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Consider a connected C°° Riemannian ra-manifold R (rag:2) and a continuously
differentiable function P (î O and Ξ£0) on R. The space of solutions of d^du—PwfΛ.
or Au=Pu on R will be denoted by P(R). Let OPX be the set of pairs (R, P) such that
the subspace PX(R) of P(R) consisting of functions with a certain property X reduces
to {0}. Here we let X be B which stands for boundedness, D for the finiteness of

the Dirichlet integral DB(u) = I du/\*du, and E for the finiteness of the energy

integral Eζ(u) = DR(u)+ I Pu**l\ we also consider nontrivial combinations of these
JR

properties. We denote by Oσ the set of pairs (R9 P) such that there exists no
harmonic Green's function on R.

The purpose of this paper is to show that (Em, P) will be an example for the
strictness of each of the following inclusion relations

( 1 ) OGdOpBdOpnCOpE

if P is properly chosen, where Em{m^3) is m-dimensional Euclidean space and
P is a continuously differentiable function on £m(i^0, ^ 0).

More precisely let

(2) P(x)~\x\-'

QS\X\—>oo, ί.e. there exists a constant c>l such that c~ι\x\~a^P{x)^c\x\~a for
large \x\. Then the following is true:

( 3 )

{Em, P) e OPB - Oβ if a ^ 2

{Em,P) e OPD-OPB iί 2<a^(m + 2)/2

l(Em, P) € OFE - OPD if (»»+ 2)/2 < Λ ^ w .

* Supported by the U. S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G20,
UCLA.
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By definition, (Em,P)£θG for every a, and (Em,P)£θPE for a>m.
These relations will be proven first for a P{x) which is invariant under every

rotation of Em with respect to the origin. To settle the general case (2) we will
study the dependence of the linear space structure of PX(R) on P for general
Riemannian manifolds R, where X=B, BD, and BE. This problem also has interest
in its own right.

Comparison theorems

1. Let (gi}) be the metric tensor on R, (g**) = (g^)'1, and g = det(^). We also

denote simply by dx the volume element */g dxι dxm. The Laplace-Beltrami
operator is then

We always assume that the function P in the operator

Ap = Δ - P

is of class C1, P^ 0, and ΐ 0 in R, unless otherwise stated. We are interested in
the vector space structure of PX(R) (X=B, BD, BE, D, or E). Observe the
following:

The space PBD(R) (resp. PBE(R)) is dense in PD(R) {resp. PE{R)) with
respect to the topology τD{resp. τE) given by the simultaneous convergence in
DR( )(resp. ER( )) and uniform convergence on every compact set in R. In
particular

( 4) On>= OPBD {resp. OPE = Om).

The D-part of this statement is the author's recent result ( [8] , [9] ) . The
£-part was obtained by Royden [11](see also Glasner-Katz [ 1 ]). In view of these
results we will only study the class PB{R) and its subspaces PBD{R) and PBE(R).

We also mention:

Any function in PX(R) is a difference of two nonnegative functions in
PX(R).

2. The Green's function Gp{x,y) of Ap on R is characterized as the smallest
positive function on R such that
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(5) -AζGp(x,y) = δy,

where Sy is the Dirac measure. Since PgrO andίO, G^,{x,y) always exists (cf. e. g.
Sario-Nakai [12; Appendix]). This result was obtained by Myrberg [6], who also
proved that there always exists a strictly positive solution of Aζu = 0 on R.

We will call a subregion Ω of R regular if the closure Ω of Ω is compact
and the relative boundary 3Ω of Ω consists of a finite number of disjoint C°°
hypersurfaces. The Green's function Gρ(x,y) of Ap on Ω always exists.

Let Q be another C1 function on R such that Q ̂  0 and ΐ θ on R. Consider
the integral operator TQ=TQQ:

-Άy))ψ[y)dy

for functions ^ on Ω such that the integral on the right is defined in the sense
of Lebesgue. We also consider SQ = SE®:

(7) SQ = IQ-TQ,

where IQ is the identity. If φ is bounded and continuous on Ω, then it is easy to

see that TQφ € C(β) and

(8) (TQφ)\dΩ = 0.

If φ is bounded and locally uniformly Holder continuous on Ω, then TQφ is of
class C2 and

( 9 ) Δ 7 > = _ (Q - J > + QTQ(^

on Ω(cf. e. #. Itό [ 3 ], Miranda [ 5 ]). Therefore by ( 8 ) and Green's formula we
deduce

DQ{TQφ) = - / TQφ[x) AxTQφ(x)dx .

By (9) the Fubini theorem implies that

(10)
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where

(11) «p, ψ>F= [ G%[x,y)(Q(χ) - P[x))(Q(y) - P(y))φ(x)f(y)dxdy.

3. Let us PB{Ω). By ( 9 ) , SQu = S^uz QB(Ω). Since u-SQu = TQu, the
relation (8) and the maximum principle imply

(12) \\SM*= IMIo,

where|| ||o is the supremum norm considered on Ω. Let 5 f l = ιS8p. Then SQSQu <= PJB(Ω).

Since u-ΊΪΩSQu€ P£(Ω) and u-~SQSQu = TEQu-]-T^pSQuf the relation ( 8 ) implies

that U—SQSQU = 0 on Ω. Therefore

(13) SgF

We have thus proved that

Sa^SsPis an isometric isomorphism from the class PB[O) onto the class

4. For regular regions Ω c i ? , the classes PBD(Ω) and PBE{Ω) are always
identical. Observe that

(14)

for every u <Ξ PB(Ω). By Green's formula we also deduce

9**) + El(T?u) = £?(«) + / (Q(x) - P{x)){u{x)Ydx,

(15) Γ

/ (̂ ) - Q{x)){S?u[x)Ydx,

where Ep(u) = DQ{u) + Γ P(α:)(w(α:))2^. From (14) it follows that

SQ^SQ* is an isometric [with respect to || ||Q) isomorphism from the class
PBD(Ω) = PBE(Ω) onto the class QBD{Ω) =

5. We proceed to the comparison of PX(R) and QX(R) for X = B, BD, and
. Consider the integral operator T=TFQ:
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(16) Tφ = f G«(x,y){Q(y)-P{y))φ{y)dy

for functions φ on R such that the integral on the right is defined in the sense
of Lebesgue. We will say that the ordered pair (P, Q) satisfies the condition
(B)if

(B) f G«(x,y)\Q(y)-P(y)\dy<oo.
J

By the Harnack inequality (B) is satisfied for every x € R if and only if (B) is
valid for some xz R. In this no. 5 we assume that (P, Q) and (Q, P) satsfy (B).
If φ is bounded and continuous on R, then Tφ is defined and continuous on R. If
moreover φ is locally uniformly Holder continuous, then Tφ is of class C2 and

(17) A«Tφ=:-(Q-P)φ

on R (cf.(9)). We also consider 5 = 5^:

(18) 5=7-T,

where / is the identity operator.
Let {Ω,} be a directed set of regular regions ί l such that the union of [Ω] is

R. For a continuous function <pQ on ί l we use the same notation <pQ for the function
which is φQ on ί2 and 0 on R — Ω. Assume that

for every Ω. Moreover suppose there exists a bounded continuous function >̂ on R
such that limQ_>B<pQ=<p uniformly on each compact set in R. Then

(19) Sφ = li

uniformly on each compact set in i?. In fact,

\Sφ(x)SQφQ(x) I rg

Uere\T\φ= [ G%,y)\Q(y)-P(y)\<p(y)dy and | Γ 0 | is similarly defined. Since
JR

G$(x,y)^GQ(x,y) and limu-^Gg^ y) = GQ{x,y) on R, we infer that
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\mT\ - \Ta\)\φ\(x)+ \φ{x)-φQ(x) \ + \T\\φ-φa\ (x)

and by the Lebesgue convergence theorem the right-hand side of the above inequality
converges to 0 on R. By the Harnack inequality applied to GQ—G% and GQ, we
conclude that the convergence is uniform on each compact set in R. Therefore
(19) is established.

6. We will first prove a comparison theorem for PB(R) and QB(R). This result
is already suggested in the author's earlier paper [ 7 ] (see also[ 9 ] and Maeda [ 4 ]):

THEOREM 1. If {P,Q) and (Q,P) satisfy the condition (B), then S*® is an
isometric isomorphism of PB(R) onto QB{R).

PROOF. Let uzPB(R). From (17) it follows that SuzQ(R). By the identity
(12) we deduce ||/SΏw||Q = | M | Ω ^ | M | and a fortiori

(20) \\Su\\ ^ ||«|| ,

i.e. SusQB(R). Suppose Su=0. By (13) and (19), SQPSu=u and a fortiari u=0.
Thus S is an isomorphism of PB(R) into QB(R).

To prove that S is surjective let v € QB{R) and uQ — SlPv. Observe that
UQZPB[S1)Λ\IIQ\\QS-\\V\\9 and by (13), v = SQuQ. Let {12} be a directed set of
regular subregions 12 such that

u = liniQ^βttQ £ PB{R)

uniformly on each compact set in R. By (19) we infer that

Su — YIΠΪQ^HSQUQ = V 9

i.e. S is surjective. Since U/S^ll^ | |T; | |Q= ||*SΌWQ|| = \\UQ\\> we deduce |5« | |^ | jw | | . This

with (20) implies that*'*? is isometric. Q.E.D.

COROLLARY I .I . Since P satisfies

(21) f Gp{x,y)P(y)dy <oo
J R

(cf.[4])> PB(R) and (cP)B{R) are ίsomorphic for c>0.

PROOF. The condition (21) implies that {cP, P) and (P,cP) satisfy the
condition (B). Therefore SicR)P is an isometric isomorphism of (cP)B(R) onto
PB{R). Q.E.D.
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Royden [11] proved the following comparison theorem entirely different in
nature from ours:

If there exists a finite constant c>l stcch that c~1Q^P^cQ outside a
compact set in R, then there exists an isometric isomorphism of PB(R) onto QB(R).

7. We turn to a comparison theorem for PBD(R) and QBD(R). We will say
that the ordered pair (P, Q) satisfies the condition (D) if

(D) G*{χ,y) IQ(χ) -P(χ)\-\Q(y) - P(y) Idxdy < °°.

It is clear that (E) implies (B). In this no. 7 we always assume that (P, Q) and
(Q, P) satisfy (D). In accordance with (11) we set

(22) «p,f>p°=[ G«(x,y)(Q(x)-P(x))(Q(y)-P(y))φ(x)ψ(y)dxdy.

This is well defined for bounded continuous functions φ and ψ on R. By the
Lebesgue convergence theorem we deduce

(23) <<p, f>PQ = l iπw<?>, ψ > ^ .

THEOREM 2. If{P, Q) and (Q, P) satisfy the conidtion (D), then S** is an
isometric isomorphism of PBD(R) onto QBD(R).

PROOF. Since (D) implies (B), Theorem 1 implies that iS=5 rpρ is an isometric
isomorphism of PB(R) onto QB[R). Let u € PBD(R). By (14) we have

(24) (D

From (19) for φ = u z PB{R) it follows that

(25) \ima-+RdSQu Λ *dSou = dSu Λ *dSu

on R. By (23) and the Fatou lemma, we deduce from (24)

(DB(Suψ* ^ [DR{u)Y/2 + «u> « » 1 / 2 < °o .

Therefore S{PBD{R))cQBD{R). To obtain the reversed inclusion let uzPB(R)
and Su € QBD(R). Since w = Su+Tu on # ,
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(26) (DR[uψ* ίg [DB{Suψ> + (DΛ(Tu)y*.

By (25), |grad TQu\2 converges to |grad Tu\2 on R. By the Fatou lemma and
the relations (10) and (23), we infer that

DQ(TU) ^ lim mίQ^R

= <u9 u>

From (26) it follows that DR{u) < oo, i. e. S(PBD{R)) = QBD{R). Q.E.D.

COROLLARY 2.1. If P satisfies

(27) ί Gp(x,y)P(x)P(y)dxdy < oo ,

then PBD{R) and (cP)BD{R) are ίsσmorphic for c>0.

PROOF. The condition (27) implies that (cP,P) and (P,cP) satisfy the condition
(D). Therefore S{cP)£> is an isometric isomorphism of (cP)BD(R) onto PBD(R).
Q.E.D.

8. We turn to a comparison theorem for PBE(R) and QBE{R). We will say
that the ordered pair (P, Q) satisfies the condition (E) if

(E) f \Q{x)-P{x)\dx<oo.

It is clear that (E) implies (B). The following comparison theorem was obtained
by [11] (see also Glasner-Katz [1]):

THEOREM 3. If (P, Q) satisfies the condition (E), then SPQ is an isometric
isomorphism of PBE{R) onto QBE{R).

PROOF. Since (E) implies (B), Theorem 1 entails that S^S*® is an isometric
isomorphism of PB{R) onto QB(R). Let uz PBE{R). From (15) it follows that

&($*) ^ EE(u) + |μ | 2 f IQ(x) - P[χ) Idx.

By (25) and the Fatou lemma, we obtain
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E%(Su) ̂  Ep

B{u) + \\u\\* ί \Q(x) - P{x)\dx < oo ,

i.e. S(PBE(R))cQBE{R). Conversely let uzPB{R) and SusQBE(R). By (15)
and I|*S'OM|J = U«||, we have

ES(u) =g Eί(Sau) + ||M||2 f

On setting SQu — u on R—ί2 we infer by Green's formula that

£g(SQw - SQ,u) = E$(SQu) - EUSQ>u)

for ί l 'Dίλ Therefore El(SQu)-*E%[Su) as ί2-»i?, and a fortiori

Ep

R{u) ^ E%(Su) + \\u\\2 \Q(x) - P(x)\dx < oo .
* Q

We have shown that S{PBE(R)) = QBE(R). Q.E.D.

COROLLARY 3.1. If P satisfies

(28) f P{x)dx <oo ,

then PBE(R) and {cP)BE(R) are isσmσrphic far c > 0.

PROOF. The condition (28) implies that (cP, P) and (P,cP) satisfy the
condition (E). Therefore S(cP)P is an isometric isomorphism of {cP)BE{R) onto
PBE(R). Q.E.D.

9. As usual we denote by H(R) the space of harmonic functions u on R, i. e.
Au = 0. Comparison theorems between PX(R) and HX(R) for X = B, BD, and
β £ can be obtained on replacing Q by 0 in nos. 1—8. We will denote by
G{x,y) = GR{x,y) the harmonic Green's function on R. If Re OG, then PB(R)= {0}
(Ozawa [10], Royden [11]). Therefore excluding trivial cases, we assume in this
no. 9 that R&OG. We will say that P satisfies the condition (Bo), (Do), or (Eo) if
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(Bo) [ G(x,y)P{y)dy<oo,

(Do) f G(x, y)P(x)P{y)dxdy < OO

or

(Eo) f P{x)d.X < OO .

Since Gp(x,y)<G(x,y), the conditions (Bo), (Do), and (Eo) imply(21), (27), and (28),

respectively.

Dicussions in no. 6 are valid if Q is replaced by 0 :

COROLLARY 1. 2. If P satisfies the condition (Bo), then SP0 is an isometric

isomorphism of PB{R) onto HB(R).

The replacement of Q by 0 does not affect the validity of the reasoning in

nos. 7 and 8. With this in view we maintain:

COROLLARY 2. 2. If P satisfies the condition (Do), then SP0 is an isometric

isomorphism of PBD{R) onto HBD(R).

COROLLARY 3.2. If P satisfies the condition (Eo), then SP0 is an isometric

isomorphism of PBE{R) onto HBD{R).

Equations on Euclidean spaces.

10. Hereafter we take the Euclidean space Em(m^3) as the base Riemannian

manifold for the equation Au = Pu. We fix an orthogonal coordinate so that the

metric tensor is (δ^). For a point x^E"1, its coordinate will be denoted by

(xι

9 " ,xm). The volume element is thus dx — dxι dxra

m We also write

( m \ 1/2

The harmonic Green's function G(x,y) on Em is given by

(29) cnG(x,y)= \x-y\2~m,

where cm = (m—2)ωm with ωm the surface area 2πm/2/Γ{m/2) of the unit ball in

Em. We first observe the following elementary identity (a special case of the Riesz

composition theorem):
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(30) ί G(x,y)\y\-ady = a\x\-("-»(m>a>2),

where a = a[m, a) is a finite strictly positive constant depending on m and a but
not on xΦO.

In fact let z = A(y) be an affine transformation of Em given by

= \x\~ι(31) zι = Aι{y) = \x

where (ptj) is an orthonormal matrix such that

(32) δ1* = - 2 > u Ix I -ιx'[i =

From (31) and (32) it follows that

(33) b'-*l = l* l l* l .b' l = l

with e = (1,0, , 0). The Jacobian of Λ is

and therefore dz=\x\~mdy. Hence

I G(x,y)\y\~ady = c'1 I \x — y\2~m\y\~ady

1 2 ~ m I <? 1 2 " m ! r I ~α I *? — e 1 ~α

where

a = c~1f \z\2-m\z-e\-"dz<

if
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11. Let λ(ί) be a real-valued C2 function on [0, oo) such that-jrλ(ί)

— °' λ^ — ty and

= e (ί€[0,fi/2]),
(34)

where S and δ are arbitrarily fixed positive number. Consider the equation

(35) Au(x) = Qa(x)u(x), Qa(x) = X(\x\)~"

where az (— oo, oo) and Δ = Σ ς\ *"« - We maintain:

<=i d < r

(36) dim QJ3(£m) ^ 1

for every az (— oo, oo).

For the proof let dim QaB(Em) > 0. Take two positive functions ut in
QJB(E~)(i= 1,2). Let Ω(Λ) = {α:€ Em\ \x\<n}(n = 1,2, •••) and Sn = S8&)9S
= S%a0. Then

Snut(x) = u^x) + J GQ(n)(x,y)Qa{y)ui(y)dy.
Q(n)

J
Q(n)

Observe that Snu^ HB{ίί{u)) and l|5nwJ|Q(n) = IIWJIQC^ ̂  ||wj|. Since z^X), we
obtain by the Lebesgue-Fatou convergence theorem that

(37) Sut(x) = ut(x) + f G[x,y)Qa{y)ui{y)dy

and Su^HB{Em). Since

(38) HB(Em) = E 1 ,

S Z ^ Ξ Ξ ^ X ) . Set w=c2u1-c1u2zQaB{Em). Then by (37)

= - f G ( ί , y ) Q . ( y M ^ = -(Tw)(x)
J mm

zvi
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and consequently | t e ; | ^T | te ; |on Em Since \w\ is subharmonic and T|te; | is a
potential, we obtain | w | = 0. Thus uγ and u2 are linearly dependent. The space
QaB{Em) is generated by positive functions in QaB(Em). We conclude that
dim QaB{Em) = 1.

12. We have seen that either dim QaB(Em) = 0 or 1. We next study for what
a the first or the second alternative occurs. Let ω=(ωj) be an orthonormal matrix
and fω be the function defined by fω(x) =f(xω) for a given function f on Em. Here
x is viewed as the matrix of type (l,ra). Since (Qa)ω = Qa> rotation free, we
conclude that uω € QaB{En) for u<k QaB(Em). Because of (36), we must have u—uω

for every ω. Therefore :
Every function u € QaB(Em) is rotation free.

A fortiori there exists a C2 function φu(t) on [0, oo] such that

(39) u{x) = φu{\x\).

Suppose dim QaB{Em) = l. Then for us QaB{Em) such that u>0 we maintain:

(40) lim inf,x|_+oow(^

If this were not the case, there would exist an increasing divergent sequence
{rn}cEm such that ^ ( r J - K ) as n->oo. Let Ω(rn) = {xz Em\ \x\ <rn}. The
maximum principle implies that \\u\\QCr^=φu(rn) and a fortiori « Ξ 0 , a contradiction.

By (37)

Su{x) = u{x) + f G(x,y)Q.(y)u(y)dy .

Since (40) and the maximum principle imply that inf̂  w = b > 0,

G(χ,y)Q«(y)dy ^ έ " 1 ^ ^ ) - u(χ)) < oo ,

i. e. Qa satisfies the condition (Bo). Conversely if Qa satisfies the condition

(Bo), then by Corollary 1.2, QaB{Em) is isomorphic to HB(Em) and therefore

dim Q«B(Em) = 1.

We have shown that (£ m , Qa) € OPB is equivalent to

(41) cx = cm[ G(x,y)Qa(y)dy = oo .
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Clearly there exists a constant dx>l such that

..+iΊy\^°Wdy-dχCχ

By using the polar coordinate we infer that e = cmj r~{ΰC~1)dr= oo if and only if

{cί—1)^1, i.e. OL^2.

The conclusion of this no. 12 is:

(42) (EΛ, Qa) € OPB {a ̂  2), (Em, Qa)« OPS (Λ > 2).

13. Since QaBD(Em)aQaB{Em), (36) implies that either dim QaBD(Em) = 0
or 1. Suppose the latter alternative is the case. Let u>0 be the generator of
QaBD{Em). From (37) it follows that

(43) u(x) = c - f G{x,y)Qa{y)u{y)dy,

where c € E\ Let O.(n) = [x e Em \ \ x \ < n] and Gn = GQCn). Since u \ dΩ{n) = cn,
a constant, we also have

u(x) = cn- \ Gn{x,y)Qa{y)u(y)dy.
Ω(w)

By (10), we infer

Aκn> (u) = ί Gn(χ, y)Qa(χ)Qa(y)u(x)u(y)dxdy.
JQ(n)xQ(n)

Since the integrand is nonnegative and converges increasingly to G(x, y)Qa(x)Qa(y) X
u(x)u(y) on EmxEm, the Lebesgue-Fatou theorem yields

(44) DE«(u)=[ G(x,y)Qa(x)Qa{y)u{x)u{y)dxdy.

As in no. 12, infE*u = b > 0. Thus

f G{x,y)Qa(x)Qa{y)dxdy ^ b~2DE.{u) < oo ,
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i. e. Qa satisfies the condition (Do). Conversely if Qa satisfies the condition (Do),
then by Corollary 2. 2, QaBD(Em) is isomorphic to HBD{Em). A fortiori dim
QaBD(Em) = 1.

We have seen that (Em, Qa) z OPBD = 0PD is equivalent to

(45) c = cJ G(x,y)Qa(x)Qa(y)dxdy =

In view of (42) and the relation 0pBc0PI)y we only have to consider the case ct>2.
Clearly there exists a constant d>l such that

d~ιc ^ / = cm [ G(x,y)Qa(x) \y | - α J ^ . y ^ dc,

where y = { M ^ S + δ } . Let cm be as in no. 10. Assume a<m. By (30),

If G(x,y)\y\-*dy)Qa(x)dx = acm[ \x\~<-\ \x\-dx
Em-V \ En I JEm-V

= ac2

m I r~9a+m+1dr.

The condition/ = oo is then equivalent to—2cί+m+l^ — 1, i.e. tffg(
for a<m. Clearly / < oo for ai^m.

The conclusion of this no. 13 is:

(46) (Em, Qa) € OPBD {ct^(m + 2)/2), (Em, Qa) € OP M (α > ( m + 2)/2).

14. Since QaBE{Em)<zQaB{Em), (36) implies that either dim QaBE(Em) = 0
or 1. Suppose that the latter is the case. Let u>0 be the generator of QaBE(Em).
Recall that inf̂ ™w = 6 > 0 (no. 12). Since

E%{u) = DT(u) + f α(*)(f*(*))»

we infer that

f Qa[x)dx ^ b-*E%[u) < oo ,
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i. e. Qa satisfies the condition (Eo). Conversely if Qa satisfies the condition (Eo),
then by Corollary 3.2, QaBE{Em) is isomorphic to HBD{Em). A fortiori dim
QaBE(Em) = 1.

We have seen that (Em, Qa) £ OPBE = OPE is equivalent to

(47) c = [ Qa{x)dx = oo .

Let V= {x\ \x\^kS+h}. Clearly there exists a constant d>l such that

d"ιc < p = I Qa{x)dx < c.
JE*-V

Using cm in no. 10, we deduce

p = I \χ\~*dx = cmf r-a+m-χdr

and therefore p= oo if and only i f — a + m — 1 ^ — 1, i.e. a^m.

The conclusion of this no. 14 is:

(48) (£ m , Qa) € OPBE [a ^ m), (Em, Qa) £ OPE {a>m).

15. From the results obtained in nos. 10-14, we have the following strict
inclusion relations:

(49) OB < ΘPB < QPD = OPBD < OPE = OPBE

where 3l<35 means that SI is a proper subset of 33. It is perhaps more or less
trival to merely establish the strict inclusions in (49) but we are interested in this
paper in giving a unified way for finding counter examples. The strict inclusion
0G<0PB was remarked by Royden [11] for m = 2 . Glasner-Katz-Nakai [ 2 ] remarked
0pB<0PD for m^2 except for ra = 3.

16. We next study the equation

(50) Au(x) = Pa{x)u{x\ Pa(x)^ Ix \ ~°(\ x h o c )

on Em{m^3\ Here Pα(^)^|^r|~β(|^:|->oo) means that there exist positive constants

c>l and p>l such that
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(51) c^\x\-*<Pa{x)^c\x\-*[\x\ ^P).

Thus Pa{x) is "almost rotation free." We are assuming that Pa{x) is of class C1

β (α:)^0 on Em.

THEOREM 4. The following degeneracy relations are valid

(52) (Em, Pa) € OPB - 0& for every a <= ( - oo ,2]

(53) (£m, PΛ} € Opj-tfp* / o r ecβyy Λ€ (2, (m + 2)/2]

(54) (Em, P.) € 0PjE7 - 0Pi? / o r ez er^ Λ ζ ( ( m + 2 )/2, m]

(55) (£ m , Pa) ί OP^ /or ^ ^ry a € (m, oo).

PROOF. Since m ^ 3 , £OT always carries the harmonic Green's function given
by (29). Therefore (Em

9Pa)^Oσ for every aeΈ1.' Observe that there exist some
positive constants c > 1 and p > 1 such that

(56) c-ιQa(x)^Pa(x)^cQa(x)

on A(ρ) = {x£Em\\x\>ρ}. Ίn particular

(57) Pa(x)^cQa(x) ,

everywhere on Em. By Royden's comparison theorem referred to in no. 6,

(58) dim PaB(Em) = dim QaB[Em).

therefore (42) implies (52) and a half of (53), i.e. (Em,Pa)$LθpB for cέ>2.
Hereafter we always assume a>2. Then dim PaB{Em) = dim QaB{Em) =

dim {cQa)B(Em). Let pa and g« be positive generators of PaB{Em) and
(cQa)B(Em) respectively. We set S=Sp<CQa\ Since

(59)

and / G{x,y)Qa{x)dy<oo{or a>2, (Pa, cQa) satisfies (B) and a fortiori S is an isometric
'•JET

isomorphism of PaBiET) onto [cQa)B[Em\ We may assume

qa = spa = pa- f Gc«*(->y)(cQ«(y)-P*(y))pady<Pa.

Observe that qa is rotation free and thus the maximum principle implies infij«<7«>0

(see (40)). Therefore
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(60) inf *-/>« = d > 0.

If a 6 (2, (w + 2)/2], then by (44)

£WA) = / G(x,:y)P.(«)P.(:y)£.(a:)£,

^ ^ 2 J G{x, y)Pa(x)Pa(y)dxdy

If Dg-ip,,) were finite, then (56) would imply that

G(χ,y)Qa{χ)Qly)dxdy < oo .

This contradicts (46). A fortiori (Em,Pa) <= OPD for a € (2>(ra+2)/2]. This establishes
(53).

Let cLG([m+2)/29m]. From(46), (59), and no. 7, it follows that (ETPa) <£ OPD.
Suppose Ej£(p«) < oo. Then the relation

^d* [ Pa(x)dx

and (56) imply I Q«(x)dx<oo, in violation of (48). The relation (54) is thus proved.
•V

Finally if a € [m, oo), then (48), (59), and no. 8 imply the assertion (55). Q. E. D.
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