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1. Introduction.

1.1. In a preceding paper [2] the author has started the study of
approximation of functions by processes, which are generated by the use
of summability methods for the expansion of the functions in terms of
Jacobi polynomials. The summability methods can be interpreted as
convolution operators, if the convolution structure for Jacobi series,
defined by Askey and Wainger [1], is used. By means of some general
theorems on approximation processes on Banach spaces, (Berens [3]), it is
possible to characterize the saturation class and the classes of non-optimal
approximation of a number of classical summability methods for the sum-
mation of the Fourier-Jacobi series. This paper deals with saturation of
positive convolution operators and the main part is a theorem of the
Tureckii [10] —DeVore [4] type, which determines the saturation order
and the saturation class of a sequence of positive convolution operators,
satisfying a special condition on the Fourier-Jacobi coefficients of the
kernel. The proof is a straight-forward generalization of DeVore's proof
in the case of Fourier series. As applications, the saturation class of the
higher order Jackson kernel and some other positive kernels are charac-
terized.

1.2. We introduce some Banach spaces of complex valued functions
on the interval [ — 1,1]. We write C for the space of continuous func-
tions, L°° denotes the space of essentially bounded functions and we define
the Lp spaces with respect to the weight function (x •= cos θ)

(1.1) pW(θ) = (sin|-)2 α + 1(cos|-)2 / 3 + 1

We call M the space of all regular finite Borel measures on [ — 1,1].
The spaces C, Lp(l < p < °o) and M are Banach spaces if endowed with
the following norms
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| |/ | |c = sup I /(cos θ) I,

II / II, = [\Ί /(cos θ) I' ̂ ( f y w ] 1 ' ' (1 < p < oo) ,

11/ |U= ess sup |/(cos 0) | ,

Hi" 11* = \π\dμ(cosθ)\ .
Jo

With elements of these Banach spaces we can associate an expansion in
terms of Jacobi polynomials. If P^atβ)(x) is written for the Jacobi poly-
nomial of degree n and order {a, β) (see Szegδ [9]), the functions

satisfy

(1.2)

Here,

(1.3) ωi«» = (2^+α + ̂ + l ) Γ(n+a + β+1) Γ(n+a + l) =

With / belonging to one of the spaces C or Lp(l < p < oo) we associate
the Fourier-Jacobi expansion

(1.4) /(cos β) - Σ / Λ W ωi' VRWicoa θ) ,
?t=0

where

(1.5) fA(n) = Γ/(cos βjβ^ ^ίcos θ)p^β)(θ)dθ (n = 0,1,
Jo

With a measure μeM we associate the Jacobi-Stieltjes expansion

(1.6) dμ(cos θ) - Σ ^ ( n J ω ^ ^Λ^ ^ίcos ff) ,
w=0

where

(1.7) ^ v(^) = [πR^(cos θ)dμ(cos θ) (n = 0,1,
J

Askey and Wainger [1] have introduced a generalized translation operator
TΦ, which maps a function / with (1.4) into

(1.8) ΪVXcos 0) ~ Σ f^rήω^R^icos θ)R^(cos φ) ,
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and Gasper [5] has shown the positivity of this operator. This implies
that Tφ has an operator norm 1. If flyf2eL\ then the convolution / L */ 2

is defined by

(1.9) (Λ */2) (cos θ) = [ 2VΛ(cos 0)/2(cos Φ)ρ{a^(Φ)dφ .
Jo

This convolution has the usual properties (see Gasper [5]). If feLp

(1 < p < oo) and μe M we can define the convolution f*dμ by

(1.10) (/ * dμ) (cos θ) = Γ Tφf (cos θ)dμ(cos φ) .
Jo

Moreover, f * dμeLp and the following inequality holds

(1.11) \\f*dμ\\,<z\\f\\,\\μ\\M.

1.3. In the rest of this paper X is written for one of the spaces C
or Lp (1 < p< oo). Assume that we are given a sequence {Ln} of positive
convolution operators, that is, Ln has the form

(1.12) LΛ(f; cos θ) = (f * <Z/O (cos 0) = Γ Γ,/(cos θ)dμn(cos φ) (f e X) ,
Jo

where μΛ (w = 1, 2, •••) are non-negative elements of M with

1 dμn(cos φ) = 1 .
Jo

We say that the sequence {Ln} is saturated if there exists a non-
increasing sequence of positive numbers {φ(n)} with \imn^ooφ(n) = 0, such
that

i) \\f-Ln(f)\\x =
if and only if / belongs to some "trivial" subspace of X

and

ii) there is a "non-trivial" element foe X satisfying

The sequence {Φ(n)} is then called the saturation order and the set F(X,
Ln), which consists of all the elements of X which satisfy ii), is called
the saturation class or Favard class of Ln.

In this paper we shall prove a theorem, in which the behavior of the
second trigonometric moment

(1.13) T(μn; 2) =
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determines the saturation of {Ln}. In section 2 we give some inequalities
for Jacobi polynomials and we investigate the relationship between Jacobi
coefficients and trigonometric moments. Then, following DeVore [4], we
introduce the following conditions:

A. There exists a constant CA > 0 such that for each integer k there
is an N(k) for which

for n > N(k) .

B. There exists a constant CB > 0 such that for each ε > 0 there is
an N(ε) such that

^ CB fYsin— Xdμn(cosθ) for n> N(e) .
Jo \ 2 /

n
2

In section 3 we shall prove

1.4. LEMMA. The conditions A and B are equivalent.

We define the Lipschitz classes with respect to the generalized trans-
lation operator by

(1.14) Lip(τ, X) - { / e l : 3 c > 0, sup || T+f-f \\z ^ cφ?} , (0 < Ύ < 2).

We now state the following theorem that will be proved in section 4.

1.5. THEOREM. // {Ln} is a sequence of operators of the form (1.12)
and if either condition A or condition B is satisfied, then {Ln} is saturated
with order (1 —μ^(l)) and the saturation class F(X, Ln) is Lip(2, X).

The Jacobi polynomials Ria'β)(cosθ) satisfy the following differential
equation:

( l β 5 ) ~

If for fe X with the expansion (1.4) there exists an element Afe X such
that

(1.16) Af~jt n(n + a + β + l)fA(n)ω^'β)R^β)(cos θ) ,
71 = 0

then we say that feD(A) and we call A the operator which maps D(A)
into X by /—• Af. The operator is the realization in X of the differential
operator

p ( θ )
dθv dθ
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with boundary conditions djdθ = 0 at θ = 0 and π, as follows from (1.15).
Lofstrom and Peetre [7] have shown the close connection between the
generalized translation operator Tφ and the operator A. In fact, for
feD(A) the following relations hold:

(1.17) \\TJ-f\\x<M

(1.18) lim\\f - T?f - Af I = 0 ,
ΦO+\\ C{φ) Ik

where

(see Bavinck [2], section 4). Moreover,

(1.20)
s i n 2 | a + 1

and, since for 0 < φ < π/2, VΎ/2 < cos φ/2 < 1 we have

S φ -| / Γθ / r \2α + l r \

±—( (sin—) cos— dτ)dθ
o pWίθ) VJo V 2/ 2 /

sin

( Θ

\ C 0 S 2

θ

2
y/j+i

7

dθ

~ α + 1 2

Notation: We will use the notation an w bn(n—> oo) if there are positive
numbers cx and c2 such that ^α* < 6% < c2απ.

2. Some relations for Jacobi polynomials.

2.1. Inequalities. We shall first prove the following inequalities for
Jacobi polynomials Ri"tβ)(x). Let k be a natural number. Then

(2.1) 1 - ^ '^(cos θ) < fc(fc + α + / 3 + 1 ) sin2 — (0 < θ < π) .
a + 1 2

There exists a constant ca > 0, such that for 0 < ε < 4/(2fc + a + β + 2)

(2.2) k(k+a+β+l) g i n 2 A < i _ ^'^(cosθ) (0<θ<e) .
a + 1 2

By the differentiation formula
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R£(x)
dx 2(a + 1)

we obtain from the mean-value theorem

(2.3) 1 - Ri*'0(coaθ) = W+a + β+1). g i n 2 £ # £ + I . J + i > ( c o s $ ) , 0<θ<θ.
ipc + 1) 2

Since | Λ£ί ι '+1)(cos 5) | ^ 1, 0 < 0 < π, formula (2.1) follows.
For the proof of (2.2) we use Hub's formula (Szego [9], (8, 21.12)) for

large n

(sin—)"(cos—yR {

n

a

|6'1/Ό(»-3/2-α), if en-1 < θ < π - ε ,
+ \θa+20(l) , if ϋ<θ<errι,

where N= n + (α + /S+l)/2.
The power series expansion of (z/2)~"Ja(z) has terms with alternating

sign, and monotonίcally decreasing for real z, 0 < z < 2. Hence we have

(2.4) Λif.r '+"(cos (9) ^ Π α + 2)(-ξ-)"+lJa+1(NΘ) + ^2O(1) 0 < θ < 2N'1

> 1 - ^ — +
α: + 2

>

α + 2
The inequality (2.2) follows from (2.3) and (2.4) for k > k0. On the other
hand, the constant ca can be chosen in such a way, that (2.2) remains
valid for k < kQ.

2.2. Relations between trigonometric moments and Jacobi coefficients.
The following expansion is a simple consequence of Rodrigues' formula
(see also Szego [9], formula (9.3.11)).

(2.5)

= Γ(σ + l)Γ(σ+a + l) f , _ 1 ) n (2n+a + β+l)Γ{n+a+β+1)
Γ(a+1) ^o } Γ(σ-n + ΐ)Γ(n+a+β+σ+2)Γ(n+l)

x RWicosθ) (σ = 1, 2, . . .) .

From the expression of the Jacobi polynomials in terms of hypergeometric

functions
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= 2Fl-n, n + a+β + 1; α + 1; sin2—)

we easily derive

(2.6) 1-R? '>(coaθ)

= y ( i)>+i Γ(n+α + β+k+l)Γ(n
2 '

If the trigonometric moment of order 2σ(σ = 1, 2, •••) is defined by

T(μ»; 2σ) =

we obtain by (2.5), noticing the value of (2.5) at θ = 0,

(2.7) T{μn; 2σ)

= Γ(σ + ΐ)Γ{σ+α+l) Λ ( 1 ) t + 1 (2fc+o:+/3 + ΐ)Γ(k+α+β+l)
Γ(α+ΐ) Πi Γ(σ-A;+l)Γ(/c+α+/3+σ + 2)Γ(λ;+l)

On the other hand (2.6) leads to

(2.8) 1 - μϊ(k)

= Γ(k+ΐ)Γ(α+ΐ) * /_ l v + ι r(fc+q+ff+g + l) „. . 2 ,
Γ(fc+α+8+l) ί=Ί Γ(fcσ + l)Γ(σ+α + l)Γ(σ + l) V^"' ; '

Hence, we easily derive from (2.7)

(2.9) T{μn; 2) = " + * (1 - μϊ(ΐ))
& ~\~ β ~\~ £

and

(2 10) T{μ«' 4 ) = (« + 2)(«+^ + 2) Γ2(«+/9 + 3) _ 1 - ^

From (2.8) and (2.9)-we conclude

(2 llϊ 1 ~ &{k)
( 2 n ) T ^ T T O

Γ(k + ΐ)Γ(α+2)α + β + 2 (α + β + 2)Γ(k+α

y. T ( 1Y Γ(k+α+β+σ + ΐ) T(μn; 2σ)
£i Γ(k-σ + ΐ)Γ(σ+α+l)Γ(σ + ΐ) T(μn; 2) '

Similar relations between trigonometric moments and Fourier coefficients
have been established by Stark [8]. We also have the following theorem,
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which generalizes a result of Gorlich and Stark [6] (see also Stark [8]).

2.3. THEOREM. For a sequence {Ln} of positive convolution operators
of the form (1.12) the following assertions are equivalent:

(a) lim
1 - fZQ.) a+β+2

PROOF. Relation (b) is a trivial consequence of (a). Relation (c) fol-
lows from (b) by (2.10). Since O<s in 2 0/2<1 and the measures μn are
positive it is obvious that

T(μn; 2σ) ^ T(μn; 4) for σ > 2 .

Therefore relation (c) implies that l i m ^ T(μn; 2σ)/T(μn; 2) = 0, σ > 2.
Thus, by formula (2.11) relation (a) follows.

3. Proof of lemma 1.4. We first show that B implies A. If we
take ε<4/(2fc+α + /3+2) and N(ε) as given in B, we have, using (2.2)
and (2.9), for n>N(ε)

Γ (1 - j β ^ ί c o s θ))dμn(cos θ)
Jo

a + 1 Jo 22

a

Therefore, A holds with N(k) = N(e) and CA = (caCB)/(a + β + 2).
We will now show that A implies B with CB = C^(α + /9 + 2)/2. We

choose ε = ε0 and we consider the measures

θ) =

0 ,

T{μn; 2)
θ < π

Then
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dv.(coa θ) < — - — 1 Γsin2— dμn(cos θ) = — - — .
sitfii T(μn; 2) Jo 2 μ Λ ±sitfi 2)

2

Thus, we have for each k (k = 1, 2, •)

ivn(cos Θ) <

Choose fc0 so large that

(α+£+2)

Then,

n(COS0)Γ
1 (μn; Δ) Jo

θ)} d μ Λ c o s θ)

CAko{ko+α+β+l) (α + β+2)
2(α + 1)

By virtue of condition A we have for n ;> N(k0)

Γ s i n 4( ) Jo 2

Finally, by (2.1) we have

which proves lemma 1.4.
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4. Proof of theorem 1.5. Let {Ln} be a sequence of positive linear
operators of the form (1.12) which satisfy either condition A or B. On
account of lemma 1.4 both conditions A and B are satisfied and we will
interchange them appropriately.

We first show that {Ln} is saturated with order (l-jetf(l)). If feX
and

\\Ln{f)-f\\x = o(l-

then

fA(k) - fA(k)μvn(k) = o(l

In view of condition A this implies fA(k) = 0, fc = 1, 2, •••, and

therefore / is a constant. The function /0(cos θ) = (sin θ/2)2 is an example

of a non-constant function which satisfies

Hence {Ln} is saturated with order (l — μX(ΐ)). The "trivial" subspace
used in section 1.3 is here the space of constant functions.

We now wish to characterize the saturation class F(X, Ln). An ele-
ment feX belongs to F(X, Ln) if and only if

II ί * II

or equivalently

^ ^ ( ^ _ _ oo) ?

where

(a+β+2) sin2-|- dμn(cos φ)

S 7Γ

dψn(Φ) = 1, w = 1, 2, and consequently it is clear that

/ e F(X, i j), if / e Lip(2, X) (see (1.14)).
We still have to prove that feF(X, Ln) implies fe Lip(2, X). If we

denote by A the operator defined by (1.14), then we will first show that
for fe D(A) satisfying

(4.1) || f~Ln(f) |L

the following inequality is valid:
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(4.2) \\Af\\x<C(M+\\f\\x).

Here C is a constant independent of /.
Since the measures ψn all have norm 1, there exists a subsequence

{%} and a measure ψ such that {ψv,.} converges weakly* to ψ. By condi-
tion B and the weak* convergence it follows that for each ε > 0

(4.3) Γ dψ = lim [' dψnj > CB .
Jo j - . ~ Jo '

We choose e0 so small that ε0 < τr/2 and

(4.4) ( dψ<-^. With
J (O.£O> O

For fe D(A) satisfying (4.1) we have, putting M' = (a + β + 2)M/(a + 1),

I Γ T φ f ~ J w * > I ^ l i m I \ " Γ φ f z f

Hence,

Γ J
3. sin2i_ s i n i .

2 2

n jo
2

2 1 1 / 1 1

sin2-^

From (1.18) and (1.20) we know that ( ϊ y - / ) / ( s i n 2 (0/2)) — - l/(α+l)
in X if φ -+ 0+. In virtue of (4.3) and (4.4)

(4.6)
ιι jo . 2 φ \\χ

/ 1 \ 1 \\ C T f — f II

^(1-±)CB—i—WAfWz-W lφJ / df(φ)\\
\ S ' a + 1 II J (O»e0) 2 Φ_ *X

Since by (1.17) and (1.21)

2

we derive from (4.6) and (4.4)
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(4.7) I?™ ~ f Wφ)\
II Jo . o φ hs m ^

—r II A/Ίlx PΓ ΓT" II ΛJ '•-*

α + 1 S α + J

as we have chosen S > 2 + 2β+\
Hence (4.7) and (4.5) yield

2

which establishes (4.2), if C is chosen appropriately.
If we take an arbitrary element of F(X, Ln) such that

II f-Ln(f) IU < Λf(1-AIV(1)) (n = 1, 2f .) ,

then we study the convolution of / with a positive polynomial kernel Km

(for instance the de la Vallee-Poussin kernel (see section (5.1)) fm = f*Kmy

which clearly belongs to D(A). Then for fm

ll/ - Ln(fm) \\x = \\f*Ku-f*KM * dμn \\x = || (f-f*dμn) * Km\\x

< \\f-f*dμn\\x<M(l- μϊ(l)) (n = 1, 2, . . . ) .

Since \\fm\\x ^ || / \\x holds, it follows from (4.2) that

II Afm \\x < C(M + \\fm \\x) < C(M +

Hence for φ > 0 it follows from (1.17) and (1.21)

(4.8)
11 φ2 U~ a +

If we take the limit as m —> oo in we get

II τΦf-f

which is equivalent with /eLip(2, X).

5. Applications. We will show in this section, that many of the
classical approximation processes which have a positive kernel, satisfy the
conditions of theorem 2.3. Since condition (a) of theorem 2.3 is essential-
ly stronger than condition A of theorem 1.5, we may conclude by
theorem 1.5, that these approximation processes are saturated with order
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(1 —jttf(l)) and that their saturation class in Lip (2, X). For some of the
examples given here, these results have already been obtained by dif-
ferent methods in Bavinck [2].

5.1. The de la Vallee-Poussin summability process. The de la
Vallee-Poussin kernel is defined by

(5.1) Ftf(eoβ θ) = ω<α Wcos-^-) N = 1, 2, ,

where ω(

o

a'β+N) is given in (1.3). The trigonometric moments of VN are
very easy to calculate:

T(VN;2σ)= ω "

Hence

ffiLϋ ωr1*™ = l ί m

N; 2)

By theorem 2.3 and theorem 1.5 we conclude that the summability pro-
cess F;v/(cos0) = (/* F vHcostf) is saturated with the order 1— F£(l),
which by (2.9) is

The saturation class is Lip(2, X).

5.2. The Jackson kernel. We now direct our attention to the
Jackson kernel

( θ \
sin n —\

2 1 (r and n positive integer,

where

In order to find the saturation order and the saturation class, we show
that the kernel (5.2) satisfies condition B of theorem 1.4. Using the well-
known estimates θ/π < sin 0/2 < 0/2 for 0 < θ < π and vΎ/2 < cos 0/2 < 1
for 0 < 0 < τr/2 we have
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/ . 0\2r

ίsinw — 1
Xn,rT(Ln,r; 2) = Γ — ^ — (cos—)

J o / . C ' \ ~ ~ ~ \ Λ '

( s i n γ)
Θ2a+3~2rdθ

α+2 2r-2α-4

2/ α + 2 2r-2α-4

On the other hand (n > 2)

/ . ΘY
[Binn —)

/ /3 \2r-2α-3 I COS — - ) (LΌ ,> I I Δ p \

o (sinJl) V 2/ V T Γ ^ JO) 2

r-2α-4 22r-2α-4-i9-l

(α + 2)

If we choose e > 0, then for w > π/ε

\ Ln,r{θ)P{a'β)(θ)dθ > CB
Jo

where

^ 2 ^ l / 2 / / ^ V ^ 1 _ 1 _ 7Γ V 1

β ττ2r-2α-4(α+2) \ \ 2 / α + 2 2 r - 2 α - 4 /

Since T(Ln,r; 2) ^ ^" 2 it follows from (2.9) and theorem 1.5 that the
kernel Ln,r(θ) is saturated with order n~2 and that the saturation class
is Lip(2, X).

5.3. The Weierstrass kernel. The Weierstrass kernel, defined by

(5.3) TF^cos θ) = Σ e-
k{k+a+P+1)ta)la^"^(cos θ) (t > 0)

k

is a positive kernel (see Bavinck [2], section 5.8). If we take a sequence
of numbers {tn} with l inv^ tn = 0, then it is easy to show that the
sequence of convolution operators Wt% satisfies condition (a) of theorem 2.3.
In fact
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Hence by theorem 1.5 the sequence Wtn is saturated with order

1 _ e-ί« + β+2)tn ^ ^ (ft - * Oθ)

and the saturation class in Lip(2, X).
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