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1. Introduction. In [5], I.Kaplansky introduced a class of C*-algebras called
AW*-algebras. For these, while being algebraically denned, much of the Murray-
von Neumann structure theory for von Neumann algebras, in particular, the lattice
structure theory of the set of projections can be developed. Dixmier showed that
this class of AW*-algebras is exactly broader than that of von Neumann algebras
[1]. Therefore, it is an interesting problem for us to investigate the difference
between AW^-algebras and von Neumann algebras. From this point of view, we
shall extend Feldman's result on "Embedding of AW^-algebras" to semi-finite
AW*-algebras, that is, we shall show that a semi-finite AW^-algebra with a
separating set of states which are completely additive on projections (c. a. states)
has a faithful representation as a semi-finite von Neumann algebra on some
Hubert space (Theorem 5. 2). He showed that a finite AW^-algebra which possesses
a separating set of c. a. states admits a faithful representation as a von Neumann
algebra [3].

In the previous paper [7], we constructed the algebra C of "measurable
operators" for a semi-finite AW^-algebra M in algebraic fashion and studied the
structure of C. Throughout this paper, we always assume M to be a semi-finite
AW^-algebra with a separating set © of c. a. states and C to be the algebra of
"measurable operators" for it.

The contents of this paper are as follows. Section 2 is preliminary. We
review briefly the definitions and elementary properties of M which will be used
later. In section 3, along the same lines with [10], we shall prove the existence
theorem of a dimension function (Theorem 3. 2) for M and introduce the notion
of convergence nearly everywhere of sequences in C Section 4 concerns with the
existence of a faithful semi-finite numerical trace r on M and the non-commutative
integration theory with respect to r. We shall show that the set $τ of square
τ-integrable elements in C is a Hubert space under a suitable norm (Theorem 4.7).
Section 5 is the main part of this paper and is devoted to prove the theorem:
M can be represented faithfully as a semi-finite von Neumann algebra (Theorem
5. 2). As a corollary, we give the alternative proof of Theorem 2 in [ 6 ], more
precisely, an AW^-algebra of type I whose center is a W^-algebra admits a
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faithful representation as a von Neumann algebra of type I.

2. Definitions and preliminary results. By an AW^-algebra we mean a
C*-algebra M with the following two conditions :

( a ) In the set of projections, any collection of orthogonal projections has a
least upper bound.

(b) Any maximal commutative self-adjoint subalgebra is generated by its
projections.

Let M sα, M+, Mp, Mpί and Mu be the set of all self-adjoint elements, positive
elements, projections, partial isometries and unitary elements in M, respectively.
Denote the two-sided ideal generated algebraically by all finite projections in M
by 5DΪ, then 9tt contains only finite projections. If every non-zero projection in
M contains a non-zero finite projection in M, then M is called semi-finite. For
informations about AW^-algebras, especially the lattice structure theory of
projections, and the algebras of "measurable operators" for them, see [3], [6] and
[7].

Let N be a W*-algebra, namely a C*-algebra with a dual structure as a
Banach space, N# be the predual of N, that is, the Banach space of all bounded
normal functionals on N. Then N can be represented faithfully as a von Neumann
algebra ([2]) on some Hubert space [9] and in particular, N becomes an AW*
algebra. For other informations about W*-algebras, see [9].

Now we prove the fundamental results which will be used later.

LEMMA 2.1. For e in Mv> let z(e), c(e) and s(e) be the least central
projection^ e, Sup [ueu*, u € Mu} and Sup {/; f^eyfz Mp], respectively [5,
Corollary 3], then z(e) = c{e) = s(e). We say that z(e) is the central carrier
of e.

PROOF. First, we shall prove c(e) z Z (the center of M). For v £ Mu, we
have vc(e)v*= t;(Sup [ueu*, u £ Mu] )v* ̂  Sup [vue(vu)*, u £ Mu] = c(e). Therefore,
vc(e)v*^c(e) and v*c(e)v^c(e)> that is, vc(e)v*= c(e). Since every element of
M can be written as a finite linear combination of elements in Mu, it follows
that c(e) ̂  Z. Thus c(e) gί z(e) ̂  e. On the other hand, z(e) = uz(e)u* §: ueu* for
all u € Mu and z{e) §: c(e), which implies z(e) = c(e). By the definition of s(e) and
c(e),s(e)^c(e) = z(e)> while f~~e implies ft^z(e). Consequently s(e) = c{e) = z{e).
The lemma follows.

REMARK. By [5, Corollary 1], the right annihilator of eM is M(l-z(e)).
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LEMMA 2. 2. For ezMp and z <= Zp, z(ez) = zzO).

PROOF. From the above remark, the right annihilator of zeM=M(l—z(ze)).
It is easily seen that M(l — zz{e)) C right annihilator of zeM. Hence it suffices
to show the converse assertion. If x £ right annihilator of zeM, then z.r € right
annihilator of eM(=M(l— z(e))). zxz(e) — Q, that is, a;€M(l-zz(e)). Therefore we
have z(ze) — zz(e).

LEMMA 2. 3. For any e in Mp, the center of the AW*-algebra eMe ([5,
Theorem 2. 4J) is Ze. Moreover, Ze = Zz(e).

PROOF. Let (eMe)* be the center of eMe, then it is clear that
Hence from this fact and the spectral decomposition theorem, it is sufficient to
show that (eMe)% Q(Ze)p. If gz(eMe)}, then g^e and g^kez(g). Noting that
the right annihilator of gM= M(l-z(g)), if we put k=ez(g)-g, gMk= gMek
= geMek = eMegk = 0. Therefore k^M{l—z(g)), which implies k = 0, that is,
g = ez(g) € (Ze)p. For x z Zz(e), put ψ(x) = ̂ ^, then ψ1 is a ^-homomorphism of
Zz fe) onto Ze. We shall show that ψ is one to one. In fact, if xe = 0 for
some α: £ Zz(V), then eδ:r = 0 for all b € M, that is, x € right annihilator of
eM( — M(\— z(e)). Therefore we have z(e)x=0. This completes the proof of
Lemma 2. 3.

LEMMA 2. 4. Let N be an arbitrary AW*-algebra and let p and q be
projections in N such that p^q. Then, there exist orthogonal families of

n n

projections {pi]ΐ=i and [qt}i=ι in N such that p— ΣPn 9 = Σ ^t and for

i=l i=\

each i, pt is unitarily equivalent to qi in N.

PROOF. The proof is the same as that of [10, Remark 1.1]. But for the
sake of completeness, we sketch them. Since, by [5, Theorem 4. 2], there exists
a central projection e in N such that Ne is finite, N(l—e)=0 or properly infinite
and N= NeQ)N(l— e), we have only to consider two cases: (a) p and q are
finite, and (b) p and q are properly infinite. For the first case, the assertion is
clear from [5, Theorem 5.7], Therefore it suffices to show this for case (b).
Suppose that p and q are properly infinite, then, there is a central projection z
in N such that (l-q)z^(l-p)z and (l-q)(l-z)>:(l-p)(l-z)[5, Theorem 5.6].
Hence we may suppose 1— p>?l — q without loss of generality. By the similar
reason, we may assume that: either (a) 1 — q is finite or (b) 1—q is properly
infinite; either (a) 1—p^p or (β) P^l—p. Since p and q are properly infinite,
by [5, Lemma 4.5], there exist projections px and qγ in N such that pι

-p1—p1—p,qι^q and q-q^q^q. If (a) holds, then l-pι=p-pi
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-f 1— p<p—p\+pι —p^P\ and it follows 1— Λ^SΛ On the other hand since
l—pi^p—pi~~pi, we have 1— p\~~pι Next we show that 1 —<7i^"#i. In fact,
l — qιr=(q — qι)-\-l — q:<q — q1-^q1 = q^q1 and 1 — qx ^q — qι ^qu which implies
that 1 —<7î <7i. Therefore l—p1~~l — qu Pi^-Qi and pλ and q1 are unitarily
equivalent in N. By symmetry, p—pι and g — #i are unitarily equivalent. In case
(aβ), l = l—q + q<q — qι + qι = q and l^p, thus l—p<p and we can arrive at
case (a). If (bβ) holds, we may suppose without loss of generality that either

-q or 1-q^q. If 1-q^q, then l-q^q — q-q^ and l = l - ? + g:<g-gi
7i = <7 Case (a) reappears. If #;<1—<7, then noting that there exists a

projection qί in JV such that q^^l — q and 1— q^-qί —-1— q — qx\ we have
l = l — q + q^l — q — qι' + q1'=l—q9l — q'^Ί and 1— p^-1, which implies that p
and q are unitarily equivalent in N. This completes the proof.

Let © be a fixed separating set of states on M which are completely additive
on projections, and © be the set of finite linear combinations of elements in
[a*ωa, ω € ©, a £ M], where (a*ωa)(x) = ω(axa*) for all x £ M. For any positive
number £ and any positive integer n, put K.n^i, «2> > ωn)(0) = {<z iωt(α)|
< £, z = 1, 2, , n, ωίy ω2, , ωn € @}, and we define the σ(@)-topology of Λί
by assigning sets of the form V.tn(ωί9 ω2, , ωn)(0) to be its neighborhood
system of 0. Since © is a separating set of continuous linear functionals on M,
this topology is the separated locally convex topology defined by the family of
semi-norms qω(x)=\ω(x)\ω€®. Then we have the following

LEMMA 2.5. Let {ea}a&A be an ortJτogonal set of projections in M such
that e= Sup[^{eα, ctz I}; A~Dl€ζί] where £F is the family of all finite subsets
of A, then ]Γ {ea, az 1} | e (I € 20 in the σ(@)-topology.

PROOF. By [3, Lemma 3], ω(J2 [eay a €/})-> ω(e) for all ω e ©. Hence the
assertion is clear from the definition of the σ(©)-topology.

LEMMA 2. 6. Any abelian AW*-subalgebra N9 especially, the center Z,
of M is a W*-algebra and the σ(©)-topology restricted to this subalgebra is
equivalent to the σ-topology on bounded spheres.

PROOF. For any increasing net {aa}aζA of positive elements in TV with
supremum a and ω € @, by [4, Lemma 2.2], we have ω(Sup{aa,at <= A})=Sup{ω(αβ),aε
€ A]. Therefore N has a separating set of normal positive measures and the first half

part of the result follows from [1, Theorem 1]. Since the σ(@)-topology is weaker
than the σ-topology and the unit sphere of N is σ-compact, while the cr(@)-topology
is separated, it is equivalent to the σ-topology on bounded spheres of N.
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THEOREM 2.1 ([4], [11]). Let N be a finite AW*-algebra with a
separating set ©' of c. a. states. Then N has a center-valued trace Φ( ) in
the sense of [4, Definition 1] with the following continuity property: // {aa}
is an increasing net of positive elements in N such that aa\ a in the
σ((3')-topology for some a in N, then SupΦ(αα) = Φ(a) in Z (the center of N).

We sketch the proof after the fashion of [9, Chap. II, 4]. By [5, Theorem 6]
and [6, Lemma 18J, N is a direct sum of an AW*-aIgebra of type Hi and
homogeneous AW*-algebras. Therefore, it is no loss of generality to suppose that
either N is homogeneous or of type Hi. In the former case, there is a finite family

n

fe}?=i of abelian projections in N such that 1 = Σei> eί^eι f°r a ^ z a n ^
i=l

etej = 0 if iφj. Let vu be a partial isometry in N such that vu*vu — ex and
vuvu*=ei for each i. Put vιx— ex. Since z(eι)=l9 by Lemma 2.3, exNeγ is
* -isomorphic to Z. Let ψ be the ^-isomorphism of Z onto e1Ne1 denned in the
proof of Lemma 2.3 and φ be its inverse map. Then if we put Φ(x)

n

— ( V ^ Σ f r i i ^ i t ^ i ) ' it is e a s v t o show that Φ is the center-valued trace in
<=ί

the sense of Definition 1 in [4]. For any directed increasing net [xa] of positive
elements in N such that xa f x in the σ(@')-topology, by the definition of the
<r(@')-topology, e1vn*xavHeι~>eιvH*xvlieι for the σ(@>topology. By Lemma 2.6
and the σ-continuity of φ, it follows that Φ(xa)-+Φ(x) for the σ-topology on Z.
Now we assume that N is an ATί^-algebra of type Hi. Before going into the
proof, we need following definitions and lemmas.

DEFINITION 2.1. We say that a projection e in N is fundamental if there
exist a central projection z and a set of orthogonal equivalent projections

2 n

\eu e<ι, ' * > 2̂"} in N such that e = eγ and ^ et = z.
i = l

First, note that z and n depend only on e. In fact, let zλ and {ex\ e2', , e2*}
2m 2 m 2 n

be another such family for e. Suppose m<n, then Zi=Σei ~*ΊL,et*$Σei~ z

i=l i=l i=l

and Z\ = z(^) = z by Lemma 2.1, which contradicts the finiteness of N. Hence,
we can define unambiguously a center-valued operation Φ on all fundamental
projections as Φ(e) = 2~nz. Then we have

LEMMA 2. 7. For any pair of fundamental projections px and p2> Φ(pι)
= Φ(Λ) if and only if pί—p2.

PROOF. Since "if" part is clear, it is sufficient to prove that
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implies pι^p2. By [5, Theorem 5.6], there exists a central projection z such
that pιZ <fp2z and p1(l—z)>:p2(l—z)y hence we may assume pCζιp2 without loss
of generality. Thus there is a set of orthogonal projections {/i',/2 ,•••,/*»} such

2 n

that ^—//</;, where eί^pufi^p29eiej=O(iΦj),fifj=O(iΦj),Y/ei =
1 = 1

and Σ,ft=z(pt). Thus it follows that 2* Φ(/>,) = £ > , ~ Σ / ι
1=1 t=l 1=1

and this is a contradiction. The lemma follows.

LEMMA 2. 8. Le£ eλ and e2 be two fundamental projections such that
Φ(ex) = 2~nz and Φ(e2) = 2~mz. If m^n, then there exists a set of orthogonal

2w-n

equivalent projections {/>f £ = 1, 2, ,2m~n} 5W<;/ι ί/iαί el=^pi9 and pt—e2
i=l

for each i. Moreover, let eue2, ,es,fuf2, ,ft and f be fundamental
s

projections such that {e{}Uι and {fjl^i are orthogonal. Putting e—^jei and

if ft==Le and Φ(/) + ]LΦ(/^) = Σ/^( ei)' then there exists a projection
3=1

ft+ί such that ft+i^-f and f+ι^e-f

PROOF. Let {ql9 q2, , ̂ l be a set of orthogonal equivalent projections

such that e2 — qx and z=^2qi9 then putting ez— Σqi9 es is a fundamental

projection such that z(e3) = z = z(e2) and it follows that Φ{ez) = 2~nz{e2)
which implies et^e3. Hence the first half part of the lemma follows. Now we
shall prove the second assertion of the lemma. If we decompose N suitably, we
may assume that eu e2, , es,fuf2, ,ft and / have the same central carrier.
Thus we can write Φfe) = 2~n%, Φ(fj) = 2~miz0 and Φ(f) = 2-mz0 for some
central projection z0. Denote the largest number of [ni9 mj9 m] by r. By [5, Lemma
4.12], there exists a fundamental projection p in N such that Φ(p)=2~rz0. Then

2r-n{ 2r-πij 2r — m

by the above arguments, et= Σfe) f c, / , = !](/,•)fc and / = 2 ] / f c , {fe)fc} (resp.
λ = l A : = l A : = l

{(fj)k}> {fk}) is a s e t of orthogonal equivalent projections such that {et)
k^-p9

t s

P and /*—p. Since, by our assumption 2r~m + ]Γ 2 r ~ w ' ^ £ 2r-n', the

assertion follows from [5, Theorem 5. 7].

LEMMA 2.9. // {ea}aίA is a set of orthogonal fundamental projections
and if e is a fundamental projection such that e = ]Γ [eα, a € A], ίΛew Φ(^)
— Σ ! (Φ(O» ̂  £ A] ίw Z, ^Λαί is, Φ is completely additive on fundamental
projections.
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PROOF. By Lemma 2.8, we can easily show that ^l{Φ{ea),a^ A] ^Φ(e).
Conversely let ψ be a functional in ©', put z0 — 1 — Sup [z ψ(z) = 0, zzZp}.
Then, by the complete additivity of ψ and Schwarz' inequality, we can easily
show that ψ is faithful on Zz0. Noting that ^2 {Φ(ea'Z0),cc^ A} ^Φ(ezo\ by
[4, Lemma 2. 2], ]Γ {ψ(Φ(ea- z0), a e A} ^ψ(Φ(ez0)) therefore without an exception
of countable set {^(Φfe^) ι = 1, 2, 3, •.• }, ψ(Φ(ea z0)) = 0, that is, ea-z0 = 0.

Thus we may reduce the problem to the case ]Γ Φ(ei)-\-2~nl<Φ(e) for some
i = l

positive integer n. By [5, Lemma 4.12], there is a fundamental projection e0

such that Φ(eo) = 2~n\ and <?0 = £ Hence by Lemma 2. 8, we can take a sequence
fci'j <?2> ' * *} of orthogonal equivalent projections in (e—eo)N(e—eo) with ^ I ' ^ ^ I .

Thus it follows that e=Σei'^~'Σleι =e~e^e^ which contradicts the finiteness
i=l t = l

of N. Therefore 2Z {Φ(ea) <X£ A} = Φ(e). The lemma follows.

LEMMA 2.10. Every non-zero projection e in N contains a non-zero
fundamental projection in N.

PROOF. Let {ei}ί&1 be a maximal family of orthogonal equivalent projections
such that et^e for each z£ /. By the finiteness of N, I is a finite set, say
{1, 2, •• ,w}. By [5, Theorem 5.6], there exists a non-zero central projection z

n n

such that (l — Σe^z^βiZ. Thus we can write z= ^2eiz + en+ί, where en+1 is

a projection such that en+ιz-^zen—zeι and en+1etz = 0 for i = 1, 2, , n. By
[5, Lemma 4.12], we can find a family {/i,/2, >/2r} of orthogonal equivalent

projections such that Σfί=z a n d n + K2m. Again by [5, Theorem 5.6], there
i = l

is a central projection zλ such that eιzι-^fιzι and ^( l— zO/^/iO-— ̂ i) Now we
n n+l

shall show ίΊ^! = 0. In fact, if e1z1φθ, then zzχ = Σ ei

i z i = z;2;i Thus this is a contradiction because of the finiteness of N.

Therefore, it follows that e^f^l—Zi). If /i(l— «i)=0, then fit==ΞZuz(fι)
= z^zlieι^l—zι^l—z and ^2:=0. While by the above argument if exz—^y

n

then 1— Σ ^ ί ^ ^ i a n d this contradicts the maximality of {̂ ί}?=i. Thus this is a
t = l

contradiction. It follows that fi(l—Zι) is a non-zero fundamental projection such
that ^i^r/i(l— Zi). This completes the proof.

Now let Nζ be the set of all fundamental projections of N and put ψ{e)
= <p(Φ(e)) for e^N{, and φ^Z^ φ^0 and | | ^ | | = 1 . For any positive number
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£, let [za] and {ψa} be a maximal family of non-zero orthogonal central

projections and positive functionals in ®/za(— {ψza,ψ£ ©'}) respectively, satisfying

the following: l/{l + €)ψa(f)^φ(f)<(l + εyψa(f) for fzNzanNf

p and for all

a. From now on, we shall show Σz<* = l I*1 ^act> ^ 0 ^ 1 — X^ a, then there is

a positive functional ^ in © such that ψι ί 1— Σ ^ « ) = $p(l — Σ £«)• Then,

LEMMA 2.11. There exist a positive number Θ and a non-zero projection

e0 in i V ( e o ^ l - Σ > « ) s u c h that θψ^p)^ p(p)^θ(l + S)ψλ{p) for all

fundamental projections p^e0.

PROOF. If the contrary holds, then for all fe N\l— Σ z«) ΠiV£, there is

a non-zero fundamental projection such that 0 < / Ί ^ / and ψiif) 5Γ ψ{f)- By

Lemma 2.10, there exists a set of orthogonal fundamental projections {fβ} such

that ψi{fβ)>φ(fβ) and J2fβ=l— Σz«- Since Φ is completely additive,

Ψ Ί ( 1 — ΣZal = = Σ ' Ψ > I ( / / 3 ) ^ > Σ ^ ( Λ ) : = ^ ( 1 ~ Σ 2 : « ) a n c l hence this is a contradiction.

Therefore there exists a projection ^ € Nf
pC\N\l- Σ z«) such that ψiie^ΦO

and for all p£ Nf

p with />^^i, ψi(p)^ p(J>). Let 0 be the least upper bound of
the numbers η such that η ^ι{eι)^φ{eι), then 0 (l + ̂ ) ' ψ >

1 ( e 1 ) ^ ^ 1 ) and thus
0^1(^0 ̂ ^ ( e 1 ) ^ 0 ( l + £)'ψιi(^i). By the same argument as above we can prove the
lemma.

Thus we have θψ^eu) ^ φ(u*eu) = φ(e) ̂  0(1 + f)ψΊ(e) for all uz^NeX

et=keQ with e^Nf

v. Therefore, ψ>i(w^w)^(l + ̂ )'ψ<

1(^) for all e^N{, with
e ^ ^ i and u^{eιNe])u. By virtue of the complete additivity of ΨΊ and the
spectral decomposition theorem, it follows that tyι{u*au)^ί(l + ε)*'γι(d) for all
a^{e1Neι), α ^ O . Now by the ίiniteness of eλNex and the polar decomposition
theorem ([11, Lemma 2.1]), we can easily show ψι(a*a)t=ί(l + £) ψι{aa*) for all
azeJSle^ Let {<7i, q2, , #2"} be a family of orthogonal equivalent projections

2"

such that eγ — qι and ] ζ ^i = z, z ^ Z p and Wj (z = 1, 2, , 2n) be the partial isometry

such that w^τυi — qx = ex and wiwi*= q^ If we define Σ
ΐ = l

for a^Nz, then ^ £ @ £ (ψ ^O) and putting au — w^aτv4( <= eJSίe^), we have

for azNz
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and

Therefore we have ψ(ά*ά) ^ (1 + £) ψ(aά*) for all a £ Nz. Let f be a fundamental
projection in Nz such that Φ(/) = 2"~m2o(£o *= Zp), then by [5, Lemma 4.12], there is a

family {f\,f^ >/*2π} of orthogonal equivalent projections such that f=
1 = 1

Noting that /, is fundamental for each ί, Φ(fi)=2~n~mz0^2~nz—Φ(eι)i which im-

plies fι<eu that is, there is a projection gi in iV with gi^e1 and fi~~gt. Therefore

Similarly we get ψ(J)= Σ
ί=l

Therefore it follows that

for / € NzΓ)Nf

p.
p

Putting ^ ' = #ψ{ £ ©£)> fo £α] and {'ψ'j'ψ'α} has the same property as {za} and
, which contradicts the maximality. Thus 2Z^«= 1.
Now we define a functional on Nζ as follows: ^e(e) = ΣΨ«(eZa) for

ee Nζ. Then,
a

^ Σ ^ ( 1 + f)V-(^«) = (l + f)V.W and hence ψ e is bounded on JVί. Therefore if
a

we put ψ (Λ)=Σfβ(Λ2:«ι) for a^N, then ^ e is a bounded positive linear
α

functional on N which is completely additive on projections. Since ψ,(X)

^ (l + θ)y(l), {ψΊ/n, n = 1,2, } is a bounded set in N* and thus it is

σ(N*9Nyrelatively compact. Let 'ΨΌ be an accumulation point of {^i/n,w=l,2, •••},

then l/(l + l / w ) ^ ( ^ ) ^ ^ ) ^ ( l + l/w)2ψv^(^) for each έ?€JV£ implies that
ψo(e) = ψ{e) for all ^ £ iV£. On the other hand, ψQ is completely additive on
projections. In fact, for any orthogonal family of projections {ea}aeΛ with
e = Σ f c , Λ ^ A ) , we can write by Lemma 2.10, ea= ]Γ [ea, βa,βa € Aa}91—e

» β ^ B} where {£«> /8a} and {/̂ } are families of orthogonal fundamental

projections in N. Since Σ Σ>«, *« + ]£/*= 1, Σ Σ
a βa β a βa

which implies E Σ f o f c ί J + Σ W / ^ l . Moreover
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= ψo(X—e), which implies ΣΣΨo(*«> # 0 ^ ψo(e)> On the other hand Σ J^ψo (*«/»«)
a βa a βa

= Ψo( Σ Σ*«> *« ) = ψ ^ X therefore it follows Σ ΣΦo(*« *«) = ψo(e) Since
λ α βa ' a βa

, βa) ̂ Ξ Ψo ( Σ «̂>0« ) = Ψ Ό ( O > ΨO(*) = Σ Ψ Ό ( * « ) > which is the desired
^ βa '

ΣΨ Σ
βa ^ βa

property. Now let [ea}aeA and {fβ)β€B be two families of orthogonal fundamental

projections such that Σ e« = Σ / * t n e n ^ ( Σ ®(eS) = Σ P(*«) = Σ ΨΌ O«)
o /3 ^ α e j / a*J aej

Σe* j = Ψo[Σea )^ψo(X) = ψO-) for all φ£ ©' and for all finite subsets

Jof A and ^ ( Σ φ ( θ ) = ̂ (Σ φ (Λ)) f o r a11 ^ ^ Z ^ ^^° a n d

Therefore Σ φ (^«) a n d Σ φ ( Λ ) exists in Z and moreover it follows that
α β a

= Σ * ( Λ ) Since for any projection e in N, there is by Lemma 2.10, a set

{̂ «}αeA of orthogonal fundamental projections such that e = Σ e « > then put Φ(^)
= ^2Φ{ea). By the above arguments, Φ(^) can be therefore unambiguously defined.

a Π

Thus Φ is extensible on all projections of N; suppose that Σ α i A — 0 (A ^ Np at
i = l

is a complex number for each i\ then φ[ Σ ^ί'Φ(A) )= Σ Λ t ψΌ(A) " " Ψ Ό ( Σ Λ t A )
V i=l / i=l \ϊ=l /

= 0 for all <p ̂  ©', which implies Σ Λ i Φ ( A ) = 0 on the other hand since elements
i = l

of the form Σ Λ i A ^s uniformly dense in N and Φ ( Σ Λ i A ) ' = 4 f Σ Λ i A | | > then
i = i I! £=i I I i = i IS

Φ has a unique continuous extension (denote it by the same symbol) on N. It is
easy to see that this unique extension satisfies all the properties mentioned in
Definition 1 in [4]. Now let {aμ} be an increasing net of positive elements in N
such that aμ j a in the σ(@/)-topology for some a in N9 then ψ(α— αμ)Ξ^0 and
ψ(a — aμ)-^0 for all ψ s©' with ψ ̂  O. Thus we have ψ((a—aμ)za)-*0 for all
such "ψ1 and a, therefore ψa((a—aμ)za)-*0 for all a. On the other hand, by
Lemma 2.10 and the spectral theorem it follows that

(1/(1 + £)) ψa(a) ̂  φ(Φ(a)) ̂  (1 + £)

for all a € Afea, a^O. Hence
—>0 for all a and φ^Z* with <p^0. From this fact, Φ satisfies all requirements.
This completes the proof of Theorem 2.1.

Now let M be the semi-finite AW^-algebra in the preceding paragraph of
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this section and Z be the center of M. Since Z can be represented as the algebra
of the complex-valued continuous functions on a hyperstone space Ω, we identify
them. Let Z be the set of all continuous [0, + 00]-valued functions on Ω. By our
convensions we recall here that 0 + 00 = 0. If f,f € Z and λ is a non-negative
number, then f + f'^Z and X'f^Z. Since ω-^/(α>)/'(ω)(ω€ Ω) is a lower
semi-continuous function, thus it coincides, except on a non-dense set, with a
unique continuous function ff. Then we have :

LEMMA 2.12. // {aa} is an increasing directed set of elements in Z,
for any positive element b in Z, Sup [baa, a] = b Sup [aa, a].

PROOF. Let ψ be a faithful normal pseudo-measure on Ω ([1, Definition 2
and Proposition 7]), then since Sup {baa} fg b Sup {aa}, it is sufficient to show

that ψ{b Sup{aa,a]) = 'ψiSuρ{baa a}). By [1, Proposition 7], we have only to show
that μ(bSup{aa, <x})= μ(Sup{baa, a}) for each positive normal measure μ on ίλ
Since the functions ω (ω € Ω) —> &(ω)(Sup [aa(ω)} ) and ω (ω <Ξ Ω) —• (b Sup {aa} )(ω)

α α

coincide except on a /t-null set, we have

μ(b Sup {αα}) = I b(ω) Sup {αα(ω)j dμ(ω)
J

= I Svp{b(ω)aa(ω)}dμ(ω)

= Sup j J b(ω)aa(ω)dμ(ω) \

= Sup! J (baa){ω)dμ{ω)\ (by [1, Proposition 1])

= j Sup{(baa)(ω)}dμ(ω)

= μ(Sup(&αα)) (by the same reason as above).

This completes the proof of Lemma 2.12.

3. Existence of a dimension function for M and the convergence
"nearly everywhere" of sequences of elements in C. In this section we shall
construct a dimension function (Definition 3.1) on Mv and using this dimension
function we introduce the notions of the convergence "nearly everywhere" of
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sequences in C and study some of its topological properties. The methods which
we use are similar to those of I. E. Segal [10].

THEOREM 3.1. Let M be a semi-finite AW*-algebra with a separating
set @ of states zvhich are completely additive on projections (c. a. states), Z
be its center and Z be the set of all [0, + oo]-valued continuous functions on
ί l {the spectrum of Z). Then there is an operation Φ from M+ {the positive
part of M) to Z having the following properties :

( 1 ) Φ{hx + h2) = Φ(AX) + Φ{h2) hl9 h2eM+;

( 2 ) Φ(χh) = X Φ(h) if λ is a positive number and h <= M+

( 3 ) Φ{st) = t Φ(s) szM+

ftzZ+

( 4 ) Φ(uau~ι) = Φ(α) if a € M+ and uz Mu;

( 5 ) for any a z M+ with Φ{a) = 0, a = 0

( 6 ) for every directed increasing net [aμ] in M+ such that aβ f a in

the σ(@) topology for some a in M, Φ{aβ) ] Φ(α) in Z

(7 ) for every non-zero a in M+, there exists a non-zero b £ M + majorized
by a such that Φ(b)z Z+.

PROOF. The semi-finiteness of M implies that there is a non-zero finite
projection p. Let [pa, a € A] be a maximal family of orthogonal equivalent
projections such that p~~pa for each a, then by [5, Theorem 5. 6], there exists

a non-zero contral projection z as follows; po= [l—^2pa)z-^pz Φθ thus

z = po+[ ΣP«)Z by Lemma 2.12; let va be a partial isometry in M giving

the equivalence zp~~zpa, v0 a partial isometry such that vo*vo ^ zp and vovo*=po.

Let zp&zp — [zpψzp, ψ € ©}, then zp&zp is a separating set of c. a. states
(by [3, Lemma 3]) on the finite AW*-algebra zpMzp. Therefore by Theorem
2.1, there is a Zzp-valued (note that by Lemma 2. 3, the center of zpMzp is Zzp)
operation Φp on zpMzp. Since by Lemma 2. 3, the map ψ{a) — apz of Zzz(p)

onto Z ^ is a #-isomorphism, then we define a *-isomorphism φ{a) on Zzp as
φ(a)= ψ~\zpazp) and a new linear operation Φz on (Mz)+ to Z as follows:

= £ ' φίΦp((vβ)*hvβ))9 for hz(Mz)+,



432 K. SAITO

where X)' aa = Supj ^<zα, £ c A U {0}, finite set |, aaz Z. Noting that ]Π vβ(vβ)*

= z, for hz (MzY and uz {Mz)u,

Φz(uhu*) = Σ' φ(Φp((vβ)*uhu*vβ)) .

Since (v^fuhι/2zh}/2u*vβ € zpMzp and z = Σ vfk>βf m t n e σ{©)-topology, we
/3€^4u{0}

get that (ve)*uh1/2zh^u*ve = Σ (vβ)**Λ>'*v^vΊ)*hUiu*vβ in the <<@)-topology
γe^luίO}

and therefore by Theorem 2. 1, it follows that

= φ{Φp{(vβ)*uhzu*v,))
γe^u{0}

and

Φz(uhu*)= E '
βeA\j{0]

Σ'

= Σ ' I Σ ' 4<Φp(.(.virhι/tu*v^vfi)*uhι'-tvJ))\

(by Fubini's Theorem)

=yΣmΨ(φp((vy)*hvy))

= Φz(h).

Next let h be in (Mz)+ and a be in (Zz)+, then by Lemma 2. 3, we have

φiΦpϋv^hav,)) = φiΦp{(vβ)*hVβzpa))

= φ(zpa) φ(Φp((vβ)*hve))

= a φ(Φp((vβ)*hvβ)).

Since φ(Φp((vβ)*hvβ))^0, then by Lemma 2.12, it follows that
To prove the faithfulness of Φz we argue as follows. Let h be in (Mz)+ such
that Φz(h) = 0, then since Φz(h)= ]Γ φ(Φp((vβ)*hvβ))^φ(Φp((vβ)*hvβ))^O for
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all β€ AU {0}, we get that (vβ)*hvβ = 0 for all βz Al) {0}, that is, hpβZ = 0
for all β £ A U {0}, which implies by [5, Lemma 2. 2], h = 0. Suppose that {<zμ}
is a directed increasing net of positive elements in Mz such that aμ \ a for
some a £ Λfe in the cr(@)-topology. We shall prove Φz(αμ) ΐ Φz{a) in Z. In fact,
since (vβ)*aμ,vθ ΐ (̂ /3)"

κ"̂ ^3 in the <r(zpl3zp)-topology for each βz {0} uA, we
have by Theorem 2.1, φ(Φρ{(vβ)*aμvβ)) ΐ φ(Φρ((vβ)*avβ)) for each £ € {0} u A
Therefore, it follows that ^φiΦp^v^fa^v^))-^ Σ' φ(Φp((vβ)*avβ))9 that is,

Φz(aμ) \ Φzid). To prove the semi-finiteness of Φz, we have only to show that
for any e in (Mz)p, there is a projection / in Mz majorized by e such that
Φz(f)^Z+. Since there exists a non-zero projection / in Mz such that f^e
and f^zp. By the definition of Φz and Lemma 2.4, we have Φz(f) ^ Φz(pz)
= Φz(paz) for any ci^ A and Φz(f)^Z+. Therefore Φz satisfies the conditions
(1) —(7) in Theorem 3.1. Let {za} and {Φza} be a maximal family of non-zero
orthogonal central projections in M and linear operations on (Mza)

+ to Z
respectively satisfying the conditions (1) —(7) in Theorem 3.1, then from the
above arguments ^ ^ = 1 . Define a new linear operation Φ on M+ to Z as

follows :

Φ(h) = Σ' ΦzSzJt) h € M+ ,

then by the same reason as above discussions we can easily show that Φ satisfies
the desired properties. This completes the proof of Theorem 3.1.

Now let $ be the set [s € M+ , Φ(s) £ Z+} and 9JT be the set [b b € M,b*b € $},
then we can easily see that 9JΓ W(denote it by 31) is the two-sided ideal such

that 3ί+ (the positive part of 31) = $. Since every element of 31 is a linear

combination of elements of 3ί+, by the properties of Φ there is a linear operation

Φ on 3ί to Z which coincides with Φ on 3Z\ If a £ 31 and if ueMu, then

Φ(u*au) = Φ(α) therefore Φ(au) = Φ(uauu*)=Φ(ua) since every element of M

is a linear combination of unitary elements, we have Φ(ab) = Φ(bά) for a € 31
and bz M. Let [tμ] be a uniformly bounded increasing net of positive elements
in 3Ϊ such that tμ \ t for the σ(@)- topology for some t € M If {Φ(O} is

uniformly bounded, then t € 3Ϊ and Φ(ί)= Suρ{Φ(ίμ) /A}. In fact, by the property
of Φ,Φ(O T Φ(t) in Z and Sup {Φ(tμ), μ] = Φ(t) in Z. On the other hand

0 ^ Φ(O ̂  * 1 for all μ which implies that Φ(ί) € Z+, that is, ί € 3i and Φ(f)= Φ(ί).
Next we shall show that every non-negative element of M is the least upper
bound of a set of non-negative elements in 31. In fact, from the argument used
in the proof of the above theorem, there is an increasing mutually commuting
net of projections {fβ}βζB in 3Ϊ such that Sup{/β, β £ B} = 1. For every non-
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negative element a in M, aί/2fβa
1/2->a for the σ(©)-topology and aι/2fβa

ί/2e 9Ϊ+.
Thus we have

THEOREM 3. 2. In Theorem 3. 1, let $ be the set {szM,s^0, Φ(s) <Ξ Z],
then $ is the positive part of a two-sided ideal 31 and there exists a unique

linear operation Φ on 9Ϊ to Z which coincides with Φ on 5β moreover this
linear operation satisfies the following properties :

( 1 ) If tz$l with t^0, then Φ(t)^0 and Φ(t) = 0 only if t = 0;

( 2 ) Φ(st) = Φ(ts) if szM and ί <= 9t

( 3 ) Φ ( 5 ί ) = 5 Φ ( ί ) if s z Z and t € 9Ϊ

( 4 ) Ze£ {ίμ} έ^ Λ directed increasing net of positive elements in 9Ϊ 5wc/*
ίAαί ίμ —» ί z>z ί/ie σ{β)-topology for some positive element t in M and

if {Φ(ίμ)} ^ uniformly bounded, then t^^l and Φ(t) = Sup [Φ(tβ\ μ]

( 5 ) every non-negative element in M is the supremum of a set of non-
negative elements in 9Ϊ.

LEMMA 3.1. Let N be a finite AW*-algebra with a separating set of
c. a. states and if the center of N is σ-finite, then N is also σ-finite.

PROOF. By Theorem 2.1, N has a center-valued trace Φ'( ) in the sense
of [4, Definition 1], On the other hand the σ-finiteness of the center of N implies
there is a faithful positive normal measure μ on the center. Now let {ea} be
a set of orthogonal projections in N with e — Σ eXe e Np), then μ(Φ\e))

a

— ΣZ Aί (Φ'(^«)) This implies that all but countably many must vanish and the
a

faithfulness of μ and Φ yields the desired property. The lemma follows.

Now we are in the position to prove the existence theorem of a dimension
function.

THEOREM 3. 3. In M, we can define a dimension function D(e) with
values in Z for all projections e € M, in such a way that

( 1 ) D(e)(ω) < oo except on a non-dense set if and only if e€$R;

( 2 ) if p,qzMp and pq = 0, then D(p+q) =
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( 3 ) for any indexed chain of projections {eλ; λ £ Λ} in M,D(\Jeλ)

( 4 ) if u is in MpU then D(u*u) = D(uu*)

(5 ) for ezZp and pz Mp, D(e) Φ 0 and D(ep) = eD(p).

PROOF. First note that if {eμ} is any indexed set of mutually orthogonal
projections in Z such that Σ eμ = 1, then in order to prove the existence of a

dimension function for M, we have only to show that Meβ all admit dimension
functions. Since 1 is the sum of orthogonal central projections which are σ-finite
with respect to the center, it suffices to consider the case in which the center Z
is σ-finite. Now let p be a projection in 9JI, then pMp is a finite AW^-algebra
with a separating set p<Bp( = {pφp,φ^ ©}) of c. a. states whose center Zp is σ-
finite and by Lemma 3.1, >̂M/> is also σ-finite. Therefore, by Theorem 3. 2 (5), there

is a sequence of mutually orthogonal projections {/>w}n=i in 9Ϊ such that p—
n = l

oo .

Now write D(p) = ]Γ)' Φ(j>n). In order to show that ZX/>) is well defined, suppose
71 = 1

oo

/>= Σpn with />„' € 9Ϊ and pn'pm'= 0 iί nΦm. By symmetry, we have only to
n = l

oo . n . n n

show that Σ ' Φ ( Λ ' ) ^ Σ φ ( A θ for all w. Let ^ n '= Σ A ' a n d en=Σpi> then
l ΐ l i

ΐ = l

emenem ^empem = em and Φ(eOT^n^m)^Φ(^m). Since Φ(emen

/^)=Φ(^T Oen

/)=Φ(en

/^en

/)

and ^n'e^n' T ̂ n'M/ as m->oo in the σ(@)-topology, we get Φ(emen'em) t Φ(^Λ')

for the s-topology in Z. Hence we have Φ ( O = Σ φ ( A 0 Thus the definition is
n = \

unambiguous. Next, we shall show that D{p){ω) < oo on a dense open set. Let
Ω o= [ω ω e Ω, D(p)(ω) = oo}. If (Ω0)

ί ^ 0 , denoting the central projection
corresponding to the clopen set (Ωo)

1 by e and considering the situation on Me,
we have only to see that it is impossible that D(p)(ω) = oo on Ω. On the other

hand \ ω Σ φ ( A ) ( ω ) < ° ° = I ω ; Σ φ ( Λ θ O ) ^ D(p)(ω) is a set of first category

and hence, by [1, p. 10, Corollary], it is non-dense. Note that the closure of a

non-dense set is also non-dense, and we can easily show that \ ω Σ φ ( A ) ( ω ) — °° ^
' n=l '

contains a non empty clopen set. T h u s by the same reason as above, it suffices

to show the statement that Σ φ ( A θ ( ω ) = °° for all ω ^ Ω is false. In fact, since
71 = 1

TO .

Ω is compact, by Dini's theorem, Σ φ ( A θ ( ω ) t °° uniformly as m | oo. Now,
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since Φ(pι) is a bounded function, there is a positive interger nγ such that

for all ω € ί l

similarly, Φ ( A ) = Σ ^ ) ( A ) f° r all ω^ίland a suitable integer n{>nx and by

mathematical induction, we can choose a strictly increasing sequence {w(} of
positive integers such that

)̂ for all ω € ί l .

By Theorem 3. 2 and [5, Theorem 5. 6], we get that A ^ Σ A f°Γ e a c n *• Since

{pi}T=i and j Σ Ar =i a r e families of orthogonal projections, by [5, Theorem

5.5], p^p—pι and the finiteness of >̂ implies p1= 0. The arbitrariness in the
ordering of the pt now shows that all the pi are zero, so that D(p) = 0 and
this is a contradiction. Thus the set {ω D(p)(ω)<C °°] is a dense open set. Next
for any properly infinite projection p with the central carrier z(p), D(p)(ω) is
denned as oo.z(p)(ω). For an arbitrary projection p in M with finite and properly
infinite parts px and p2 respectively, D(p) is defined as D(p^) 4- D(p2). Since the
assertion (1) is clear from the definition, it remains to show that D( ) satisfies
conditions (2) —(5). With regard to (2) and (4), it is easily shown from the
definition of ZX ). In order to prove (5) we have only to consider the cases in
which p is either finite or properly infinite. If p € 30t and e € Zp, then there is a

sequence {Al^i of mutually orthogonal projections in 9ΐ such that i^=
t = l

oo oo oo

Then ep= J^ep, and D(ep) = ΣD(ePt) = Σ e D ( A ) = ^(£> by Lemma 2.12. For
ϊ=l i=l ί=l

the case where >̂ is properly infinite the assertion is clear from Lemma 2. 2. Now
we are in the position to prove (3). Making use of (5), we may assume either
Sup {ZX )̂(α)), λ} < oo on a dense open set or it is infinite on an open dense set.
Set έ?=Vfe,λ€Λ} and D(e)(ω) ̂  Sup {D(eλ)(ω) λ^Λ}. Thus we have only to
prove the statement for the first case. First we note that the non-negative
continuous functions on ίl( € Z) are order-isomorphic to the continuous functions
with values in [0, π/2], via the transformation f-+ arctangent f. Thus it suffices
to show (3) in case where {D(eλ)}cZ+ and are uniformly bounded. Next we
observe that the supremum of any collection of the elements in Z+ is the
supremum of some subcollection which is at most countable. Since Z is σ-finite,
by [1, Proposition 7], there is a faithful positive measure μ on ίl such that,
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μ(Sup{D(eλ)f λ € A}) = Sup{μ(D(eλ)), λ € Λ}

= Sup{μiD(eit)) , for some λi,λ2, € Λ}

that is, [Sup{D(eλ)9 λ€ Λ}](α>)== [Sup {D(eλ^)9 i} ](ω) except on a non-dense set. By
[1], it follows that Sup{D(*a), λ € A} = Sup {D(eaj,ί = 1,2,3, •}. Since fa}aeA

oo

is an indexed chain, putting e— V eλi(^e)9 for any λ^Λ, e ; ^ e or ^ g e . If

eλ ̂  *, then D{eλ) ^ D(e) ̂  Sup [D(eit), i = 1,2,3, •} = Sup {£>(*a), λ} ^ £>(*,)
and so D(eλ) = D(e)9 that is, e9 ex € 9JI and £a^e' or ^ = e9 which implies that

oo

e = e. Therefore, we have only to show (3) in case where e= \/ e^e^SSSί. Let

^i= ei+ι—ei(i = 1,2, 3, •) and s t = E 5 u where the 5U are mutually orthogonal
oo

projections in ϊi. Now by the definition of D{ ), D(st) — Σ D(su) and by the

same reason, D(e) = E D(stJ) = E Ό(5i) = Sup{D(^), i = 1,2, 3, •}. This

completes the proof of Theorem 3. 3.

In the previous paper [7], we defined a "measurable operator" for a semi-
finite AW*-algebra in algebraic fashion and studied the structure of the ^-algebra

C of "measurable operators". Now we are in the position to introduce the notion
of "the convergence nearly everywhere of sequences in C".

DEFINITION 3.2. We say that a sequence {x(ri)}n=\ of C converges nearly
everywhere (or converges n. e.) to an element x in C if for any positive £, there
exist a positive integer nQ(S) and an SDD{en(£)} such that

(x(n) - x)[en(6\ 1] € M for all n ̂  nQ(β)

and

\\(x(n)-x)[en(e)9l]\U<S for all n^no(S),

where we write ||x||eo= \\x\\ for x=[x,l].

REMARK. We must note that a limit nearly everywhere is unique. In fact,
suppose that x(n)—>x n. e. and x{ri)-*x n. e. (x(n)9 x and x € C, n — 1,2, •)
then for any positive number £, there exist a positive integer nQ(S) and SDD's
(ew(£)} and [en(€)'} such that (*(n)-:r)|>n(£), 1] € M, (x(ή)-x)[ejβy91] € i\f for
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all n^no(β\ \\(x(ή)-x)[en(e),ί\\\-<6 and | | ( ^ ( n ) - x > n ( θ ) M ] | U < θ for all
n^no(e). Let fn(β) = en(€) A en(β)\ then by [7, Lemma 3.1], {/„(£)} is also an
SDD. Moreover, (x-x)[fn(β), 1] £ M and \\(x-x)[fn(β\ 1]|U<2£ for all n^no(S).
Write x—x = [xn, en] and by [7, Definition 3.3], we have (x—x')[en Afn(£)Λ]
= foiOn Λ/n(£))> 1] for each n. Thus by [7, The Remark following Theorem 3.1],
it follows that for all n~^no(£),

and for l^n^no(β), since xn{en AfJβ)) = xno(eno Λ/».

Therefore by [7, Theorem 5.3], x-x £ M and \\x-x\\oo<2S9 that is, x = x.
Hence a limit n. e. is unique.

THEOREM 3. 4. // {x(n)}n=ι and [y(w)}»βi are sequences of elements in C
converging n.e. to x and y in C, respectively. Then {x(ri)+y(n)}n=i converges
to xΛ-y nearly everywhere.

PROOF. For every positive number £, there exist a positive integer no(£)
and SDD's [en(β)}9 [fn(β)} such that (x(n)-x)[en(β),ϊ\, (y(n)-y)[fn(ε\ H € Kt,
\\(x(n)-x)[en(8)9l\\U<e and \\(y(n)-y)[fn(8),l]\\»<£ for all n^no{S). By the
same reason as above, {ejβ) Afn(β)} is an SDD. It is plain that (x(n) +y(n) — x
-y)[ejβ) A fjβ), 1] ̂  M and || (x(ή) +y(n) - x -y)[en(β) A fn(β), 1] II -. < 2β for all
n^no(β). This completes the proof.

LEMMA 3.2. For any SDDfc} and x^C, [x'1^]}(where x~ι[en] is the
largest projection in M right annihilating (1 — [en, l])x) is also an SDD.

PROOF. Using [7, Theorem 6. 3 and 6. 4], we can prove the assertion by
the same way as that used in [7, Lemma 3.1].

THEOREM 3.5. Let [x(n)}n=ι be a sequence of elements in C which
converges n. e. to x in C. Suppose that there is a central projection e which
is σ-finite with respect to the center such that x(ri)[l— e, 1] = 0 for all n. Then
there exists a strictly increasing subsequence {nt} of positive integers such
that {•£(#*)*}Γ=i converges n.e. to x*.

PROOF. First of all, we suppose £ = 1, that is, Z is σ-fmite. By the above
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theorem, we may assume x = 0 without loss of generality. Since Z is σ-finite,

there is a faithful positive normal measure μ on Ω (the spectrum of Z). Write

x(ή)= [xm(ri)9 em(n)]. First we note that the choice of [em(n)} is independent on

the index n. In fact, since l—em(n) j 0 (ra->oo) and 1— em(?z) £ 9Jt it follows

that D(l — em(n))(ω) [ 0 μ-a. e.(m —> ©o). By Egoroff's theorem, there are a family

{ίl(m, w)}n,m=i of clopen subsets of Ω and a sequence jϊ(ra, n)} of positive integers

such that

n(m, ήj) < (l/m)2-n

and

D(l-eUntn>(n))(ω) < 1/2Λ ω € ίl(m, w)

for each pair of positive integers m and n. Moreover, ίl(w, n) | ( m | ) and

i(m,ri) ί oo a s m and n t °° Write Ω(m)= l(^\Ω(m9ή)y9 Ω(m) is a clopen

set and by [1, Corollary of Proposition 6], we get

μ(Ω-Ω(m)) = μ(Ω - f\ Ω(m, nλ

<Σ,μ(fl-CKm,ή))
n=l

< (l/m) E 2"" = 1/m .
n = l

Write ί l o = \ ^ y ί l ( m ) and noting that Ω(m)•] (m | . ) , we have /*(Ω—Ώ^)

= μ(Ω—Ω0)<μ(Ω--Ω(m))<.l/m for all m. The faithfulness of μ implies that

Ω—Ωo— 0 , that is, ί20 is dense in Ω. If ωe Ω09 then ωe Ω(m0) for some positive

integer m0. Since Ώ(w) t ( m ΐ ) > it follows that ω^Ω(m) for all m^m0 and

that

lm for all ω e Ω(m) and m^m0.

Therefore,

[ω) < oo for all ω £ Ω o .

Putting / * = Λ ekiimtΊiO(m\ fk € Mp and /* t (* ΐ )• s ^ c e 1-/*= V (1-έ
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oo

we get that D(l —/*)(ω)^kΣD(l-ek i C W i m )(m))(ω)< oo on a dense open set Ωo.
m = l

Thus 1-/^9K P and Z)(l-^ ί C m,m )(m)) 1 0 implies that D(l-fk) j 0, that is,
1—/* 1 O Hence {/Λ} is an SDD. For any pair of positive integers j and k
with j^k, xkiCm, m>(m)fk = xkiζm, TO)(m)ekamt m )(m)/* = ^< (« f«> (m)ekUm. m>O)/*
= XjiCm.m)fk and similarly (xutm,mϊ(m))*fk=(xjiCmtmάm))*fk. Therefore fcr*tcm,m>(tf0.
/*} is an EMO and since foXm)} implements the equivalence of { r*(w), βfc(m)}
and teκm,m)(w),/λ}, α:(m)=[α:* i(mim)(m),/J, which is the desired property. On
the other hand, by the assumption, for any positive number €, there are a positive
integer no(β) and an SDD {*„(£)} such that x(n)[en(β\ 1] € M and ||;r(w)K(V), 1]|U
< £ for all Λ ^ Λ O ( ^ ) . Write/(n, *,θ)=/ f c Λ((^r)- 1 [^)])Λ^n(θ),D(l-/(w,έ,6))
->0as w and i - > o o o n a dense set. Therefore by the same arguments as above,
we can take a subsequence {wt(£)} with nt(S)^n0(l/i) for each t such that

oo

ΣD(1— f(nt(6) nt(S)9€))(ω) < oo on a dense open set.
i=l

Take Λ(fi)= Λ/(*n f(θ) ^ ( θ ) , ^ ) , then {(/*(£)} is an SDD. Since D0—gk(l/ή))

i 0 as ^—voo, again by the same arguments as above, there is a subsequence
oo

[k(ri)} of positive integers such that ^ D ( l - ^ ( n ) ( l / n ) ) ( ω ) < oo on a dense open
π=l

oo

set. Write gs= AgjkωO /n) and kJ = jnJ(l/j)k(J)9 noting that {̂ ^ is an SDD
n = l

it follows that

, l][gJt 1]

J), l])*[gjt 1].

Since jnj0./j)k(j)^nj(l/j)^n00./j), we have x^k^g,, 1] € jϊ?and | |^(^)*[^, 1]|U
< 1/j for each 7. Thus we get the result for the case e= 1. To prove the
assertion for the general case we argue as follows. First note that x[l—e, l] = 0.
In fact, for every positive number θ, writing x = [xn, en], there are a positive
integer no(6) and an SDD {<?„(£)} such that

\\xn(l - eXen(β) Λ en)\\ < e for all n ^ «,(«).



ON A PROBLEM OF FELDMAN 441

This implies that x[l-e,ΐ\ = 0 and x(n\ x € C[e, 1] ( ^ C(Me) by [7, Theorem
3.3]). Therefore by the above arguments, there exists a subsequence {n^}^ ΐ oo)
of integers such that :r(nt)*—•#* n. e. (z—»oo) in C{Me), that is, for every
positive number 8, we can take a positive integer no(8) and an SDD [en(8)} i n

Me such that for each i

and

Now put en(£)'= *n(£) + l - e and {en(£)'} is an SDD in Mand
= to«t)*—j:*)[^i(β)', 1], This completes the proof.

THEOREM 3.6. Let [x(n)} ~=i be a sequence of elements in C which
converges nearly everywhere to x in C and e be a central projection such
that x(ή)[l— e, 1] = 0 for each n and that it is σ-finite with respect to the
center. Then for any y in £ there exist subsequences [n^ and {m4} of
positive integers such that xfβ^y-^xy (i-»oo) andyxirn^-^yx (i—> oo) nearly
everywhere.

PROOF. By the same reason as that used in the proof of the above theorem,
we may assume e= 1 without loss of generality. Now let y= [yn>fn\ then for
every positive number 8, we can take a positive integer no(j9£) and an SΌΌ{en(j,β)}
such that

and

| | ton) - x)[en(j, 8), 1]|U < £/WysfA for each n ^ no(j, 8)

and for any positive integer /. For 8 = 1/j, we denote en(j, 1/j) by en(J). Taking
f(i>n>j) — y~ι[en(j)] Λ/t> D(l—f(n,n,j))-+0 as n—>oo on a dense set for each
j . Therefore, by the same argument used in the proof of Theorem 3. 5, there is
a subsequence {n(j)} (n(j) ^ no(j91/j)) of positive integers such that

oo

]ΓD(1 —f(n(j)9 n(j)J))(ω) < oo on a dense open set.

oo

Write gk= f\J(kn(j\ kn(j)> j \
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which implies that D(l — gk)(ω) [ 0 except on a non-dense set and {gk} is an
SDD. For each positive integer j k which satisfies jk>kn(l), it follows that

k)) - χ)y[gk, l] =

= (x{kn(jk)) - x

= (x(kn(jk)) - x

= (x(kn(jk)) -x

Since kn(jk) ^ w0C/*> VΛ)> we have that

( x ( k n ( j k ) ) - x ) [ e k n U k > ( j k ) , l ] z M

a n d

IIW*«C/*)) -χ)[etncM> UIU < i/ΛII^.ΛII

On the other hand, jk>kn(l), which implies that (x(kn(jk))—x)y[gk, 1] £ Mand
|| (Λ<*ΛO*))—x)y[^*, l]||oo< 1/jjc for all ^. The first half part of the result follows.
By Theorem 3.5 and the above result we can choose a subsequence {m^ of
positive integers such that yx{m>)-*yx n. e. (z—> ©o). This completes the proof
of Theorem 3. 6.

4. A non-commutative theory of integration for a faithful semi-finite
trace of M. First we show the existence of a faithful semi-finite trace on Λί,
that is,

THEOREM 4.1. There exists a [0? oo]-Valued function τ on M+ having
the following properties :

( 1) If ay bz M+, then τ{a + b) = τ(α) + τ(b)

( 2 ) if az M+ and λ is a positive number τ(λα) = λ τ(α)

(tf^ recall here O + oo = 0 fry owr conventions)

( 3 ) if a zM+ and u e Muy τ{u*au) = τ(a)

( 4 ) τ(α) = 0 (α € Λί+) implies a = 0
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( 5 ) for any non-zero a in M+, there is a non-zero b in M+ majorized

by a such that τ(b)<C°°\

( 6 ) let {aa} be a directed increasing net of positive elements in M such

that aa X a in the σ(@)-topology for some az M, then τ(aa) j τ(α).

REMARK. We call such a function a faithful semi-finite trace on M+. A

gauge space Γ is a pair [M, τ} composed of the AW*-algebra M and a trace r.

PROOF. By [1, Proposition 7(α)], there is a faithful normal semi-finite
pseudo measure μ on Ω: Now we define τ(a) = μ(Φ(a)) for azM+, then it is
plain that τ( ) meets all requirements. This completes the proof.

Then by the same arguments used in the proof of Theorem 3. 2, there are a
two-sided ideal 6 whose positive part is {a; aeM+, τ(α)<oo} and a linear
non-negative functional T on S coincides with r on {a; ae M+, τ(a)< oo] with
the following properties :

(a) τ(xy) = τ(yx) if x or y z 8, x and y € M,

(b) τ(u*xu) = τ(x) if x ^ β and u^Mu.

Let 9* be the set {α α € M, τ(LP(a)) < oo}, then £F is a two-sided ideal contained

in 6 such that (?p = £FP.

Now we define

D E F I N I T I O N 4.1. For ^ 3 s we define ||*Hi=Sup{|τ(sί)|; szM, \\s\\^l}.

The function ί—>||ί||i deserves the name unorm", that is, it satisfies the

following properties

( i ) ||f 11^0' for ί € 31 and ||f 1̂ = 0 if and only if t = 0 ,

(ii) 115+ίllt^NU + IUJU if t,sz$,

(iii) \\oίt\\ι = \cc\ \\t\\ι where a is a complex number and t € £F,

( i v ) H ÎIJ = 11̂ *111== τ(\t\) where t = u\t\ is the polar decomposition of t,

( v ) if t e M a n d ί € ff, then ||t;ί||,^11^1111*11, and | | ί u | | , ^ | |

In fact, the first half part of the statement (v) is clear from the definition
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of \\t\U. On the other hand, ||toL = Sup{|τ(5*i;)|, | | s | |^ l ,s£ M] =Sup{\τ{vst)\9\\s\\
^l ,5€M}^| |τ; | | | | ί | | i . Let t = u\t\ be the polar decomposition of t(te9ί)> then
u*t=\t\ and \t\ € £?. Therefore | | fΛ| |i^| |f | | i and || |*| Ui^lWli, which implies IUL

|i. Since r is non-negative, by Schwarz' inequality, we have | τ ( s | ί | ) | 2

ϊ 5 | ί |^ ) | «^τ( | ί | ) .7< | ί | 1 ^*5 | ί | 1 / 1 ) = 7(|ί|).7<5*5|ί|). | | Λ | | ^ 1 implies
that iTCί l fDΓ^ KlfDHIflll! and that || \t\ L ^ ^ l * | ) | | \t | ||lβ Therefore \\t\\x

= || |*llli = KI*l) Now | |ί*| |i = l l l ί | « Ί l i ^ l l l ί | | l i = W l i and by symmetry it
follows that llfLHI**!!!. If | | ί | | i = 0 , then r(\t\)=τ(\t\)= 0. The faithfulness of
r implies t — 0. It is easy to verify the remainder of the above assertions.

Now we are in the position to introduce the class of integrable elements in
Cvia

DEFINITION 4. 2. An element x in C is integrable if there exists a sequence
[x(n)}n=i in £F such that [x(n), 1] -> x(n. e.) and || ̂ r(^)—α:(/τz) || x —> 0 as n and
m—>oo. The integral of :r, in symbol τ(x), is defined by τ(x) = limf(x(n)). The

n-»oα

set of all integrable elements in C is denoted by LX(Γ).

REMARK. Note first that the value τ{x) of the integral of x in fact exists
and is finite and that it is uniquly determined by any particular such sequences.
Since | τ(x(ri))—τ(x(m)) \ = | τ(x(n) —x(mj) \ ^\\x(n)—x(ni)\\x—>0 as n m-> oo, Hm
r{x{nj) exists and is finite. To prove the second statement, we argue as follows.
Let {x(n)} and {x{n)f} be two sequences in £F which converge n. e. to x in C
and are ZΛCauchy, that is, lx{ή)—x{m)\ι-^0 as n, m->oo and \\x(n)'— .z(W)'||r-»0
as n,m—>oo. Since {;r(#)— ̂ (n)'} converges to 0 n. e. and is ZΛCauchy, we have only
to show the following statement: If [x(n)}n=1 is an ZΛCauchy sequence in £F which
converges to 0 n. e., then τ(x(n))—>0(n—> oo). For every positive number δ, there is
a positive integer ^i(δ) such that \τ{x(n))—f(oK«1(S)))| < δ for all n^n^S). Since
ΦM ^ % then RP{x(nlh))) € % Therefore, | τ(Λ<n)(l -ΛP^^Cδ))))) | < | τ(^(n)

for all ^ ^ ^ ( δ ) . Thus it suffices to show that τ(x(n)p) -> 0 as w->oo for all
pz^Fp. In fact, for every positive number £, there are a positive integer n2(S)
and an SDD{en(£)} such that ||;r(/i>n(£)||<£ for any n^n2(ε).

pxirί) = px(n)en{S) + px(ή)(l - en(S))

= px{n)en(β) + px(n)(l - en{S)) + p(x(ή) - jfriJXl - en(β)) .

Therefore,

\r(p(x(n) -x{nγ))(l - en(β)))\^ \\x(n) - ^ W l ) | | i < δ ( Λ ^ Λ l (

and
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Since p(l-en(S))p 1 0 as rc^oo in the σ(@>topology, τ(p(l-en(β))p)^>0.
Therefore taking β as θ | |£ | | i<δ, we have τ(^(l-en(θ))^>)^δ2('ί-(|α:(w1)!2)~1 for
all n^nz($) for some positive integer w3(δ). Combining the above estimations, it
follows that I τ(px(n)) |5g 3δ for all ra^max.^, w2, rc3). Thus T is unambiguously
denned. Morever by Theorem 3. 4 and the above results r is linear on L^Γ).
Secondly we note that if x £ 6, then [x, 1] is integrable and its integral is equal
to τ(x). To prove this assertion, we argue as follows. We may suppose x^O
without loss of generality. Let u be the Cay ley transform of x and {«}" = C(ί2)
where Ω is the spectrum of {u}". Then, noting that [x, 1] = z'(l +[w, 1])(1 — [wj])"1

in £ we have [x, l](l-[w, 1]) = i(l + [tf, 1]) and therefore 1+ «€<?. Let Γ Λ ={7;
|w(7) + l | > 2/((rn)

2-f 1)} ~ where {rΛ} is an increasing sequence of positive numbers
such that r n > | | x | | and rn f oo(n-^oo), and fn be the projection in {u}"
corresponding to the clopen set ΓΛ of Ω. Then the function ω^Tn-^(l-\-u(ω))~ι

is continuous. Therefore if we set zvn(ω) = {l + u(ω))~ι(l—u(ω))fn, zvn£ M,xwn

=fn and hence fn £ £F. Write xn — fn^χn^^ and if w>m, then xn— xm

= x(fn-fm)^0. \\xn-xΛι=τ(xfn)-τ{xfm). The fact that τ{xfn) \ (n->oo)
and τ(xfn)^τ(x)<oo implies that [xn}n=i is ZΛCauchy. Noting that xn—x
- ^ ( / n - l ) , l k . - ^ l l < 4 r w ( ( r n ) 2 + 2)1/2((rn)

2 + l)-2-^0 as n-+oo and therefore τ{xn)
—>τ(x)(n-+oo). This is the desired property.

Next we show

THEOREM 4. 2. For any s € ZΛΓ), [5, l]t, t[s ,1] αrcd ** 6 L^Γ). Moreover,
τ([s,l]t)=^τ{t[s,l]) and τ(t*) = τ(t) (where a is the complex conjugate of a
complex number a).

PROOF. First note that we may assume that Z is σ-finite without loss of
generality. In fact t £ L\Γ), there is an ZΛCauchy sequence {x(n)}n=1 of elements

00

in 3? which converges to t nearly everywhere. Let e— V LP(x{?ϊ))\/ RP(x(n))

and z[e) be its central carrier. If {<7λ λ ^ Λ} be a mutually orthogonal family
of projections in Z such that z{e) = ]Γ (#λ, \ € A] then τ(z{e)(LF\x(n))y RP(x(n))))
= £ τ(gκ(LP(x(n)) V RP{x(n)))) and r{z{e)(LP(x(n)) V RP(x(n)))) < 00 implies

that the family of non-zero gλ(LP(x{n)) V RP(x(n))) is at most countable for
each n. Therefore we have that the set of non-zero z(e)gλ is at most countable.
The assertion follows. Thus (l-z(e))x(n) = 0 for all n implies [l-z(e), l]t = 0.
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Hence by Theorems 3.5 and 3.6, {x{nt)s} converges to t[s, 1] n. e.,
converges to [s,l]t n. e. and {xin,)*} converges to t* n. e. for some subsequence
{«,} of positive integers. Moreover the sequences {x(nt)s}, {sx^n^}, {xin^} are
ZΛCauchy, which implies [s, l]t, t[s,l] and t* £ L\T) and by the definition of
integral T and Theorem 4.1, it follows that τ([<>, l]ί) = τ(t[s, 1]) and τ(ί*) = τ(t).
This completes the proof of the theorem.

THEOREM 4. 3. // p (£ Mp) is integrable, then pzζj? and τ([ρ,l])= τ(/>).

PROOF. First we suppose that 1 is integrable. We wish to show that M is a
finite algebra. If 1~<7, q^ Mp and <7ί?l, then the semi-finiteness of r implies that
there is a non-zero projection g in £F such that g^l — q(qΦl). 1—g^q^l
implies 1—<7^1 and thus 1 — ̂  is also integrable. Since τ ( l ) = τ([l — g, 1]), it
follows that τ ( l ) = τ ( [ l - f i r , l ] ) + τ(^) and τ(^) = 0. That is, g = 0. This is a
contradiction and the above statement is proved. Next we show that 1 can be
represented as a sum of orthogonal central τ-finite projections. In fact, let p be
any non-zero τ-finite projection, then D{p)Φθ and there are a non-zero central
projection r and a positive integer n such that

Then there exists a set {pi}ϊ=i of orthogonal projections in M such that
2" 2"

fcfc ' ^ f r ^ ^ f t ^ for each i and ^ ~ Σ Λ ^ Σ Λ (see f°Γ example

[8, Lemma 5.1]). rfj^pλ = 2n -i(pr)^=2n-i-(p)<oo and rίr-J^pλ < oo, which

implies that τ(r) < oo. The finiteness of r shows the above assertion. Since 1 is
integrable, by the first paragraph of the proof of the above theorem, Z is cr-finite.
Therefore there is an increasing sequence {pr]?Li of τ-finite central projections
such that pr | l(r->oo). By the assumption, there exists an ZΛCauchy sequence
{t(n)}n=i of elements in £F such that [t(n), 1]—>1 nearly everywhere. Now let us
consider the set [t(n)pk, n — 1, 2, 3, }, then it is ZΛCauchy and converges to
pk n. e. for each k. Since lim τ{t(n)pk) = τ([pk, 1]) = τ(pk) = τ(pk) for each k,

there is a subsequence {n(k)} of positive integers such that

\im\r(t(n(k))pk)-r(pk)\ =0.

On the other hand, τ(pk) | τ(l), therefore, in order to prove that 1 £ £f and
τ(l) = τ(l), we have only to show that [t(n(k)pk] is L!-Cauchy and converges to
1 n. e.. For every positive number £, there is a positive integer ko(6) such that
for all k1 and k2^i
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and

< 2 ε + lUOO

= 2£ +*(/>*,-/>*,)!*(«(*.))I)

= 26 + τ( j *(«(*,)) 11/2(Λ, - pkt) I *(«(*„)) I m),

which implies that ||t{n{k^))pki-t(n{h))Pk,IIi->°(^i. ^2-*°°)- Since *(»(£))->1 n. e.,
for every positive number δ, there are a positive integer wo(δ) and an SDD{en(δ)}
such that | | ί(n(*))-lK(δ) | |<8 for all £>n o(δ). Write Λ(δ) = enin(S)P» {/*(«)} is
an SDD and (ί(n(A))/»t-l)Λ(δ)=ί(n(A))/»iβfltt,(8)-/»ten(W(8) = (ί(»(A))-l)^»cB(S),
which implies the desired result. Thus τ ( l ) = limτ(ί(«(^))/'t) = limτ(/>A:) = τ(l)

fc—»oo k—*°°

<oo. For the general case, for an integrable projection p, [p, l]C[p,l\^C{pMp),
and set τp{a) = τ(α) for α € (pMp)+, by the above arguments, we have >̂£ 3{pMp).
Since 3*(pMp) = pS'p, then p^^F and by the definition of integral r, it follows
that τp( 1) = τ{p) = τp( 1) = ?([/>, 1]) and the result follows.

REMARK. For any ί € LX(Γ), we define | | ί | | i= Sup{|τ([j,l]ί)|,5€ M,| |5| |^l},
Then the function £—>||£||1(£€ ZΛΓ)) satisfies actually the properties of a norm;

(a) O^Uίll^oo for tzL\Γ) and |k | | i=0 if and only if t = 0,

(b) lU + ί H ^ i l ί L + HίL if 5, ί ^ m

(c) ||Λ ί | | i= l-̂ l IIί111 if tzL\V) and tf is a complex number,

( d ) iiίik = i k * i i i ,

(e) if szM, then ||[5, l]ί|li ^ WIHίHx and ||ί[5,l]||i ^

In fact, if ||ί ||! = 0, then τ([s, ϊ\t) = 0 for all s € M. Let ί = [w, 1] | ί | (w z Mpi) be
the polar decomposition of t (see [7, Theorem 6.3]), \t\— [w*91] t and τ( 11 \ [5,1])= 0
for all s € M. Let [u, 1] be the Cayley transform of t*t and \t\= [ίn, en] where
tn,enz [u}'\ tnen — tn and 0 ^ ί n | for all w, then by the same reason as that
used in the proof of [7, Theorem 6. 3] we can choose for each n, m — \y 2, 3, ,
positive elements c£( £ {u}") and projecticns ej(€ {w}") satisfying [7, Theorem 6. 3
(1) - (5)]. Moreover, 11 \ [cn

m, 1] = [<&, 1] and | ί | € LX(Γ) implies [Λ, 1] <Ξ L^Γ).
Therefore by Theorem 4.3, ^ € £fp and 0 = ¥ ( | i | [ c i l]) = τ([A,l]) = τ(Λ) for all
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n and m. Since el | i?P(ί), τ(RP(t)) = 0, that is, £ = 0. The remainder of the
above statements are verified by the same method as that used in the paragraph
following Definition 4.1.

THEOREM 4. 4. The integral of a non-negative integrable element of C
is non-negative.

PROOF. Let t be an integrable non-negative element in C and [u, 1] be its
Cayley transform. Write t—\tn,en\ where 0^tn | , tnev~tn and tn,en£ {u}".
Note that by [7, Theorem 5.2], en is the projection corresponding to the clopen
subset {ω; \u(ω)-l\ >2((r n ) 2 + l)"1/2}"( = ίln) of the spectrum ί l of {u}" where
{rn} is a strictly increasing sequence of positive numbers satisfying r n >| |α : n | |
with t=[xn9gn] and rn f «>(*-* oo). Let Γn = [Ύ \u(V) f 1| >2((r n ) 2 + l)"1}-,
since the function Ύ( € Γn)->(l + w(7))"1 is continuous, setting fn is the projection
in {u}" corresponding to the clopen set Γn and wn{Ί) = (l + u(Ύ))"ι(l— u(Ί))fnen,
then wn € M and t[wn91] = [wn, ϊ]t = [enfn, 1]. ί £ L*(Γ) implies that ^rt/n € £FP

by Theorem 4.3. Let tn'= tnfn, then £ Λ ' ^ 0 and tn'£ 3 for each w. First, we
show that j/n'} is ZΛCauchy. In fact, since for each pair of positive integers m
and n with m <n, tn'-tm' = tnfn-tmfm = tnfn-tnemfm = tnfn(l-emfm)^0, it
follows that IUn'-Clli = τ ( | ί n

/ - C I ) = | τ ( ί n

/ - O ! = τ ( 0 - τ ( O . On the other
hand, τ(ίn') t (n T ) and |τ(ίn') | = |τ(f[/n<?n, 1])| ^ | | ί | | i < oo, which implies lim τ ( O

n->oo

exists and is finite. Therefore {ίn'} is ί/^Cauchy. Next we show that {[tn\ 1]}
converges to t n. e.. In fact, [tn',l]—t = t[enfn, 1]—t = t([enfn —1,1])9 therefore
([*»', 1 ] - O K , 1] = [*•(*•/»-1), 1]. On the other hand if ω € ίln, then |(l-w(ω))"11
^(l/2)((rn) 2 + l) 1 / 2 and tn(ω) = ( l + ^ W X l - ^ ) ) - 1 . Since |1 + w(ω)| <2/((rn)2 +1)
for ω^(Γn)c, it follows that |U w ( l-/ n ) | |^ l/((r n ) 2 + l) 1 / 2 for all n. Thus {[CHΪΓ-1
converges nearly everywhere to ί. Hence τ(t)= lim rCίnO^O. This completes the
proof.

REMARK. If ω<=(Γn)
c, then i l-w(ω) |^2((r n ) 2 + l ) - 1 / 2 < 2 and l + u(ω)Φθ.

Let yn(ω) =(w(ω) +1)~1(1 - O , then ,yn € M and (1H- u)yn = yn(l +M) = 1 -e Λ . On
the other hand 14- [u, 1] € L^Γ), which implies 1 — en € £F for all w by Theorem 4.3.

COROLLARY. Let tzLι(Γ) with £Ξ>0, ί λ ^ there is an Lι-Cauchy
sequence [t(n)}n=i of positive elements in ̂  such that t^[t(n), 1] and [t(n)y 1]
—>£(τz—>oo) nearly everywhere.

PROOF. The assertion is clear from the proof of the above theorem.

THEOREM 4.5. Let t$C with t^0, r(t) = Sup{τ(»,sz
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in the sense that if either side exists and is finite, then the other side exists
and has the same value.

PROOF. Suppose tz Lι(Γ) with t^O and 5 ̂  £F with 0 ^ 0 , 1 ] ^ * , then
τ(t — [s, l ] ) ^ 0 , which implies τ(t)^τ(s). Therefore by the above corollary,
τ(t)= Sup{r(s), sζ £? 0:g[s, l]t=^t}. Conversely, let u be the Cayley transform of
t, {en} and {fn} be the families of projections used in the proof of Theorem
4. 4. Then t[en9 1] - t[en91] [fn91] = [tn, 1] - [tn91] [fm9 1] = [tn9 1] [1 - fn91] ^ 0.
It is plain that for ω£ Γm, \l-u(ω)\ ^ 2r m ( ( rJ 1 -I-2)1/2((rm)2 4-1)"1 and for
ω € ί2n Π Γm I (1 - u{ω))^ \ ^ ((rm)2 4- l)/2rm((r J 2 + 2)1/2. Hence ί ^ l/rm((rm) 2

+ 2) 1 / f [/ Λ , l] for each m. Note that τ(/m) - Sup{τ{p\pz %9p^fM}9 τ ( / m ) < o o ,
that is, fn € £?. Let [ίn

7,1] = ί[eΛ, 1] [/n, 1], then tn' € ff and 0 ̂  [ίn', 1] ̂  ί. For
each pair of integers m and w, with m>n, τ(\tm' — tn'\)=τ(tm'—tn'), therefore
it follows that {tή} is an ZΛCauchy sequence. Since the clopen subset of ί l
corresponding to the projection 1 —fn is contained in [ω |H-w(α>)|^2/((rn)

2-f 1)}
and 11 — u(ω) \ - 1 ̂  ((rn)2 4-1)/2 for ω e Ωn, making use of the functional
representation we have

IK* - fcΛ 1])[*», 11IU < l/((r n ) f + D 1 / 2 for each n.

This implies that [tn'9l]-+t n. e. and tzL\T). This completes the proof of
Theorem 4. 5.

Theorem 4. 5 naturally leads us to the following

DEFINITION 4.3. For t$C with ί ^ O , we define τ(ί)=Sup{τ(s),5€ 2s

Thus by the above theorem, if t^L\Γ)(t^0),τ(t) = r(t). Moreover, if s,

tzC+, then it is plain that τ(s + t)=τ(s)+τ(t).

COROLLARY. For any t in C, τ(t*t)=τ(tt*).

PROOF. Let t = [v, ϊ\t be the polar decomposition of t ([7, Theorem 6. 3]),
then t*t= \t\2 and tt*=[v9ϊ\\t\*[v*9ϊ] = [v9l]t*t[v*9ϊ\. The assertion is clear
from Definition 4. 3.

THEOREM 4. 6. For any non-negative element t in C, the following two

statements are equivalent.

(1) t*L\T).
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( 2 ) [tn, 1] € L\T) and Sup{τ([tn91]), w= 1,2 •} < oofar some t = [tn, en]
( ί n =0) *w Theorem 5.2 zrc [7], α?z<i zn this case, τ(t)= Sup[τ([tn,l]),n
— j-> ^ J i

PROOF. Let t £ L\T) with t ̂  0 and £ = [ίn, en] by the representation in

Theorem 5.2 of [7], then * ^ [ f » , l ] ^ 0 and τ([ίn, l ] ) < oo implies [ί», 1] € LX(Γ)
and Sup{τ([ίn,l]), w = l , 2 , } ^ τ ( ί ) < o o . On the other hand, τ(t - [tn91])
= τ(ί)-τ([ίn, 1]) = τ(t[l-en, l])->0 by Proposition 4. 4. Therefore (1) implies (2).
Conversely, suppose (2), then let fn be the projection used in the proof of the
above theorem, fnen € 2y Therefore write tn'=tnfn9 {ίn'}~=i is an ZΛCauchy
sequence which converges to t n. e.. Hence t £ Lλ(Γ) and the statement (1)
follows.

The rest of our discussions in this section is devoted to the space L2(Γ)
defined as follows.

D E F I N I T I O N 4. 4. Let L*(Γ)(= &) be the set [t * € £ *** = U12 ̂  L^Γ)}.

Then,

PROPOSITION 4.1. 7/ 5, * s &, then Λ € L'(Γ) and | ΐ ( 5 ^ ) | 2 ^ ? ( Λ ) τ(Λ).

PROOF. Suppose 5 and t are self-ad joint, then we have (s — t)(s —1)*^0,
0 + £)(s + £)*^0, which implies s2 +t2^ts + st ̂  -(s2 + t2) and ^4-5^^(1") .
On the other hand, (s + it)(s + it)*^0, (s—it)(s — it)*^0, which shows s2-\-t2

^i(st-ts)^-(s2 + t2) and st-tszLι(Γ). Therefore, st and ^^L^Γ). For the
general case, let s = s1 + zs2 and t=tι + it2 with s19 s29 tλ and t2 £ Csa> then by the
above argument, it follows that s*s £ Lι(Γ). Now for any pair of complex numbers
λ and μ> (\x + μy)*(Xx + μy) ^ 0, that is, λλx*x + λ/^*3^ + λ ^ * x + /i/Miy*y^0,
therefore, it follows that %Xτ(x*x) + %μ^x*y) + X]ιτ(y*x) + ~μ μτ(y*y)^O and by
the same way as that in the proof of Schwarz' inequality that \τ(x*y)\2

7=ΞΞτ(x*x) τ(y*y). This completes the proof.

PROPOSITION 4.2. For any t*C, we define | | ί | | 2 = ( τ ( | * | 2 ) ) 1 / 2 . Then \\t\\2

= Sup{|U5||1,||5||,^l,ί5€L1(Γ)}. Moreover L\T)= [t z C, ||ί||,<oo} is aprehilbert
space with respect to the norm || | |2.

PROOF. First of all we note that it suffices to show the above statement
for t with t ̂  0. In fact, for t € C, let t = [w, l]\t\ be the polar decomposition
of t. Suppose there exists a sequence {rw}~=1 in ζf with | | r n | | 2 ^ l such that



ON A PROBLEM OF FELDMAN 451

\t*\[rn,ϊ\eL\V) for each n and || | ί * | [ r n , l ] | | i ^ ί | ί * | | | , = | |ί*| |i=llί|li. Write
sn=w*rn{ e 30, it follows that 11* \ [rn, 1] = [w, 1] I ί I [ w*. 1] [r,, 1]=[w, 1] | ί | [s., 1]
= ί[ί», 1] e L'(Γ) for each n and || | i* | [r,,, l] | | i= l|ί[ί.,l]||i—l|ί| |t(»->°°). Note
that ||5.||, = (f([ίl.*5,,l]))1/1= (r(sn*sn))^= {ϊ(r*ww*rn)γι*^{r*rnγ*=\\rn\\^l.

Therefore the above statement follows. Making use of the same notations as that
used in the proof of the above theorem, let t — [tn9 en] and tn' = tnfn, then in
order to prove the theorem, we have only to consider two cases: (a)||ίn' | |2 < °°
for all n, and (b) there is an n0 such that | |£nΊ|2 = °° Suppose that (a) holds,
since [tn\ 1] £ L2(Γ) and tn'

2 ^(l/rn\(rn)
2Λ-2))fnen for each positive integer n, it

follows that [fnen, 1] £ Z/(Γ) and therefore enfn € ££ Thus tn' s £F follows. Let
sn = (l/\\tn\\2)tn ( w e πiay assume \\tn'\\2Φθ without loss of generality), then
s n s £ F a n d t[sn9ϊ\=[tnSn,ϊ\*L1(Γ). It is plain that | | s j | 2 = 1 and ||ί[5n,l]||i
= Uίn5nlli = (l/llίnΊI.)llίnΊIΪ = Un'L = (j([tn\ 1]))1/2. On the other hand ίn'

2 | and
[ ( O ! , 1 ] ^ Λ it follows that ? ( O 1 / 2 - + ? ( ί 2 ) 1 / 2 = IUIIΪ < °° as n ^ o o . The result
follows. Next if we suppose that (b) holds, then for all positive integers n^nQy

there is a projection gn in £F such t h a t / > Λ ^ # n and \\gn\\^r{gn)
ι/'2^rn{{rny+2)mn.

Write 5 Λ =(l/l l0 llι)0n(s 9), then \\sn\t = l and ί[ ί n > 1] = [tn'sn91] € ffcL^Γ).
Since sntn'sn ^ (l/r n ((r n ) 2 + 2)1 / 2)(5n)2*n/n = (l/r n ((r n ) 2 + 2)1/2)(5n)

2 = (l/r n ((r n ) 2

+ 2)1/2 | |flrΛ | |ϊ)^n^0, therefore

l|ί[^l]||il|5»ll ^ l / r n ( ( r Λ ) 2 + 2)1/2 for each w.

Note that ||5n|| =1/11^118, | | ί[5 n,l] | | i^w for all n and ||ί[5n,l]||i->lklls as rc->oo.
Therefore the first half part of the statement of Proposition 4. 2 follows. The
second part of the assertion is clear from the triangular inequality and Proposition
4.1. Thus L2(Γ) is a normed linear space with the property that ||ί*||2 = lkll2 for
all t £ L2(Γ). This completes the proof.

PROPOSITION 4. 3. £F( = {[x9 l]9χz3}) is norm-dense in L\T) and L\Y\

respectively. Moreover τ(xy) = τ(yx) for each pair of elements x and y in

PROOF. Let t z L\Γ) and t = [w, 1] 11 \ be the polar decomposition of t.

First we show that it is sufficient to prove the statement for t with ί ^ O . In
fact, suppose for t <s L2(Γ) (resp. £ Lι(Γ))9 there is a sequence {sn}~=1 in £F such
that | |[5«,1]-kill 2-^0 ( | | [5 n , l ] - | ί | | | i ->0 resp.). Observe that by Proposition
4.2, for any yzM, t[y,l] and [y, l]t s L 2 (Γ) , \\[y, l]t\\t^ \\y\\\\t\\2 and \\t[y,ΐ\\\t

^HylllUII,, it follows that [w, l][sn, l](ζ $)-»t in L2(Γ)(resp. in Lι(T))(n•-+oo)

strongly. Let ί be a non-negative element in L2(Γ) (resp. in Lι(V)) and u be the
Cayley transform of t, then we can write t=[tn9 en], tn9 enz {u}"9 ί w ^0, tn ] and
tnen=tn by Theorem 5.2 in [7]. Let {tn'} and {/n} be the sequences of positive
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elements and projections in {u}" respectively, used in the proof of Theorem 4. 6.
Observe that tn' € ffand t*-[tn'\ 1] = [(tm)\l-enfn\ em] = ( f-[ ί n \ I])2, it follows
that \\t-[tn, 1]||1 = τ(t2[l-enfn, l ])(resp. | | ί-[C 1 ] | | 1 = τ(t[l-enfn, 1])). Therefore
by Proposition 4.4, \\t-[tn\ l]\\2-+0 (resp.||ί — [ίw', 1]|!L—>0) as w->oo. By the
above argument and the properties of T, it is easy to show that r(xy) = τ(yx)
for all :r and y in L2(Γ). This completes the proof.

To prove the completeness of the spaces L2(Γ) and L^Γ), we need the
following Proposition.

PROPOSITION 4. 4. For t € C(t^O), let φ(χ) = τ(t1/2χtι/2)(χ^ M+)(we call
this functional φ an extended indefinite integral of t), then φ is completely
additive on projections.

PROOF. It is plain that φ is finitely additive on projections. Let [eμ] be

an indexed family of mutually orthogonal projections in M such that e= ^eu

for some projection e in M, then φ(e)^^2φ(eμ). Therefore if uncountable many

of the φ(eμ) are positive, then φ{e) ̂  Σ ψ{ev)- Thus we have only to prove the

statement for the case μ= i = 1, 2, . We show that φie^^^lφiei). Let s be
n

in £? such that 0^[5,l]^[^,l]ίfel], then 5£=s and 5= lim^51/2^51/2 in the
4 = 1

n

σ(©)-topology = lim^51/2e i5
1/2

JRP(5) in the σ(@)-topology. Thus by the property
ΐ = l

of T, we have

^ lim Σ ?([*„ l]ί[^, 1]) ([eiSei91] ^ [^, l]ί[^, 1])

lim Σ φ{ex)
n ί=l
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This completes the proof of Proposition 4. 4.

Now we are in the position to prove

THEOREM 4. 7. Lι(Γ) (resp. L2(Γ)) is a Banach space with respect to the

norm || \x (resp. |j | |2). In particular, L2(Γ) is a Hilbert space (denote it by

PROOF. Let [s(ή)} be a II | |p (p = 1, 2)-Cauchy sequence in L*(Γ)(/> = 1,2).

We show that there is an element s in LP(Γ) such that ||s(w) —s\\p(p= 1,2)

->0(w-*oo). Since £F is uniformly dense in Lp(Γ)(/>= 1,2) and ||ί | |p = \\t*\\p for

all £ € LP(Γ)(^>= 1, 2), we may assume that {5(n)}c3 sα (we write s(n) = [sn, 1])

without loss of generality. Moreover, we can suppose ||[sn, 1] — [sn+1, l]\\p<l/4np(p=

1,2). Now by the spectral theorem, there is a sequence [en}n=i of projections in

M such that

ll.(s»-s»+i>»ll^2-" for all n

and

(s» - sn+iγ ^ 2-2"(l - O for all n.

Since |sn—sn +,| ^ 2 " " ( 1 — <?„) and 5n—5n + 1e2s it follows that l - e , s ^ for each

n. Observe that 1/4" ̂  1/4"" > ||[s., l ] - [ ί n + 1 , l ] H ί ) ^ 2 - n ( f ( l - e n ) ) ^ for ρ= 1
OO OO OO

and 2, write ^»=V(l-e*) Λ 1 and f ( ^ n ) ^ ^ r ( l - e i ) < Σ 1 / 4 * . Therefore

oo, that is, gn \ 0. Note that e n ^ l - g n ^ l - g k if w^^, weϊ(gn)lQ as
have

^ 2 ~ w for all w ^ ^ .

Let us consider the sequence {sn(l — gk)}n7>k, then putt ing an

a:> = (l — gk)sn(l — gk)

-^-(^• — gk)sngk + gksn(l — gk) for each pair of positive integers n and k, it follows

that { α n

( A : ) } c M s α and

l|α»CΛ) - ΛΪiill ^ 11(1 - Λ)(*n - 5 n + i ) ( i - g*)\\ + lid - ff*)(sn - sn+1)gk\\

+ yk(sn-sn+ι)(l-gk)l

^ 31!(sn-sn+0(1-^)11 ̂ 3 2-w for all ?z^£.
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Hence {an

a:>} is a uniformly Cauchy sequence for each k, so that there exists

for each positive integer k> a self-adjoint element s α ) in M such that for k,

an™->sik\n~* oo) uniformly. Observe that sn(l-gk) = an

a\l-gk)->sa\l-(>k){n

->oo) uniformly, it follows that s»(l — g^) = s»(l — fiΌCl — 9k2) if K^K implies

that 5C*'))(1-Λ,) = 5C*1>(1-Λ.). Therefore note that g^%C^lp, {s<*\l-gk} is

an EMO. Write t=[sw,l-gk], t z Cm. Since (sk-s™)(l-gk)=sk(l-gk)-s™(l

-fft),\\(ίstΛ]-t)[l-gk,ϊ\\U^2-k+i for all k, so that [sn,l]->t n. e. (w-*oo).

Now in case of L^Γ), £ is integrable by the above arguments. Let s £ M with

lUl l^ l , then ||5n5— 5 m 5 | d ^ \\sn—sm\\l9 which implies {sns} is an ZΛCauchy

sequence and [snιs, l]—>t[s91] n. e. (z—» oo) for some strictly increasing subsequence

{?z{} of positive integers. Let [sw, 1]— t = [zvn ϊ\\[sn, 1]—1\ be the polar decom-

position of [snyl]—t, then we have

= ?(I [sn, 1] - 1 1 [<7*, 1]) + ?(I [sn, 1] - ί I(1 - [gt, 1]))

= ?(I [5n, 1] - 1 1 [^, 1]) + ?([1 - Λ, 1] \w

and since for any projection p in £F with p^l — g^

t[p, 1] = ί[l - <7*, l][/>, 1] - [5(«(1 - gt), l][p, 1] = [s^p, 1],

it follows that for every ρt=kl—gk with p&Mp,

τ(lp, 1] I [5n, 1] - 11 [A 1]) = τ(\p, 1] [w,* 1] ([5,, 1] - t) [p, 1])

,» 1] [(sn - sm)p, 1])

| | 5 n — ί m l l i .

Now the complete additivity of the indefinite integral shows that ||[sn, 1] — t\\λ

^ l i m Sup | |5n— ίjtllx, which implies the desired result. In case of L2(Γ), let 5^ 3*

with ||s| |2 = l> then [sUis, ϊ]-+t\s, 1] n. e. (i—>oo) for some strictly increasing

subsequence {n^ of positive integers and {snis} is ZΛCauchy. Therefore t[s, 1]

€ Lι(T). Now the completeness of L^Γ) implies there is an integrable element r

such that ||[5nt5,1] — rllj—>0(z*-^00). By the same argument as that in case of

1/(1% we can take a strictly increasing subsequence ( ra j of positive integers such

that [smιs, 1]—>r(i-»oo) n. e.. Therefore r = t[s, 1] and ||ί[s, l ] | | i = P1r||1 = lim||5n5||1

^limSuρ| |5 n | ! 2 i |5! ! 2< 00 by Proposition 4.1. Since 2^ is strongly dense in L2(Γ),
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t € L2(Γ) and | | ί | | 2 ^l im Sup ||5n | |2 by Proposition 4.2. Next we show that |||>n, 1]
— t\\2-*0(n—» oo). In fact, [sn —sm}Z=ι is an ZΛCauchy sequence which converges
n. e. to [sn> 1]— t(m-^> oo). By the same reason as above, it follows that ||[sn, 1]
— ί|!2 = limSup \\sn—sm\\2. The above statement follows and L2(T)=ξ)τ is a Hubert

space. This completes the proof of Theorem 4. 7.

5. Representation of M. Let B(ξ)T) be the algebra of all bounded linear
operators on ξ)v. For any x € M, we define πx(x)a = [x> l]a(a z ξ>τ) (resp. πr(x)a
= a[x,ϊ]\ then we have lUi^^lls^ll^llll^Hs and !|τrr(:r)α||2^||.r|| | |α||2. Therefore,
it is easy to show that πx{x) and πr(x) € B(ξ>τ) for all x^M. Moreover, it is
immediate that

f = nλ{x*)y τrr{Xx + μy) =

for x, y in M and complex numbers λ, μ- On the other hand if n^x) — 0
(resp. 7tr(x) = 0), then [x, ϊ\a = 0 (a[x, 1] = 0) for all a in | ) r . Since r is semi-
finite, there is an orthogonal set {ea} of projections in £? such that ^2ea=l.

Therefore £Fc ξ)r implies that xea = 0 (eα.r = 0) for all a. Hence by [5, Lemma
2.2], x=0. Therefore ττi( )(resp. 7tr( )) is a ^-isomorphism (resp. ^-antiisomorphism)
of M into J5(^r). Let {^i}ie/ be a set of mutually orthogonal projections of
M with e=Σ&» t n e n

Uχ(e)a- Ί Ί

HP

for any finite subset J of /. By Proposition 4.4, Σ7t^9i)~*7ΐM strongly.

Similarly, Σπr(ffι)-*πτ(e) strongly. Therefore π1(M) and τrr(M) are Al^*-

subalgebras of B(ξ)t) in the sense of [6, 3. Definition].

THEOREM 5.1. Let M(resp. N) be the weak closure of Tt^M^resp. τtr(M)).
Then M and N are von Neumann algebras such that M=N' where N' is the
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commutant of N in the sense of [2, 1.1].

To prove the above theorem, we need the following definition.

DEFINITION 5. 1. An element a in ξ)τ is said left bounded (resp. right
bounded) if there exists an operator 7tλ{a) (resp. πr(ά)) of B(φt) such that πλ(μ)b
— 7tr(b)a (resp. πr(a)b = πι(b)a) for all b in MΠ φτ.

Now we sketch the proof after [2, Chapter 1, Section 5]. Let [Mξ)τ] be the
closed subspace of φT generated by the Tξ (T £ M, ξ £ |)Γ), then £F is dense in
ξ>τ and τr1(M)3 ; = ϊf, which implies [Mξ>τ]=φτ. Similarly, [N&]=ξ>r. Therefore
by [2, Chapter 1, Section 3, Corollary of Theorem 2], M and N are von Neumann
algebras. By the definition of nx and 7tr, it is plain that McN'. Thus we have
only to show the converse assertion. First we shall prove that if a is left bounded
then for TzN', Ta is also left bounded and Tτtι(a) = n:1(Ta). Let 2Hi= {τri(α),
a is left bounded}, then 3Rι is a left ideal of JV". In fact, let a be a left bounded
element of | ) r , b and c be in MΠ | ) r , then

nγ(d) πr(]ki\c — itx(a)cb — πr(cb)a = τrr(b) πr(c)a

= 7tr(b)-τtx(ά)c .

Since Ϊ F c M n £ τ and £?is dense in $τ, πx(ά)zN'. If T z N', then Tτtλ(a)b
= Tτtr(b)a = τtr(b)Ta for all be MO $τ. Therefore Ta is left bounded and τt[{Td)
= Tπ-Xa). Similarly we have that if a is right bounded and if T £ M\ then Ta
is right bounded, Tπr(ά)= πr(Ta) and that let 9Jί2 = {πv(<z)> Λ is right bounded},
then 2R, is a left ideal of Λf . Let 3tts= SKiΠa^* and 3K4= SK.naR,*, then
9fl3"ciV' and 9JΪ4

/ci»f/. Let T be in iV' and 7\ be in 5BIΛ then for each pair
of elements a and i in M n ^ , πx(b)*Tπλ(a) € 9JΪ3. Therefore T,τtλ(bfTπx{a)
= πί(b)*Tπι(ά)Tι. The semi-finiteness of T implies that there is an increasing net
{ea} of projections in £F such that TΓjfe,) ΐ 1 for the σ-topology. Since 3c MΠ ξ>τ,
T1T=TTX9 that is, T Ξ 9JV . Therefore JV = 2R8' and similarly M = 5K4". Next
we show that 9K3c9Di4. Let TΓ̂ α) € 9Ji3 and πr(b)ζ 3DΪ4 then by the definition of
5Dΐ3 and 9Ji4, ?c1(a)*= π^c) for some left bounded element c and 7tr(b)*= πr(d)
for some right bounded element <i. Observe that the inner product ( , )r of <$τ is
defined by {x,y)τ

::='τ(y*x){x>y€ |)r), it follows that for each pair of elements x
and y in ξ)τ Π M, (α, Λry)r = (c*, xy)T9 therefore a = c*. Since £?C Mil ^ r c | ) r ,
M Π ^ r is uniformly dense in ξ>τ. Thus there exists a sequence jxn} in Λf Π | ) r

such that ||o:n - α||2->0(w-»oo). ||^n - αj 2 = | | x n * - α * | | s = ||α;n*-c| |2->0(n-* oo).
Similarly there is a sequence {j>n} in MΓ)ξ>τ such that ^n^"^^
uniformly (w—>oo). Therefore we have
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) 7tr{b)x,y)τ = (τtr(b)x, nx{c)y\

= (7tγ{x)b, τtr(y)c)τ

C r ) ^ * , τrr(y)xn*)t

= lim(ryn*, .rn*yX

= limτ(y*xnxyn*)
n—*<χ>

= limτ((yyn)*xnx)
n-*oo

= lim (xnx, yyn\
n—*oo

= lim (7rr(x)xn, ^iC^Or

= {τer{x)a9

which implies that ττi(α) πr(b)= τrr(b) 7ri(a) and therefore N'= W3'(zWi —M
= M. Thus we have M — N. This completes the proof.

REMARK. M= (πr{M))' and JV= {τrx{M))\

Now we are in the position to state

THEOREM 5. 2. n^M) = i>f, ίAαί £5, M w α semi-finite W*-algebra.

In order to prove the theorem, we need some lemmas.

LEMMA 5.1. Let a be in £F and ξ = [α, l](f € §Γ). Denote the orthogonal
projection on the subspace [M'ξ] generated by TξiT £ M') by P[M>?\. Then

PROOF. Since for any 6 <= 3s wr(6)? = τtr{b)[a, 1] = [α, 1] [b, 1] = [αέ, 1]
= 7Γi(α)[6,1], so that τrr(δ)f € RangeCTr̂ a)) for all bzζF. Note that τrr(30 is
σ-dense in πr(M). In fact, the semi-fmiteness of r implies that there is a set



458 K. SAITO

{ î}i€/ of orthogonal projections in £? such that 2 Z ^ = 1. For each finite subset

J of /, \\ττr(x(l - g e ^ l i = (gr(x(l - Σ

- Σ ) ]) ( [
for y € ξ)τ and *r £ £F. Therefore by Proposition 4. 4, the above statement follows.

By the above argument and Theorem 5.1, it follows that [M'ξ]cRange(τri(α))

(the strong closure of Range(τΓi(α))). On the other hand, 7ri(a)[b,ϊ\= πr(b)ξ £ [M'ξ]

for all bzζF. The strong density of £F in ξ>τ implies that R a n g e d i ( α ) ) c [ J f ' f ] ,

or [M'ξ] = Range(τzΊ(V)). Next we show that P I J Γ { ] = P^geo^y) —
where LPB^τ){nx{aγ^ the left projection of πx{a) in the AW^-algebra B(lQτ). By
the definition of LPB^r)(πx(a))9 it is plain that PR^^Ϊ^^J)^ LPβ^π^a)). Let

\= 7tι(aa*) be the spectral decomposition of 7tx(aa*), then LPBφτ)(πι(a))π\(aa*)

= nx(aa*) implies LPB&τ)(rt\(<ι)) I dEλ= I dEλ for each positive integer n,

Jl/n Jl/n

Therefore LPBφτ)(πt(α)) ^ Pna^eu^), which is the desired property. Since
τtx{M) is an AW^-subalgebra of B(ξ>τ\ by [6, Lemma 2], P[M^ = LPB^)(πx(a))
€ πΊ(M). This completes the proof.

LEMMA 5.2. For any ξ in φτ9 let ξ=\u,l]\ξ\ be the polar decomposition

of ξ(uzMpi), then P [ J f / f ] ^ P I J f Ί f I ] and P[MΊ] = nlu)P{M^mnx{uY. Therefore if

PROOF. First observe that ξ=πi(u)\ξ\ and \ξ\ = π1(u*)ξ. For any bzM,

τrλb)ξ = πX^Tt^u)\ξ\= nlu)nr{b)\ξ\, Therefore * r ( M ) f = ^ ^ ^ ( A Q I f I If
??€ [M'f] , then there is a sequence {An}n=\ C.M such that Anξ-*η in | ) r . Thus

Λilfl = Λ.^i(«Vi(«)lf I = ̂ ^ ( 0 ^ = ^ ( 0 ^ ^ ^ in fr, which
implies that πxiu*}η z \M' \ ξ\ ] and πxiμ^iiμ^η e πx(μ)[M' \ξ\\ On the other hand,
since π^TC^u^Anξ = An^iu^iu^ = Anξ and πΊ(M)πΊ(w*)Anf->πΊ(tt)πΊ(tt*)?7
(n->oo) in § r , it follows that π1(u)π1(uJlt)η= η and «? € τri(tt)[Λl" | f | ], that is,

' l f |] Conversely, since πr(M)ξ = πlu)πr(M)\ ξ\, we have [Jf ' f]
], that is, [ J f ' f ] = π Ί ( t t ) [ J f ' I f l l Next we show π1(RP(ξ))[M/\ξ\]

= [M'\ξ\]([7, Theorem 6.4]). In fact, for every b in M, πι{RP(ξ))τtr(b)\ξ\

= πXfyπ^RPiξ))\ξ\ = 7tr(b)[u*u91]|ξ\ = πr(b)\ξ\ by [7, Theorem 6. 3]. Therefore
7t,(RP(ξ))[M'\ξ\}ti[M'\ξ\l On the other hand if ηz π^RPiξ))[Jf'|ξ|], then
observe that τt1(RP(ξ))η= η and π^RPφXM' \ξ\) is dense in ^(ΛP(f))[Λf ' | f | ] ,
then there is a sequence {An} in M such that 7r!(i?P(|:))An | £ |—• η(n-+oo),

An\ξ\ = Annλ(RP(ξ))\ξ\ = π1 (RP(ξ))An\ξ\-*y(n^oo), so that T ; -
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^ πι(RP(ξ))[Mf \ξ\l Therefore ^(RP^))[M*| f | ] is closed linear subspace of & . It

follows, from the fact that π^RIXξ))-7tr(M)\ξ\= τtr(M)\ξ\, that ^(2?P( f [Λf( ( '\ξ\ ]

— \M' \ξ\\ F r o m the above arguments, an easy calculation shows that

πι{u)P[M>\ξ\]rti(.u*) is a projection and rti(u)PiM'x\}rti(u*)^Purn. On the other hand,
for all ηz ξ)τ, P[M'ξ]V=7r1(u)P[M^ξ\]ζ for some ξz $T,PιM'\ξ\iζ=P[M'\ξ\}πi(u*)πι(u)P{M>\ξ\}ξ

which implies that P[M'ξ]V = 7Γi(w)^V'ifijTΓiCOfW'ftf and

)* Therefore the proof is completed.

LEMMA 5. 3. For every ξ e φT9 P[MΊ] € πλ(M).

PROOF. By Lemma 5. 2, we may assume ξ ̂  0 without loss of generality.
Let [u, 1] be the Cayley transform of ξ. Write | = |>n> e j , £n, eΛ € {u}" 0^tn]
and tnen= tn. Choosing a family {tn',fn where £n 2^0, fn is a projection] used
in the proof of Proposition 4.3, then 0^tn'] , [tn\ l]^ξ and tn £ £F for each
n. Moreover write ξn=[tn', 1], Hfw—f ||2—*0(w —>oo). By Lemma 5.1 P[M>ξn) * it\(M)
for each n. First we show that P[M'ξni ΐ and P[M'ξn] ^P[M'ξi> In fact, £n=I/π>l]
= [enfntn+ien+lfn + l> l] = ln+l[^n/n, 1]= 7fr(̂ n/n)ln+l> which implies [ M ^ J C [if 'ξn+ι\.

Similarly, ξn= [tn',ϊ\ = πr(enfn)ξ and [M'ξn\<z[M'ξ\. Next we show \/P[M>ξn]
l

in Λf. If there is a non-zero projection Q in M such that P[M'ξ-\ —
71 = 1

^ Q , then QP[^ n ] = 0. Therefore Qξn= 0 for each w, so that Q^ = 0, that is,
Q[M'ξ] = 0. Hence this is a contradiction. Thus Pwξn}] Pwn weakly (w—>oo)
in iW. By [3, Lemma 2], ί W ^ ^ Ί ( M ) . This completes the proof.

PROOF OF THEOREM 5. 2. It is sufficient to show that πx(M)v = Mv (see
for example [3, Lemma 1]). Suppose then P <Ξ MV. For any | <= P^ r , πr(b)Pξ
= Pπr(b)ξzP$τ for all & € M, [ΛΓf]cP$Γ, that is, P[MΊ]^P Let ( P ^ ) be a
maximal family of orthogonal cyclic projections majorized by P, then P=

in M. By Lemma 5. 3, PIJf/f] € TΓ^M), SO that by [3, Lemma 2], P<Ξ TΓ^M). This
completes the proof.

Making use of this theorem, we show the following

THEOREM 5.3([6]). Let M be an AW*-algebra of type I whose center
Z is a W*-algebra, then M is a W*-algebra of the same type.

PROOF. It is sufficient to show that M has a separating set of c. a. states.
Since Z is a W^-algebra and by [5, Lemma 4. 8] M can be represented as a direct
sum of homogeneous AW^-algebras and we may assume that M is a homogeneous
AW^-algebra whose center Z is σ-finite without loss of generality. By the
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structure theorem, there are an abelian projection e0 with z(e0) = 1 and a family
of orthogonal projections {<?i}ie/ containing e0 such that e^e^i € / ) and ^ ^ = 1 .

i s /

By Lemma 2.3, e0Me0= Zeύ~Z. Let φ be an inverse map of the map a(z Z)
—>aeQ(€ Ze0) and Φ(a)= ΣΦ((v«)*av°) m % ίoτ a £ M+ where va is a partial

a

isometry such that (ya)*va= e09 (ya)(va)* = ea(ct€ Γ). Then we have

( 1 ) Φ(λα + μb) = λΦ(α) + μΦ(b) if a, b e M+ and λ and μ are complex
numbers,

( 2 ) Φ(α5) = sΦ(» for s € Z+ and α 6 M + ,

( 3 ) if u € Mu and α € M+, then Φ(wαw )̂ = Φ(α),

( 4 ) if Φ(α) = 0 with α ^ M + , then α = 0,

( 5 ) let [fβ] be a mutually orthogonal projections in M with f —

then

(6) for every a in M+, there is a non-zero b in M+ with Φ(6) ̂  Z+.

In fact, the assertions (1) and (4) are clear from the definition of Φ. First we
show the statement (2). Since (va)*asva= s(va)*ava, it follows that φ((va)*asva)
= φ(s(v«)*ava) = φ{seQe0{vafava) = φ(5e0) ψ((t;α)^α^α) = 5φ((t;α)^α^α). Hence by
Lemma 2.12, Φ(as)=sΦ(a). To prove the statement (3), we argue as follows. Since
for uzMu and α^M + , uau*=uaι/2aι/2u* and (va)*uau*va=(va)*uaι/2a1/2u*vay by [6,
Lemma 7], it follows that (va)*uau*vaz ZeQ and (va)*uau*va=Σ(Va)*ua1/2eβa

1/2u*va
β

in Ze0 for each #. Therefore by the same way as that used in Theorem 3. 1,
Φ(uau*) = Φ(<z). To prove the statement (5), let {/̂ j be a mutually orthogonal
projections in M with / = X)//3 Again by [6, Lemma 7], (va)*fvae Ze0 and

β

(va)*fva= Σ(v«)*f$v« m Zeo- Thus by the same reason as above, the statement
β

(5) follows. Now we show the last assertion (6). Let a be a non-zero element
in Λί+, then there are a positive number cc and a non-zero projection p in M
such that a^ap. Then we can easily choose a non-zero abelian projection / in
M such that f^p and /;^έ?0. By lemma 2.4, Φ(/)^Φ(> 0 ). Write b =--ctf, b
satisfies all requirements.

Next let ^ = ^ M + , Φ ( ^ Z+}, then $ is the positive part of a two-sided
ideal 9Ϊ. By the same way as that used in the proof of Theorem 3. 2, there is a
unique linear operation Φ on 9Ϊ to Z which coincides with Φ on $ satisfying
(a), (b), (c) and (e) in Theorem 3.2. Moreover this operation satisfies: (d')
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if [fβ] be a set of mutually orthogonal projections in M, then

). Let A6 be a faithful positive normal measure on Z, then set σa(x)

= μ(Φ(ax)) for a £ $ and :r <= M and we have by [6, Lemma 7] <ra(f) = Σσa(fβ)
β

An easy computation shows that [σa,a^%] is a separating set of positive c. a.
functionals on M. This completes the proof of Theorem 5. 3.

ADDED IN PROOF : These results were previously announced in Proc. Japan
Acad., 46(1970), 463-467.
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