposition 4.4, > ,(g;)— m(e) strongly.
ted

Similarly, > 7,(g:)— 7,(e) strongly. Therefore =, (M) and =, (M) are AW*-

ted

subalgebras of B(£.) in the sense of [6, 3. Definition].

THEOREM 5. 1. Let M(resp. N) be the weak closure of m,(M)(resp. m,(M)).
Then M and N are von Neumann algebras such that M=N' where N’ is the
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commutant of N in the sense of [2, 1.1].

To prove the above theorem, we need the following definition.

DEFINITION 5.1. An element a in . is said left bounded (resp. right
bounded) if there exists an operator 7,(a) (resp. m,(a)) of B(£.) such that =,(a)b
= n,(b)a (resp. m,(a)b= m(b)a) for all b in MNP..

Now we sketch the proof after [2, Chapter 1, Section 5]. Let [M.] be the
closed subspace of §. generated by the T¢é (T'c M, £< ®.), then F is dense in
9, and 7, (M)F =, which implies [M §,]=9.. Similarly, [N9.]= .. Therefore
by [2. Chapter 1, Section 3, Corollary of Theorem 2], M and IV are von Neumann
algebras. By the definition of #, and 7,, it is plain that McC N'. Thus we have
only to show the converse assertion. First we shall prove that if a is left bounded
then for T € N', Ta is also left bounded and 7T'z,(a)==(Ta). Let M= {=,(a),
a is left bounded}, then M, is a left ideal of N'. In fact. let a be a left bounded
element of 9., b and ¢ be in MN H., then

m(a) 7, (b)c = m(a)chb = n.(cb)a = n,(b)m,(c)a
= 7(b)-m(a).

Since FCMNH, and F is dense in 9., 7(a)e N'. If T« N’, then Tz, (a)b
=Tn(b)a= n,(b)Ta for all b MNH.. Therefore Ta is left bounded and =,(Ta)
=Tn.(a). Similarly we have that if @ is right bounded and if 7'¢ M, then Ta
is right bounded, 7'7,(a) = 7,(Ta) and that let M,= {x.(a), a is right bounded},
then M, is a left ideal of M . Let M;= M, N M,* and M,= M,NM,*, then
M, "cN and M,"cM’. Let T be in N and T, be in M,’, then for each pair
of elements @ and & in MNY., 7,(b)*Tx,(a)c M;. Therefore Tz, (b)*Tm,(a)
=m(b)*Tn(a)T,. The semi-finiteness of 7 implies that there is an increasing net
{e.} of projections in &F such that 7,(e.) 1 1 for the o-topology. Since Fc MnN .,
T\T =TT, that is, T € M;" . Therefore N = M;" and similarly M = IM,”. Next
we show that M;CcM,. Let 7,(a) e M; and 7,(b) € M, then by the definition of
M; and M,. =,(a)*= m,(c) for some left bounded element ¢ and =,(b)*= =.(d)
for some right bounded element d. Observe that the inner product (. ). of 9. is
defined by (x, y).= T(y*x)(x,y € 9.), it follows that for each pair of elements x
and y in H.NM. (a.zy).= (c*, zy)., therefore a=c*. Since Fc Mn $.C .,
MnN §. is uniformly dense in §.. Thus there exists a sequence {x,} in MNP,
such that [z, —al,—0(n—00). |z, —al,=|z*—a*|,=|lz,*—cll, > 0(n— o).
Similarly there is a sequence {y,} in MN$. such that y,*—>b and y,—d
uniformly (n— oo). Therefore we have
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(71'1([1)' ﬂr(b)x’ ¥ = (m,(b)x, ”1(C)y)r
= (m(x)b, m(y)e).

= lim(m()yn*, 7:(y)"):
= Lg?c(xyn*, 2,%y).

= lim (2, ) (2y"))

= lim H(y*z,zy,*)

= lim #((yyn)*xn)

= lim (22, yyn)-

= lim (7(@), 7:(y)yn):
= (zx)a, m,(y)d).

= (”l(a)xv ﬂr(“’)&’):
= (7 \b) mi(a)x, y):

which implies that m,(a)-m,(b)=n,(b) - w(a) and therefore N'=M;Cc M, =M’
=M. Thus we have M = N . This completes the proof.

REMARK. M = (7, (M)Y and N= (x,(M)Y.

Now we are in the position to state

THEOREM 5.2. =,(M)= M, that is, M is a semi-finite W*-algebra.

In order to prove the theorem, we need some lemmas.

LEMMA 5.1. Let a be in F and & =a,1](§ € 9.). Denote the orthogonal
projection on the subspace [M'E] generated by TET € M') by Pupy. Then
P gy e mi(M). !

PROOF. Since for any b¢ &, ,(b)€=n.(b)la,1]=[a,1][b,1]=[ab, 1]
= m(a)[b,1], so that =,(b)¢ < Range(w,(a)) for all be F. Note that =.(F) is
o-dense in 7,(M). In fact, the semi-finiteness of 7 implies that there is a set



458 K. SAITO

{e:} i1 of orthogonal projections in & such that »_e; = 1. For each finite subset

iel

Joof I a2t = Ze)yli = (= (c(t = X a))om (et - Te))y)e

ied ied ied
= 1_ ’1}; I: 1_ i‘,l.J 7:\ ,1{1'— 6,1 x*,l] *
(y[x( ;Jet) I x( ZJe) ) T(y[x ] ZJ i }[ y)
for ye 9. and x € F. Therefore by Proposition 4. 4, the above statement follows.

(the strong closure of Range(r,(a))). On the other hand, 7=,(a)[b,1]=7.(b)E € [M'£]
for all b€ F. The strong density of & in ». implies that Range(r,(a))c[M E],
or [M'£]= Range(r,(a)). Next we show that Pury = Privgsan = LPseoo (m1(a))
where LPgg. (7 (a))is the left projection of 7y(a) in the AW *-algebra B(9.). By
the definition of LPgg.(m:(a)), it is plain that Prangstray = LPa@(mi(a)). Let

j M E,= 7,(aa*®) be the spectral decomposition of 7,(aa*), then LPpg.\(7,(a))7,(aa*)
0

oo

= m,(aa®) implies LPpg.(m(a)) f dE,= dE, for each positive integer 7.
1/n

1/n
Therefore LPgg.(7,(a)) = Pringsmiayy which is the desired property. Since
(M) is an AW *-subalgebra of B(9.), by [6, Lemma 2], Purs=LPs . (7.(a))
€ m,(M). This completes the proof.

LEMMA 5.2. For any & in 9., let E=[u,1]|§| be the polar decomposition
of &(ue My), then Pupy~ Puryn and Pury = my(@)Pupieymi(u)*. Therefore if
Pug iy € (M), then Pupy € m(M).

PROOF. First observe that £ = 7(«)|&| and |&|= 7,(«¥)E. For any be M,
7 (b)Y = m,(b)m\(u) | €| = m(w)m,(b)| €|, Therefore =, (M)E=m (), (M)E[. If
ne [M'E], then there is a sequence {A,}y-; €M such that A,£—7 in .. Thus
A, €l = Apri(u®)m(w) | E| = Apmr\(u¥)E = m,(u*) Ané—m,(u¥)9(n— o) in $., which
implies that 7z,(«*)pe [M'|£]] and 7 (w)7(u*)n € 7 () [M | £|]. On the other hand,
since my(w)m (u*)AE = Aprr () (u¥)é = A€ and 7,(w)m (u¥)Ané — mi(w)m (w¥)n
(n—>o0) in ., it follows that =,(w)7,(«*)p=79 and ne =, (w)[M |E|], that is,
[MElC m,(w)[M'|£]]. Conversely, since m,(M)E = n(w)x,(M)|E|, we have [M'E]
D) M| £|], that is, [M'E] = n(w)[M'|£|]. Next we show = ,(RP(§)M'|&|]
=[M'|£|1([7, Theorem 6.4]). In fact, for every & in M, =,(RP(§)n.(b)|E&|
= m,(0)m(RP(E)) | €| = m,(b)w*u, 111 €| = =,(b)| €] by [7, Theorem 6. 3]. Therefore
m(RP(E)M’ |E]1C[M'|E]]. On the other hand if 7€ x,(RP(€)M |£]], then
observe that 7 ,(RP(£))yp =7 and #,(RP(&)) (M’ |£|) is dense in 7 (RP(E)M'|£]],
then there is a sequence {A4,} in M such that m,(RP(§))A,|&|— n(n— o).
An |l = Agmy(RP(§))| €| = m,(RP(£)) Ay | E| > n(n— o0), so that 7= m,(RP(£))y
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e m(RP(E)M’ | £|]. Therefore m,(RP(E))M’|£]] is closed linear subspace of §.. It
follows, from the fact that 7,(RP(§))-n (M)|E| ==, (M)|E|, that =,(RP(E[M(("|E|]
=[M'|€|]. From the above arguments, an easy calculation shows that
71(2%) P a1, 7,(w%) is a projection and 77,(2) Py i)y w1(#*) = Pppy. On the other hand,
for all ne 9., Piwnn=mn() Par e € for some &€ e, Prar 518 = Prarr e1yr1(e6*) 7w, (0) Prap 1y §
= Purnm (w®)Puryn, which implies that Ppupegn = m(2) Pup enm(w) Porgn  and
Py = m,(0) P epri(w)*. Therefore the proof is completed.

LEMMA 5.3. For every < 9., Puyy € m(M).

PROOF. By Lemma 5.2, we may assume £ =0 without loss of generality.
Let [, 1] be the Cayley transform of £. Write & =1[tn, e, tnen€ (u}” 0=¢,1
and t,e,=t,. Choosing a family {¢,, f, where t, =0, f, is a projection} used
in the proof of Proposition 4.3, then 0=¢,1, [¢,, 11=¢ and ¢, <« & for each
n. Moreover write £,=1¢,, 1], ||E,—E] ;= 0(n— o). By Lemma 5.1 Py, € m,(M)
for each n. First we show that Py, 1 and Pupsy = Pury. In fact, £,=[t,,1]
= [enf'nt'n+le'n+1fn+l’ 1=&0lenfr 11= ”r(enfn)fnﬂy which implies [M'E,]C[M'E,.,].

Similarly, &,= [¢,,1]1= n(e,fn)é§ and [M’E,JC[M’E]. Next we show \O/;P[M,E"]

= Pupry in M. If there is a non-zero projection Q in M such that Ppupg— \V Pupe,y
n=1

=Q, then QP =0. Therefore Qf,=0 for each 7, so that Qf =0, that is,
Q[M'E] = 0. Hence this is a contradiction. Thus Py, 1 Pury weakly (n— oo)
in M. By [3, Lemma 2], Py <€ m,(M). This completes the proof.

PROOF OF THEOREM 5.2. It is sufficient to show that =,(M),= M, (see
for example [3, Lemma 1]). Suppose then P< M,. For any £e< P9., =.(b)PE
= Pr,(b)t € P9, for all be M, [M £]C PP., that is, Pyrsy =P. Let {Puy} be a
maximal family of orthogonal cyclic projections majorized by P, then P=3_ Pupy

E
in M. By Lemma 5.3, Py < (M), so that by [3, Lemma 2], Pe 7,(M). This
completes the proof.

Making use of this theorem, we show the following

THEOREM 5.3([6]). Let M be an AW*-algebra of type 1 whose center
Z is a W*-algebra, then M is a W¥*-algebra of the same type.

PROOF. It is sufficient to show that M has a separating set of c.a. states.
Since Z is a W*-algebra and by [5, Lemma 4. 8] M can be represented as a direct
sum of homogeneous AW*-algebras and we may assume that M is a homogeneous
AW*-algebra whose center Z is o-finite without loss of generality. By the
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structure theorem, there are an abelian projection e, with 2(e,) =1 and a family
of orthogonal projections {e;}..; containing e, such that e;~e,(i € I) and > e;=1.
i1

By Lemma 2.3, e,Me,= Ze,=Z. Let ¢ be an inverse map of the map a(€ Z)
—aey(€ Ze,) and P(a)= > ¢((v.)¥*av,) in Z for a< M* where v, is a partial

isometry such that (v.)*v.= ¢, (v.)(v.)* = e.la€ I). Then we have

(1) DP(a+ pb) = A®(a) + p®(b) if a,be M* and A and u are complex
numbers,

(2) Dlas) = sP(a) for se€Z* and ac M-,
(8) if ueM, and ae M*, then Pluau™) = D(a),
(4) if ®a)=0 with ae M*, then a=0,

(5) let {fs} be a mutually orthogonal projections in M with f=> f,
7
then ®(f)= > '®(f3) in Z,
3

(6) for every @ in M*, there is a non-zero b in M* with ®(b)<c Z*,

In fact, the assertions (1) and (4) are clear from the definition of ®. First we
show the statement (2). Since (v.)*asv.= s(v.)¥av,, it follows that ¢((v.)*asv,)
= ¢(s(va)*av.) = ¢(seel(va)*av.) = ¢(se,)  ¢((va)*av.) = s¢((v.)*av.). Hence by
Lemma 2. 12, ®(as)=sP(a). To prove the statement (3), we argue as follows. Since
for ue M, and a€ M*, uau*=wua'’a'*u* and (v.)*uau*v.,=(v.)*ua'?a'*u*v,, by [6,
Lemma 7], it follows that (v.)*uau*v, € Ze, and (v.)*uauw*v.=> (v.)*ua'*esa'*u*v,
B
in Ze, for each a. Therefore by the same way as that used in Theorem 3.1,
O(uau*) = ®(a). To prove the statement (5), let {fs} be a mutually orthogonal
projections in M with f= ) fs Again by [6, Lemma 7], (v.)*fv.< Ze, and
7

(vo)*fv.= D _(va)*fsv. in Ze,. Thus by the same reason as above, the statement
]
(5) follows. Now we show the last assertion (6). Let a be a non-zero element

in M*, then there are a positive number & and a non-zero projection p in M
such that a =ap. Then we can easily choose a non-zero abelian projection f in
M such that f=p and f<e,, By lemma 2.4, ®(f)=®P(e,). Write b=af,b
satisfies all requirements.

Next let B={se M*, O(s)c Z*}, then B is the positive part of a two-sided
ideal M. By the same way as that used in the proof of Theorem 3.2, there is a
unique linear operation ® on R to Z which coincides with @ on B satisfying
(@), (b), (c) and (e) in Theorem 3.2. Moreover this operation satisfies: (d")
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if {fs} be a set of mutually orthogonal projections in M, then > ®(fz)
]

= (I)<Z fg>. Let u be a faithful positive normal measure on Z, then set oa(x)
B
= u(P(ax)) for ac P and x < M and we have by [6, Lemma 7] ca(f) = D>_ca(fs).
a

An easy computation shows that {oa,a <P} is a separating set of positive c.a.
functionals on M. This completes the proof of Theorem 5. 3.

ADDED IN PROOF : These results were previously announced in Proc. Japan
Acad., 46(1970), 463-467.
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