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Consider a connected C* Riemannian #-manifold R (m=2) and a continuously
differentiable function P (=0 and %0) on R. The space of solutions of d#du=Puxl
or Au= Pu on R will be denoted by P(R). Let Opy be the set of pairs (R, P) such that
the subspace PX(R) of P(R) consisting of functions with a certain property X reduces
to {0}. Here we let X be B which stands for boundedness, D for the finiteness of

the Dirichlet integral Dg(u) = f du/\*du, and E for the finiteness of the energy
R

integral E%L(u) = Dg(u)+ f Pu’x1; we also consider nontrivial combinations of these
R

properties, We denote by O the set of pairs (R, P) such that there exists no
harmonic Green’s function on R.

The purpose of this paper is to show that (E™, P) will be an example for the
strictness of each of the following inclusion relations

(1) Qs COpsC OppC Opg

if P is properly chosen, where E™(m=3) is m-dimensional Euclidean space and
P is a continuously differentiable function on E™(=0, = 0).
More precisely let

(2) Plz)~|z|™*

as|x|—oo, i.e. there exists a constant ¢>1 such that ¢7!|x|*=Px)=c|zx|™* for
large |z|. Then the following is true:

J(Em,P)eOPB_OG if déz;
(Em’P)GOPD—OPB if 2<a§(m+2)/2;

(3)
l(E"‘,P)eOPE—OPD if (m+2)/2<asm.
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UCLA.
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By definition, (E™, P)& O, for every a, and (E™, P)& Op for a>m.

These relations will be proven first for a P(x) which is invariant under every
rotation of E™ with respect to the origin. To settle the general case (2) we will
study the dependence of the linear space structure of PX(R) on P for general
Riemannian manifolds R, where X=B, BD, and BE. This problem also has interest
in its own right.

Comparison theorems

1. Let (g,5) be the metric tensor on R, (g%) = (g,5)~*, and ¢ = det(g,;). We also

denote simply by dx the volume element »/g dz'---dx™ The Laplace-Beltrami
operator is then

1200 (3 O
pe= o %S el ia) 25)

We always assume that the function P in the operator
AP=A-P

is of class C', P=0, and =0 in R, unless otherwise stated. We are interested in
the vector space structure of PX(R) (X=B, BD, BE, D, or E). Observe the

following:

The space PBD(R) (resp. PBE(R)) is dense in PD(R) (resp. PE(R)) with
respect to the topology Ty(resp. vs) given by the simultaneous convergence in
Dg(-)(resp. Ex(+)) and uniform convergence on every compact set in R. In
particul ar

(4) Orp = Opgp (resp. Opg = Orsxr) .

The D-part of this statement is the author’s recent result ([81,[91). The
E-part was obtained by Royden [11](see also Glasner-Katz [1]). In view of these
results we will only study the class PB(R) and its subspaces PBD(R) and PBE(R).

‘We also mention:

Any function in PX(R) is a difference of two nonnegative functions in
PX(R).

2. The Green’s function G¥(x,y) of AF on R is characterized as the smallest
positive function on R such that
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(5) —ALGP(x,y) = &y,

where 8, is the Dirac measure, Since P=0 and=£0, G%(x,y) always exists (cf.e. g.
Sario-Nakai [12; Appendix]). This result was obtained by Myrberg [6], who also
proved that there always exists a strictly positive solution of AZxz=0 on R,

We will call a subregion Q of R regular if the closure @ of Q is compact
and the relative boundary 9Q of  consists of a finite number of disjoint C*
hypersurfaces. The Green’s function G§(x,y) of Af on Q always exists.

Let Q be another C' function on R such that Q=0 and%=0 on R. Consider
the integral operator Tq=T7%%

(6) Top = [ GB(-3)(Q0) — Plo))o(x)dy

Q

for functions @ on Q such that the integral on the right is defined in the sense
of Lebesgue. We also consider Sp = S§%

(7) SQ=IQ_TQ,

where I is the identity. If @ is bounded and continuous on , then it is easy to

see that Top € C(Q) and

(8) (Top)|2Q = 0.

If @ is bounded and locally uniformly Hélder continuous on €, then Top is of
class C? and

(9) ATop =— (Q— Pl + QTop

on Q(cf.e.g. Itd [3 ], Miranda [5]). Therefore by (8) and Green’s formula we
deduce

Do(Top) = — f Top(x) « A, Top(x)dx .

Q

By (9) the Fubini theorem implies that

(10) Do) = < 9>~ | Qa)(Tepla)d

Q
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where

(11) <@ ¥>o°= f Gi(z, 5)(Q(z) — P(z))(Qy) — Py) p(x)¥(y)dzdy .

axQ

3. Let uc PB(Q). By (9), Sou=Siue QB(Q). Since u—Squ=Tou, the
relation (8) and the maximum principle imply

(12) ”Snu“n = |ulla,

where|)||¢ is the supremum norm considered on Q. Let Sy=.S8%, Then SySqu < PB(Q).
Since #—SuSqu € PB(Q) and u—SoSqu = T5u+T§ Squ, the relation (8) implies
that #—SgSqu =0 on Q. Therefore

(13) S§70S§% = I8, Sgo S8 = I
We have thus proved that

So=SE¢ is an isometric isomorphism from the class PB(Q) onto the class

QB(Q).

4. For regular regions QCR, the classes PBD(Q) and PBE(Q) are always
identical. Observe that

(Da(SZu)) 2 < (Dq(2))V2 + (<w, >E0)V2,

(14)
(Dalw))/* = (Dq(S3%))"* + (<u, u>g?)"*

for every u € PB(Q). By Green’s formula we also deduce

EY(SEu) + E§(Tu) = Ex(u) + f (Q(z) — P(2))(ulz))dz

(15)
Ef(u) + E5(TEu) = E§(S5) + f ) (S5%u(x))*dzx

where Ef(u) = Dq(u)+ f P(x)(u(x))*dx. From (14) it follows that
Q

Sa= S is an isometric (with respect to | -|o) isomorphism from the class
PBD(Q) = PBE(Q) onto the class QBD(Q) = QBE(Q).

5. We proceed to the comparison of PX(R) and QX(R) for X = B, BD, and
BE. Consider the integral operator T'=T"%
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(16) To=[ G%z3)(Q) - P)ply)dy

for functions @ on R such that the integral on the right is defined in the sense
of Lebesgue. We will say that the ordered pair (P,Q) satisfies the condition

(B) if

(B) [ 625100 - Pty)ldy < oo

R

By the Harnack inequality (B) is satisfied for every x€ R if and only if (B) is
valid for some € R. In this no. 5 we assume that (P, Q) and (Q, P) satsfy (B).
If @ is bounded and continuous on R, then T¢ is defined and continuous on R. If
moreover @ is locally uniformly Holder continuous, then T'@ is of class C? and

(17) ATp =—(Q—P)p
on R (cf.(9)). We also consider S = S™:
(18) S=I-T,
where I is the identity operator.

Let {Q} be a directed set of regular regions Q such that the union of {Q} is
R. For a continuous function @, on ) we use the same notation @, for the function
which is @ on Q and 0 on R—Q. Assume that

l@all = supg|@a| <& < oo

for every Q. Moreover suppose there exists a bounded continuous function ¢ on R
such that limg.z@e=¢ uniformly on each compact set in R. Then

(19) S¢ = limq..RSn¢n
uniformly on each compact set in R, In fact,
| Sp(x) — Sa@a(x) | = |Sp(x) —Sep(x) | + | Sap(x) — Sa@a(x) |

= (IT1=1Tul)l2l(x) + | plx) —Palx) | + | Tl p—pal (x) .

Here|T |@ = f G(.,5)|0(y)— Py) | @(3)dy and |Ta| is similarly defined. Since
G3(x, y)éG‘?(xI,e ) and limg.zG8(z,y) = G¥x,y) on R, we infer that
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|Sp(x) —Sapalz)| = (1T = | Tal) |2l () + | p(x) = Palz) | + | T llp—al (z)

and by the Lebesgue convergence theorem the right-hand side of the above inequality
converges to 0 on R. By the Harnack inequality applied to G?—G§ and G° we
conclude that the convergence is uniform on each compact set in R. Therefore
(19) is established.

6. We will first prove a comparison theorem for PB(R) and QB(R). This result
is already suggested in the author’s earlier paper [ 7] (see also[ 9] and Maeda [ 4]):

THEOREM 1. If (P, Q) and (Q, P) satisfy the condition (B), then S™ is an
isometric isomorphism of PB(R) onto QB(R).

PROOF. Let < PB(R). From (17) it follows that Su< Q(R). By the identity
(12) we deduce |Sazello = |lello = ||l#|| and a fortiori

(20) [Sul < lul
i.e. Sue QB(R). Suppose Su=0. By (13) and (19), S¥*Su=u and a fortiari #=0.
Thus S is an isomorphism of PB(R) into QB(R).

To prove that S is surjective let ve QB(R) and ug= S§v. Observe that

ug € PB(Q), lmalla=|lv|, and by (13), v = Saua. Let {Q} be a directed set of
regular subregions Q such that

u = limg_.zuq € PB(R)
uniformly on each compact set in R. By (19) we infer that
Su = limn..RSan =D,

i.e. S is surjective. Since ||Su|=|vlla= [Sattal| = ||ztall, we deduce |Su| = |«|. This
with (20) implies that™S is isometric. Q.E.D.

COROLLARY 1.1. Since P satisfies

(21) [ 67w nP)ay < oo

(¢f.[4]1), PB(R) and (cP)B(R) are isomorphic for ¢>0.

PROOF. The condition (21) implies that (cP, P) and (P,cP) satisfy the
condition (B). Therefore S“F is an isometric isomorphism of (cP)B(R) onto
PB(R). QE.D.
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Royden [11] proved the following comparison theorem entirely different in
nature from ours:

If there exists a finite constant ¢>1 such that ¢ 'Q=P=cQ outside a
compact set in R, then there exists an isometric isomorphism of PB(R) onto QB(R).

7. We turn to a comparison theorem for PBD(R) and QBD(R). We will say
that the ordered pair (P, Q) satisfies the condition (D) if

O [ GUw)IQ@) ~ P)I1Q() ~ Ply)ldady < oo

It is clear that (E) implies (B). In this no, 7 we always assume that (P, Q) and
(Q, P) satisfy (D). In accordance with (11) we set

(22) <@ ¥y>T = f G¥zy)(Q(z) — Px))(Q(y) — Py))p(x)¥(y)dzdy .

This is well defined for bounded continuous functions @ and ¥ on R. By the
Lebesgue convergence theorem we deduce

(23) <¢’ \P>PQ = 1imb—>li’<¢’ 1P>€Q.

THEOREM 2. If(P,Q) and (Q, P) satisfy the conidtion (D), then S™ is an
isometric isomorphism of PBD(R) onto QBD(R).

PROOF. Since (D) implies (B), Theorem 1 implies that S=.S™ is an isometric
isomorphism of PB(R) onto QB(R). Let < PBD(R). By (14) we have

(24) (D(aSaw))'? = (Da(e))"* + (<w, u>a)'/* .

From (19) for @ = u < PB(R) it follows that

(25) limg,zdSou \ #dSqu = dSu \ *dSu

on R. By (23) and the Fatou lemma, we deduce from (24)
(Dr(Su))"? = (Dg(w))V* + (<ot, u>)1? < 00,

Therefore S(PBD(R))c QBD(R). To obtain the reversed inclusion let #< PB(R)
and Su < QBD(R). Since = Su+Tu on R,
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(26) (De(w))'* = (Da(Su))* + (Da(T'w))"*.

By (25), |grad Tou|® converges to |grad Tu|? on R, By the Fatou lemma and
the relations (10) and (23), we infer that

Dy(Tw) = lim infg_zDo(Tqu)
Slimgp<w,u>g = <u,u> < o,
From (26) it follows that Dg(u) < oo, i.e. S(PBD(R)) = QBD(R). QE.D.

COROLLARY 2.1, If P satisfies
(27) [ )Pl Pl)dzdy < oo
R

then PBD(R) and (cP)BD(R) are isomorphic for ¢ > 0.

PROOF. The condition (27) implies that (cP, P) and (P, cP) satisfy the condition
(D). Therefore S“# is an isometric isomorphism of (¢P)BD(R) onto PBD(R).
QED.

8. We turn to a comparison theorem for PBE(R) and QBE(R). We will say
that the ordered pair (P, Q) satisfies the condition (E) if

(E) [ 10) - Pajldz < .

It is clear that (E) implies (B). The following comparison theorem was obtained
by [11] (see also Glasner-Katz [1]):

THEOREM 3. If (P, Q) satisfies the condition (E), then ST is an isometric
isomorphism of PBE(R) onto QBE(R).

PROOF. Since (E) implies (B), Theorem 1 entails that .S = S™ is an isometric
isomorphism of PB(R) onto QB(R). Let we PBE(R). From (15) it follows that

Ei(Swe) = Efle) + el [ 1Q(z) — Pla)|dz.

By (25) and the Fatou lemma, we obtain
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E3(S) = E5(e) + [ 10(2) - Pla)|dz < oo,

i.e. S(PBE(R))Cc QBE(R). Conversely let < PB(R) and Su< QBE(R). By (15)
and ||Squ)=Jul|, we have

Ef(u) = BY(Sa) + Jul* | |Q(2) ~ Pla) .

On setting Sgu =2 on R—Q we infer by Green’s formula that
E}(Squ — Sou) = E§(Seu) — E3.(Saue)

for Q' D>Q. Therefore Ef(Squ)—E%(Su) as Q—R, and a fortiori

Ef) = E3(Su) + lu)* [ 1Q(2) — Pla)|dz < o .

We have shown that S(PBE(R)) = QBE(R). Q.ED.

COROLLARY 3.1. If P satisfies

(28) f Plzx)dx < o,

then PBE(R) and (cP)BE(R) are isomorphic for ¢ > 0.

PROOF. The condition (28) implies that (cP, P) and (P,cP) satisfy the
condition (E). Therefore S®F is an isometric isomorphism of (¢P)BE(R) onto
PBE(R). QED.

9. As usual we denote by H(R) the space of harmonic functions # on R, i.e.
Au=0, Comparison theorems between PX(R) and HX(R) for X =B, BD, and
BE can be obtained on replacing Q by O in nos. 1—8. We will denote by
G(x, ¥)=Gg(x,y) the harmonic Green’s function on R. If R e Oy, then PB(R)= {0}
(Ozawa [10], Royden [11]). Therefore excluding trivial cases, we assume in this
no, 9 that R& O, We will say that P satisfies the condition (B,), (D,), or (E,) if
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G(z, y)P(y)dy < oo,

5]
m\h

G(z, y)Plx) P(y)dxdy < o

XR

Px)dx < oo,

o
e

Since G?(z, y)<G(x,y), the conditions (B,), (D,), and (E,) imply(21), (27), and (28),
respectively.
Dicussions in no. 6 are valid if Q is replaced by O :

COROLLARY 1.2. If P satisfies the condition (B,), then S*°is an isometric
isomorphism of PB(R) onto HB(R).

The replacement of Q by O does not affect the validity of the reasoning in
nos, 7 and 8, With this in view we maintain :

COROLLARY 2.2. If P satisfies the condition (D,), then ST° is an isometric
isomorphism of PBD(R) onto HBD(R).

COROLLARY 3.2. If P satisfies the condition (E,), then ST° is an isometric
isomorphism of PBE(R) onto HBD(R).

Equations on Euclidean spaces.

10. Hereafter we take the Euclidean space E™(m =3) as the base Riemannian
manifold for the equation Az = Pu. We fix an orthogonal coordinate so that the
metric tensor is (3;;). For a point xe E™, its coordinate will be denoted by
(z!,+++,z2™). The volume element is thus dxr=dx'---dz™. We also write

m 1/2
lz| = (Z (x’)2> .
i=1

The harmonic Green’s function G(z,y) on E™ is given by
(29) enGlx y) = lz—y[*™,

where ¢, = (m—2)w,, with ,, the surface area 2z™/%/I'(m/2) of the unit ball in
E™ We first observe the following elementary identity (a special case of the Riesz
composition theorem):
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(30) f‘G(x,y) ly|=dy = alz|~“?(m >a>2),

where a = a(m, a) is a finite strictly positive constant depending on m and a but
not on x #0.
In fact let 2= A(y) be an affine transformation of E™ given by

1) 2= M) = a2l 2 puls? = )i = 1w+ sm)

where (p;;) is an orthonormal matrix such that

(32) B = — Ypylal i = 1,---,m).
From (31) and (32) it follows that

(33) ly—z|=lz|l2], ly|=|z| |z —e]
with e = (1,0, +++,0). The Jacobian of A is

a i
J = det (5&27) = det (|z|"'py) = |z|™™

and therefore dz = |z | ™dy. Hence
f Gz y) |yl dy = c;‘f |z —y* ™|yl *dy
E™ Em
=it [ Nl lzl el e — | |z dz
E™
= a|x|~“?,

where

a= c;,lf [z|* ™|z —e| *dz << oo
o

if a>2,
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11. Let A(z) be a real-valued C? function on [0, o) such thatg?)\,(t)

2
=02\ =0 At) = 1, and

Me)=¢€ (t<[0,€/2]),
(34)

AMt)=¢t (te,[E+9, ),
where & and & are arbitrarily fixed positive number, Consider the equation
(35) Au(z) = Qu(x)u(x), Qalz) = M(lz])™"

m 2
where € (— o0, 0) and A- = Z%—; We maintain:
i=1

(36) dim Q.B(E™) =1
for every ac (— o0, o).
For the proof let dim Q.B(E™) > 0. Take two positive functions #; in

Q.BE"(i=1,2). Let Q)= (xecE"||z|<n}(n=1,2---) and S, =S, S
= S%°. Then

Sutda) = ula) + [ Gawl 9)Quoe(3)dy .

a(n)

Observe that S,u, € HB(Q(%)) and |S,%;]lecns = |l llacns = ll2l|.  Since #,>0, we
obtain by the Lebesgue-Fatou convergence theorem that

) Sula) = ula) + | Glo Qs

and Su, ¢ HB(E™). Since
(38) HB(E™) = E*,

Su;=c;>0. Set w=c,u,—cu, < Q.B(E™). Then by (37)

wie) == [ Glo3)Qokel)dy = ~(Tw)ia
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and consequently |w|=T|w|on E™ Since |w]| is subharmonic and T |w]| is a
potential, we obtain |w|=0. Thus %, and u, are linearly dependent. The space
Q.B(E™) is generated by positive functions in Q.,B(E™). We conclude that
dim Q.B(E™) = 1.

12, We have seen that either dim Q.B(E™)=0 or 1. We next study for what
a the first or the second alternative occurs. Let o= (®,;) be an orthonormal matrix
and f, be the function defined by f,(x) =f(xw) for a given function f on E™ Here
z is viewed as the matrix of type (1,7). Since (Q.). = Q. rotation free, we
conclude that u, € Q.B(E™) for u < Q.B(E™). Because of (36), we must have u=u,
for every . Therefore :

Exvery function u< Q.B(E™) is rotation free.

A fortiori there exists a C? function @,(¢) on [0, oo] such that

(39) u(z) = pu(lxl).

Suppose dim Q.B(E™)=1. Then for « < Q.B(E™) such that #>>0 we maintain:
(40) lim inf},..z(x) >0.
If this were not the case, there would exist an increasing divergent sequence
{ro} CE™ such that @,(r,)—0 as n—oco, Let Q(r,)= {xc E™||x|<r,}. The

maximum principle implies that |«lqc,, =®.(r,) and a fortiori «=0, a contradiction.
By (37)

Sulz) = ulz) + [ Glen)Quy)ulx)dy .

Em

Since (40) and the maximum principle imply that inf=u =5 >0,
| Gla )01y = 71 (Sulz) ~ ula)) < oo,
E=

i.e. Q. satisfies the condition (B,). Conversely if Q. satisfies the condition
(B,), then by Corollary 1.2, Q.B(E™) is isomorphic to HB(E™) and therefore
dim Q.B(E™)=1.

We have shown that (E™, Q.) € Opp is equivalent to

(1) co=c | Glay)Q)dy = oo,
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Clearly there exists a constant d,>1 such that

di’%c, < e =f —-I—-ﬁdyédxcz.

- ly|>e+8 |ylm—2

By using the polar coordinate we infer that e =c,, f r~@Ddr = co if and only if

(@—1)=1, i.e a=2.
The conclusion of this no, 12 is:
(42) (En»Qx)€Orp (@=2), (E™Q.)&0Ors (@>2).
13. Since Q.BD(E™)c Q.B(E™), (36) implies that either dim Q.BD(E™) =0

or 1. Suppose the latter alternative is the case. Let %#>0 be the generator of
Q.BD(E™). From (37) it follows that

(43) ulz) = = [ Glay)Quulxdy,

where ce E', Let Q(n) = {x € E™||x|<n} and G, = Gacny. Since u|2Q(n) = c,,
a constant, we also have

ue) = o= [ GolzdQuiphulr)dy.

Q(n)

By (10), we infer
Docnlt) = | Gule QUIQAsulaluls)ddy
Q(n)xQ(n)

Since the integrand is nonnegative and converges increasingly to G(x, ¥)Qa(x)Q.(y) X
u(x)u(y) on E™x E™, the Lebesgue-Fatou theorem yields

(44) Dinlt) = | Gl 51Qua)Quo)ulz)uls)dzdsy.
As in no, 12, infgsz =5>0. Thus

fE _Glan ) Qu)Qul3)ddy = b Dpnl) < o0
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i.e. Q. satisfies the condition (D,). Conversely if Q. satisfies the condition (D),
then by Corollary 2,2, Q.BD(E™) is isomorphic to HBD(E™). A fortiori dim
Q.BD(E™) =1,

We have seen that (E™, Q.) € Opsp = Opp is equivalent to

(45) ¢ = cof Gloy)QUeIQUo)zdy = oo,

E™

In view of (42) and the relation OpzC Opp, we only have to consider the case a > 2.
Clearly there exists a constant d >1 such that

diesi=c.[  Glzy)Qla)ly| *dady = de,

(Bmx— V)XBE™y

where V = {|x|=&+38}. Let ¢, be as in no. 10. Assume a<<m. By (30),

l= c’"./.,._ (f G(x,y)lyl'“dy)Qa(x)dx = acmf |x|~“?, |x|dx

En Em—y

o
= ac;",,f Ry

s+3

The condition [ = oo is then equivalent to—2a+m+1=-—1, ie a=(m+2)/2
for a<m, Clearly [ < oo for a=m,

The conclusion of this no. 13 is:
(46) (E™ Q.) € Opsp (@ = (m+2)/2), (E™ Qu)& Opsp (@ > (m+2)/2).
14. Since Q.BE(E™)c Q.B(E™), (36) implies that either dim Q.BE(E™) =0
).

or 1. Suppose that the latter is the case. Let #>>0 be the generator of Q.BE(E™
Recall that infg=tx = 6>0 (no. 12). Since

Bt = D7) + | Quallula))de

we infer that

| Qualdz = bEp) < o,

E
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i.e. Q. satisfies the condition (E,). Conversely if Q. satisfies the condition (E,),
then by Corollary 3.2, Q.BE(E™) is isomorphic to HBD(E™). A f{fortiori dim
Q.BE(E™) =1.

We have seen that (E™, Q.) € Opss = Opr is equivalent to
(47) c =f Qu(x)dx = oo,
E.
Let V= {z||x|=6&+8]}. Clearly there exists a constant d >1 such that
dlc<p =f Qu(x)dxr < c.
-y
Using ¢,, in no. 10, we deduce

P =f |z|*dx = cmf roetmidr
Em-y

s+35

and therefore p= oo if and only if—a+m—1=-1, i.e. a=m.
The conclusion of this no, 14 is:

(48) (E™, Qu) € Oppe (@ = m), (E™, Qo) Opx (@ > m).

15. From the results obtained in nos, 10-14, we have the following strict
inclusion relations:

(49) Os < Ops < Opp = Oppp < Opr = Oprsr

where A <B means that A is a proper subset of B. It is perhaps more or less
trival to merely establish the strict inclusions in (49) but we are interested in this
paper in giving a unified way for finding counter examples. The strict inclusion
Os<Opp was remarked by Royden [11] for m =2, Glasner-Katz-Nakai [ 2] remarked
Ors < Opp for m=2 except for m = 3.

16. We next study the equation
(50) Aulx) = Polxldx), Poz)~|x| (|2|—>00)

on E™m =3). Here P x)~|x| %|x]|—oc) means that there exist positive constants
¢>1 and p>1 such that
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(51) ¢z = Pua) < c|x| |z = p).

Thus P.x) is “almost rotation free,” We are assuming that PJx) is of class C!
and Pfx)=0 on E™.

THEOREM 4. The following degeneracy relations are valid

(52) (E™, P.) € Opg — Og for every ade(— o ,2];
(53) (E™; Pa} € Opg—COpp for every ac<(2,(m+2)/2];
(54) (E™, P.) € Opg— Opp for every ac(m+2)/2,m];
(55) (E™, P.)& Opg for every a.c(m, o),

PROOF. Since m=3, E™ always carries the harmonic Green’s function given
by (29). Therefore (E™, P.)& O, for every a< E'. Observe that there exist some
positive constants ¢ >1 and p>1 such that
(56) 7' Qux) = Pofx) = cQudx)
on Alp)= {x € E™||x| >p}. In particular
(57) Px) = cQ.(x)
everywhere on E™, By Royden’s comparison theorem referred to in no, 6,

(58) dim P.B(E™) = dim Q.B(E™).
Therefore (42) implies (52) and a half of (53), i.e. (E™, P.)& Ops for a>2.

Hereafter we always assume a>2. Then dim P.B(E™)=dim Q.B(E™)=
dim (cQ.)B(E™). Let p. and gq. be positive generators of FP.B(E™) and
(cQ.)B(E™) respectively. We set S=.S7_ Since
(59) | Po() — cQulx)| = (c — 1)Qu{x)
and f Glz,y)Qdx)dy< oofor a>2,(P., cQ,) satisfies (B) and a fortiori S is an isometric

E™
isomorphism of P.B(E™) onto (cQ.)B(E™). We may assume

7. = Sp. = b= [ G¥)eQus) - PNpdy<p.

Observe that g, is rotation free and thus the maximum principle implies infgg.>0
(see (40)). Therefore '
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(60) infempe =d >0,

If ae (2, (m+ 2)/2], then by (44)

Drip) = [ Glay)Px)Py)pdipds) dady

E™x E™

> g8 f Glz, ) Pu(x) Pu(y)dady .

E™xE™

If Dgn(p.) were finite, then (56) would imply that

| Gle)0un0u)dndy < oo

E™xXE™

This contradicts (46). A fortiori (E™,P.) € Opp for a€(2,(m+2)/2]. This establishes
(53).

Let a<((m+2)/2,m]. From(46),(59), and no, 7, it follows that(E™P.)¢& Opp.
Suppose EZa(p.) < 0. Then the relation

#(0) > | Plolpiadzz [ Pla)dz

E™

and (56) imply f Q.(x)dx<< oo, in violation of (48). The relation (54) is thus proved.
E™

Finally if a € (m, o), then (48), (59), and no. 8 imply the assertion (55). Q. E. D.
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