Toéhoku Math. Journ.
24 (1972), 319-329.

ON THE LAW OF THE ITERATED LOGARITHM FOR
LACUNARY TRIGONOMETRIC SERIES

Dedicated to Professor Gen-ichird Sunouchi on his 60th birthday

SHIGERU TAKAHASHI

(Received Jan. 18, 1971)

1. Introduction. Throughout this note we set
N N 1/2
Sy(®) = > a,cos 2n(n,x + «,) and A, = (2*‘ Sy ai) ,
k=1 k=1

where {n,} is a sequence of positive integers and we assume that
1.1) Ay — +oo as N— 4o .
In [2] M. Weiss has proved the following

THEOREM. If {m} and {a,} satisfy the conditions

1.2) Mgt/ M > 1 + €, for some ¢ > 0,
and
(1.3) ay = o(V A3/loglog 4,) , as N— + o,
then we have, for any sequence of real numbers {a,},

Tim (24% log log Ay)™? Sy(x) = 1, a.e. .

N—oo

That is, the same law of the iterated logarithm holds for
{cos 2n(m,x + )}

as for the sequence of normalized, uniformly bounded independent random
variables with vanishing mean values.

The purpose of the present note is to weaken the lacunarity condition
(1.2). But we could show only the inequality “lim < 1”. In fact we
prove the following

THEOREM. Let {n,} and {a,} satisfy the conditions

(1.4) N/ T > 1 + ¢k, for some ¢ >0 and 0 <a £1/2,
and

(1.5) ay = OV A4/N*(log Ay)'*), for some € >0, as N— + o .
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Then we have, for any sequence of real numbers {a,},

(1.6) Tim (2A% log log A,) ™2 Sy(x) < 1 a.e. .

N—roo

If @ =0, then the condition (1.4) is (1.2). It seems to me that the
condition (1.5) is more restrictive than (1.3) is due to the magnitude of
l| Sy(x)/Ax |,y » = 2. In fact, we have noticed that for any given (c, @)
such that ¢ > 0 and 0 < @ < 1/2, there exists a sequence {m,} satisfying
(1.4) which is not a 4(2)-set (cf. [1]).

2. Some Lemmas. From now on let {n,} and {a,} satisfy the con-
ditions (1.4) and (1.5), respectively.
(i) Let us put
»00) = 0, p(k) = max {m; n, < 2%} for k=1,

plk+1)
4 (@) = >, ancos2t(n,x + «,) and B, = Appsy ¥

m=p(k)+1

If pk) + 1 < p(k + 1), then from (1.4) we have
p(k+1)—1 '.

2> Npprn/Mpiy s > I (1 4 em™)

m=p(k)+1

>1+c{pk+1) — pk) — Lp™(k +1).

Therefore, we have

(2.1 p(k + 1) — p(k) = O(p*(k)) , as k— 4o,
and hence
plk+1)
(2.2) 4]l = > lan| = max |a,|{pk + 1) — p(k)}
m=p(k)+1 m=plk+1)
= O (B(log B,)~"*%) , as k— + o .

LeEMMA 1. For any given k, j, q and h satisfying
p() +1<h=pl+1)<pk)+1<gspk+1),
the mumber of solutions (n,, n;) of the equation
Ny — Ny = Ny — Ny

where p(g) <1 < h and pk) < r < q, 1s at most C 27 *p*(k), where C is a
positive constant independent of k, 7, q and h.

Proor. Let (n,, »;) be any solution, then we have

Np = Ng — (M — M) > Mg — 27 > m (1 — 27%) = m (1 + 277F+)~

*) For some k, p(k) may be equal to p(k+1). Then we put di(z)=0.
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If m,(or m, denotes the smallest (or the largest) index of =, of the solu-
tions (n,, n;), then (1.4) implies that

1+ 29759 = /i = M iifr, > T (1 + em)

m=my

>1l4+c(m,—m +1)pk+1).

Since p(k + 1)/p(k) — 1, as k— + oo, m, — m, + 1 < C 27 *p=(k), for some
constant C. Further, for any given ¢, » and h, there exists at most

one n; satisfying the equation. Hence we can complete the proof of the
lemma.

In the same way we can prove the following
LEMMA 2. For any given k, j, q and h satisfying
I=k—-2,p0+1)<h=p(i+2 and pk+1)<qg=spk+2,
the number of solutions (n,, n;) of the equation
Ny — Ny = Np — Ny
where p(J) < 1 < p(J + 1) and pk) < r < pk + 1), is at most C 27 p*(k),

where C is a positive constant independent of k, 7, ¢ and h.

(ii) Let {0,} be a non-decreasing sequence of positive integers such

that o, = 2, o,— + 0 and o, = O((log B,)**), as k— + . Putting ¢(k) =

k. Om» We can take a sequence of nonnegative integers {q(k)} satisfying
the following conditions:

q(0) = 0 and for k=1, ¢(2k — 1) < q(k) < 6(2k)

¢ (2k)—
and |4y B 05 2 1 4all3-

m=¢(2k—1)
If we put
g (k)—2 q(k)—2 1/2
Q@) = '3 @) and Dy = Buos = ('3 [14al8)

m=q(k—1

then we have, by (2.2),

q(k)~—2
(2.3) NQlle = 2 [[4nlle £30s sup |[4,]l-
m=gq(k—1) m<q(k)—1

= 0 (0,4)-:Di(log D)~ = O (D,(log D)=+ , »
and
q(k)—2

(2.4) D—Di,= 'S, |4.] = O (Dilog DY)~ , as k- +oo .

m=q(k—1,—1

*) It is seen that q(k) > ¢(2k—1) = (2k—1) p1 = 4k—2. Hence q(k)—2 = 2k.
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Further, we have, from the definition of q(k),

k—1

(2'5) mz:“lll Aq('rn)-—l ||§ = O(Di) ) as k— + o .
(iii) LEMMA 3. We have the following ralations:
i. For any N> M=0,

"< C S || 4,1 Bi(log By)~t+*
2 K=M

PRZE AT

where C s a constant idependent of N and M.

N-—1
1. "kzl:l {0 — Il dgy—1 113}

r = O(D%(log Dy)~"+9) as N + oo .

i | 35 (@4 - 11 Qe 18] = 0Dy(log Dy , as N +oo .

RRrROOF. For simplicity of writing the formula we may assume that
a, =0, k=1,2 .-+, that is, we prove the lemma only for cosine series.
The general case follows the same lines.

i. We write 4% — || 4, |2 = U(x) + Vi(x), where

2 (k+1) q

U= > a > a,cos2rx(n,+ n,) o,
g=p(k)+1 r=p(k)+1
Plk+1) =

Vi) = >, a a, cos 2m(n, — n,) = .

q
g=p(k)+2 r=p(k)+1

Then (2.2) implies that

p(k+1)
I Ul ng%ﬂ lag ||| 2¢ |l = O (By || 44 |I; (log By)=0+912) ,
| Vill: = O (B || 4i |l (log B)~"+97%) , as k— +oo .

Since the sequence {U,(x)} is orthogonal on (0, 1), we have

| 20

= SIS C S (| 411 Bilog By~ .

Hence, for the proof of the first relation in the lemma it is sufficient to
show that for some constant C,

@8 3 5| vi@vieds | =cE 4 Bidog By

From Lemma 1 and (1.5), we obtain, for N = k > j,
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|| Vi) vieydo
0
. p(k+ P(i+1)
=< C27*p*(k) 2 laq| max la l || max |a; |
g=p(k) (k)< h=p(j)+1 p(5)<i<h
N . p(k+1) p(j+1)
= C'27%p~(j)Bi(log By)~ "+ 3, [a,| X laul, (C"'>0.®
g=p(k)+1 h=p(5)+1
Further, from (2.1) we have
plE+1) . . .
U3 lan] S 21140 (p6 + 1) — pOF* = O (1l 41l 50)

as 17— 4o,
Thus, we have

Hl Vi) Vi@)de | < CBi(log By)™"* || 4u |l: [ 4; ||, 27~*p*"(k)p~*(3)

Since p(j + 1)/p(j) —1, as j— +co, we have >z} 27*p~(j) < C p~(k),
for all £k = 1. Hence we have

2 S A 451 20 )
= 3 4w E ()] {S 214"

N

B PATRDE S PR

Il

M+1

so{ 5 14 {5 Beria oSk,

M+1 5=M

The last two relations proves the first part of the Lemma.
ii. We can prove the second part in the same way.
iii. We have

Qn(@) — || Q@) [I3

q(m)—2 q(m)—2 k—2 gq(m)—2
= 3 {Ai—-ll4l}+2 > 4 3 4i+2 3 Md,,.
k=g (m—1) k=q(m—1)+2 j=q(m—1) k=g(m—1)+1

By the Minkowski inequality and the preceding relations, we have

ISR PN |

m=1 k=g (m—1)

= IS PAEY IR b Y PR DN |
= 0 (Dy(log D)+, as N— 4o .

*) We may assume that p(j) = p(1) > 0.
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Since {4y, > 42 4;} is orthogonal for each r, we have, by (2.3),

N g(m)—2 k—2 N q(m)—2 k—2 2
4 5 af=3x "3 |4 54
m=1 k=g(m—1)+2 Jj=q(m—1) m=1 k=q(m—1)+2 j=q(m—1) 2

q(N)—2
= O(va(log D)~ kg{ [| 4, [[;) = O(D%(log Dy)~—") ,
as N — 4+ .
Further, we have

N q(m)—2

2
Aedis |,

m=1 k=q(m—1)+1

= Sl +2" S S

1
S dpdyid;d;_dw ‘

q(N)—2 k—

O(Dy(log Dy)™™) + 2 3 E

S A,,Ak_ldjdj_ldx‘ .
0

Using Lemma 2, the last term is estimated in the same way as that of
(2.6) and we obtain

g(N)—2 k—1

S Aude-idydsdo| = O(Di(log D)) as N + oo .

k=2 j=1

Hence, we can prove the last part of the lemma.

3. Method of the proof of the Theorem. Let ¢ be an arbitrary positive
number and let us take a positive number 6 such that 0 < 8 — 1 < 4%
For this 6, we put

M, = max{m; D < 6*} and m, = max{m; B < 6%} .

Then from (2.2) and (2.3) it is seen that there exists an integer K such
that k¥ = K implies that

3.1) Dy, < Bi <6*< Bi., <Dj. <0"".

If we prove that the following two relations

M
(3.2) Tim(26* log log 65~ S* Qu(z) < 1, a.e.
k —rc0 m=1
and
Mip—1
(3.3) lim(26* log log 6*)" m"g dymr(@) =0, aee.

hold, then we have, by (2.3),
Zﬁﬁ(%" log log %)~/ g d () <1, a.e..

Further, if we prove that
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(3.4) im sup (206 — 6 loglog 6 3 4 (w) <4, ae.,
.f=mk+1

k—oo mp<msmp

then we have

Iim sup (26* log log %)~ i 4,(x)

k—oo mpsm<my 4y

<14+4v0—-1<51+46, a.e..

Since (3.1) and (2.2) imply that B} ~ 6%, as k— +oo,* and § is arbitrary,
we have

[im (2B} log log B)™* 3. 4,(1) = 1 a.e.,
and by (2.2), the last relation implies (1.6). Therefore, for the proof of
the theorem it is sufficient to show that (3.2), (3.3) and (3.4) hold.
To this end we need the follwing two lemmas.

LEMMA 4. We have, for a.e. x,

m

My k
ST Q@) ~0F and S (@) ~ (0 — 0%),  as k— +oo .
m=1 m=mp+1

PrROOF. Since D%, ~ 6%, as k— +co, we have, by the last relation
in Lemma 3,

oo

>

k=1

= O(F k) = 0.

=1

o 5t Qs — 11Quly
Hence, we have, for a.e. z,

lim 07+ 3% (@) — 1@} = 0.
On the other hand from (2.5) it is seen that

Mp—1

My k
ZJIQM”%Z szlk_ mzl ”Aq(m)—lng’vpalk ~ 6%, as k— +oo .
g =

Hence, we can prove the first part of the lemma. The remaining one
can be proved in the same way.

LEMMA 5. There exists a sequence {0} satisfying the conditions;

Mp—1
i. lim 7, 67* MEZI L () =0, a.e.,

k—oo

ii. 7,— 4+ and 7, = o(1 loglogd*), as k— +oo .

*) For two sequences {ax} and {bi}, arx ~br means that limg—.e ar/br = 1.
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ProOF. We can easily prove this lemma by (2.5) and the second
relation of Lemma 3.

4. Proof of the Theorem. In this paragraph we use frequently the
following formula:

(4.1) exp(x — 272 — |2 ) =1L +2x), for |z|<1/2.
(i) Let » be an arbitrary positive number and let us put
N = (2607% log log 6%)'* and ¥y, = (1 + 1) A\;* log log 6% .

Then we have, by (2.3), N SUDmzy, | @nlle = 0 (1), as &k — +co. Therefore,
for sufficiently large & we have, by (4.1)

expu 3 Qulo) — 270 3 @) — 0 3 @0 I}
< T+ MQue)

From the definition of {Q.(®)}, the sequence of functions {Q,.(x)} is multi-
plicatively orthogonal on (0,1), that is,

Slﬁ Q@ =0, for 8 <8< - <s,.
0J=1

Hence we have gl I {1+ 2Qn(x)}de = 1 and obtain
0

S:exp{xk ﬁ Qu(@) — 27\ ngn(x) Y g | Q) I}dx <1.

Putting F(x) = 27N D0k, Q4(x) + A D0k, | @%(x)|, we have, by the
Tchebyschev inequality,

Hx; ze (0, 1), mﬁﬁ Qu(@) > Fi(@) + yk}

< e = Ok7) as ko 4 oo ¥

and hence

{5106 0,1, 3 0u) > Fi@) + w}| < +o0 .

Therefore, for a.e. x there exists an integer K(x) such that k = K(x)
implies

by

k=1

50 Qu@) < Fuw) + 0 -

*) For a measurable set E, | E| denotes its Lebesgue measure.
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On the other hand we have, by Lemma 4 and (2.3),
F (x) + y. ~ (2 + n)(27'6* log log %)%, a.e..

Hence, we have

Tim (26" log log %) S Qu@) = (L+7/2) ae..

Since n > 0 is arbitrary, we can prove (3.2).
(ii) Using the sequence {7,} in Lemma 5, we put

M = (007% log log 6%)*  and 1y, = 2\;* log log 6* .

Then we have, by (2.2) and ii in Lemma 5, N\ SUDn<s, || dgom—1lle = 0 (1),
as k— + . Using the same method as above, we have, for a.e. z,

Mp—1

>, dgm—i(®) = Gu(®) + yi, for k= K(v),

where G.(x) = 27\, 2m<Mk Aymy—1 () + N} Zm<Mk | 43m—(®) |- On the other
hand from Lemma 5 and (2.2) it is seen that

G(®) + v, = o((6* log log 6%)"*) , a.e. .

Hence, we can prove (3.3).
(iii) Let us put g, = ¢ = My, M = M = My, and

tix = M; = max{m; B2 < 6% + j(0** — 69k}, for j=1,2, ..,k —1.

Since (2.2) implies that sup,cm,. |l 4.1 = O@* - k=), as k— +co,
we have 6F + (7 — 1)(0**' — 0"k < B}, < 6% + j(0**' — 09k, for j =
1,2, -+, k, and k = K,. Hence, we have, for j=0,1, ---, k — 1, and
k Z Km

(4.3) S4B 20 — 0 k.

'n:/-lj+

Hi+1
On the other hand if 4;(x) # 0, then the frequencies of terms of 4;(x) lie
in the interval [27 + 1, 2/*]. Therefore, by the theorems on trigonometric
series (cf. (4.4) p. 231 and (4.24) p. 233 in [3]), we have, for some con-

stants C, and C, independent of j and £,

m 4 Hi+1 n #i+1 2
sup >, 4| =C| X 4. £ G| X 4
pi<mSLG4y n=pg+t 4 n=p;+1 4 n=fit1 2
Hita 2 Hj 41 2
<26 3 @ - 4] +20( 5 114.08) -
n=p i+ 2 n=p4t

By Lemma 3 and (4.3), we have, for some C,,
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4 O

4

sup i 4,

/‘j<m§#j+1 n=45+1

Hence we have
oo k

and this proves that for a.e. z,

m

{(6’c+1 — 6%)log log 6%}~'"* sup >

Hi<mSfgay n=pgtl

b

(4.4) lim{(ﬁ’chL — 6%)log log 6%}~ sup sup i 4,(x) =0.

JSk pj<mspgp n=pg+1
(iv) If we put n, = V(6% — 6¥)"log log * and vy, = 3\;'log log 6*,
then we have X\, SUDwgm,,, || 4nlle = 0(1), as k— +oo. Therefore, for
sufficiently large & we have, by (4.1),

m

exp{M i‘, (%) — 2N} §1 Ai(w)}

n=mp+1 n=mp+1

< exp

z am) -2 S a@)

n=mp+1

3
sexpfn 3 4@ -2 3 se) -4 3 L@ )

'IL"Mk

< [g+ 1+ 2ud,@}]

Since the both sequences {4..(x)} and {4.,..(x)} are multiplicatively or-
thogonal on (0, 1), we have

§exp{>»,, 4,@) = 20 S M)l
n=mp+1

n=mp+1

So [n mk+1 1+ ZK’kAn(x)}]llzd’v
< [So IL{1 + 2xk42,,(x)}de: L AL & 20 denn () dx]uz 1

A

where [[,(or II.) is the product over all = such that m, < 2n < g; (or
m, < 2n + 1 < p;). Hence, we have

oo 1 3 4@ >2u 3 5@ +u)

n=mp+1 n=mp+1
<e k=0, for j=1, 4, k, as k— +o0,

and hence, we have

Sx|{mreqn 3 sa@>on 3 46+ u)

n=mp+1 n=mp

< oo
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This shows that for a.e. x, there exists an integer K(x) such that
12 . mE+
sup 3, 4@ =2 > L@ +u, it k2 K@) .
1Sjsk n=mp+1 n=mp+1

On the other hand by Lemma 4 we have, for a.e. z,

mE -ty

27 S, Ai(x) + yp ~ BV (0 — 6F)loglog 6%, as k— +oo .

n=mp+1

Therefore, we have

2
(4.5) lim{(@*+* — 6%)log log 0%} *sup >, 4, (x) <5, ae..
k—oo

isk n=mp+1

By (4.4) and (4.5), we can prove (3.4).
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