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1. Let Σ^U^n be an infinite series, and let {Xn} be positive numbers
tending to the infinity. We write An = α0 + aγ + + αn, and if x > 0,
Xn ^ x < λn+1, then Aλ(x) = An = α0 + a, + + an = Σ ^ * ^ , and for
k > 0,

Γ{k) Jo

We define AS(») = Aλ(x), and if a? < λ0, A\{x) = 0 for every k ^ 0.
Let us set δ% = λwαw, J5;(a?) = ΣΓ=o λ.α,, λw ^ x < Xn+1,

Bt(x) = -γ^\y - tf-HAλ{t)dt , (k> 0) .

We then have [2]

(1.1) B\{x) = xA\{x) - kAk

λ

+ι(x) .

If we write Cχ(x) = x~kA\(x), then C*(x) is called the Riesz mean of order
k and type λ, while A\(x) is called the Riesz sum of order k and type λ
associated with the series Σ αn.

Since no confusion will arise, we write simply Ak(x) in place of A\(x).

2. The author [6] proved the following theorem.

THEOREM A. Let V(x) and W(x) be positive functions defined for
x > 0, such that

f(i) xaW{x) is non-decreasing for some α, 0 ^ a < 1 ,
(2.1)

l(ii) xβV(x) is non-decreasing for some β9 β ^ 0, and

(2.2) TF(<c)/V(αO = O(xδ) (δ > 0) as a;

(2.3) Aδ(x) - o[TΓ(a?)]

(2.4) A(x) = O[V(x)]
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together imply, for any 7 such that 0 < 7 < δ,

(2.5) Ar(x) = o[(V(x)y-rlδ(W(x))rlδ] as s - > o o .

In the case a = 0, β = 0, Theorem A is reduced to M. Riesz's con-
vexity theorem [5]. The following Theorem I shows an order-relation
for Ar(x) with a hypothesis being different from A(x) in Theorem A. The
theorem is an extension of Theorem 3 in L. S. Bosanquet's paper [I],
though the conditions are not exactly the same.

THEOREM I. Let V{x) and W(x) be positive functions defined for
x > 0, such that

ί(i) xaW(x) is non-decreasing for some a, — 1 < a < 1,

l(ii) xβV(x) is non-decreasing for some β, and

(2.7) W(x)/V(x) = O(xδ+») , ( S > 0 , V>0).

Then

(2.8) A(x) - A(x- t) = O[PV{x)\ , (η > 0) 0 < t - 0{(W(x)/V(x)ynδ+^} ,

and

(2.9) A\x) = o[W(x)\ , S > 0

together imply, for any 7 such that 0 < 7 < δ,

(2.10) Ar{x) = o[{V{x)γ-{r+η)nδ+1ί){W{x)){r+1ί)nδ+η)\ as x-+ 00 .

F(α;) and W(x) above mentioned are quasi-monotonic functions for β > 0

and 0 < α < 1.

We shall prove this theorem in section 4.
We have also a one-sided convexity theorem, as follows.

THEOREM II. Let V(x) and W(x) be positive functions defined for
x > 0. If (2.6) and (2.7) hold, and

(2.11) A(x) - A(x -t)> -KVV{x) , (V>0)

where 0<t = 0{(W(x)/V(x))ll{δ+rί)}, and

(2.12) Aδ(x) = o[W(x)] , (δ>0)

where W(x')/W(x) < H for 0 < x' - x = 0{{W{x)IV{x))ιHδ+η)}, then we have,
for 0 < 7 < δ,

(2.13) Ar(x) = o[(V(x)y-{r+rί)nδ+7ί)(W(x)yr+")l{δ+^] as x-> 00 .

We shall prove this theorem in section 5.

3. Lemmas. The following lemmas are required for the proof of the
above theorems:



ON CONVEXITY THEOREMS FOR RIESZ MEANS 303

LEMMA A. Let φ(x) be a positive, non-decreasing fuction of x > 0,
and let 0 < ξ < x, 0 < I < 1, k ^ 0. Then Ak+ι(x) = o[φ(x)] implies,

(3.1) g(ξ, x) = ffi + ' ^ H ' f r - ty-*A*(t)dt = o[φ(x)] .

1 (fc + 1)1 {l>) Jo

This is given in [ 2 ].

LEMMA B. If k > 0, I > 0, then
(8 2) A'"^-

T h i s is g i v e n in [4].

L E M M A C. // ζ > 0, m is a positive integer, 7 ^ 0 and 0 ^ /S < 1,

(3.3)
.. Γ(Ί + m + 1)

- J(\ dtλ d t t ' " \ [A'{tm) - Ar(x)]dtm ,

Γ(7 + m + 1)
(3.4)

J ί m _ 1 — ζ

See [2] for finite differences.

4. Proof of Theorem 1.
(1) Proof for the case: — 1 < a ^ 0 and β ^ 0. Let us put, for

any ε > 0, ζ = [eW(x)/V(x)]ίl{δ+7ί).

Then we have some ε such that x — (p + l)ζ > 0 by (2.7), and let
δ = p + α, where 0 < α < 1 and p is a non-negative integer. Then we
have, by (3.4)

(4.1) C'+M(s)

= JΊ + J2 , say.

By (2.9) and Lemma A, we have

(4.2) J X

Γ(p



304 H. SAKATA

Γ(p + 1)
α

 1N Σ ( -
1)

S a?-(m+l)ζ

(x - mζ - uy-'A

— o[ W(x)] for sufficiently large x .

By (2.8) and (2.6) (ii) we obtain

(4.3) J2 = AaJ[ dt\h dtz-.A1*'1 {A(x) - A(tp)}dtp

= ΛίJΓdί!fCeZί2 \ζ{A(x) - A(x - t,- t2 - - tp)}dtλ

= a\X (x - uy-'W'dtVdtz-.. [{AW-Aiu-t,-^ tp)}dtλdu
Jχ-ζ LJo Jo Jo J

(x - u)a-^dt^dt2 . ^\t, + t2

ζ"+p[X {x - u)a-ιV{u)dvλ

Hence

(4.4) A(x) = O[(l/ζδ)W(x)] + [ζ?V{x)\

as .τ->oo.

The one of the two hypotheses of Theorem A is satisfied with

with the other hypothesis W(x) unchanged, instead of V{x). Hence, using
Theorem A, we obtain

(4.5) Ar(x) =

= o[(V(x)y'{r^ma+v)(W(x)yr+η)nδ+η)]f (0 < 7 < δ) as x — co .

Now, if δ is an integer then we can prove the case (1) by the similar
method.

(II) Proof of the case: 0 < α < 1 and β ^ 0. First assume Theorem
I with α replaced by α — 1 (with β unchanged). Then, since 0 < α < 1,
it follows from (2.9) and (2.6) (i) that
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(4.6) Aδ+ι(x) = \*A8(t)dt = o\\*W(t)dt\ = o\\* Ft~" W(t)dt\

= o\afW(x)[Xt-"dt\ = o[xW(x)] .

L Jo J

By (1.1) and (4.6), we obtain

(4.7) Bδ(x) = o[xW(x)] .

By (2.8), we have, for 0 < t = O[W(x)/V(x)Yl{δ+»\
(4.8) B(x) - B(x - t) = (x - t)[A(x) - A(x - ί)J + Γ [A(x) - A(u)]du

Jx-t

= O[PxV(x)\ .

Thus, the hypotheses of Theorem I are satisfied with B{x) — B(x — t)
instead of A(x) — A(x — t), with Bδ(x) instead of Aδ(x) and with a — 1
instead of a, respectivly. We have, from the case assumed,

(4.9) Br(x) = o[(xV(x)y-{ϊ+"Uiδ+ri)(xW(x)y7+η)nδ+7])]

= o[x(V(x)Y'{7+η)nδ+v)(W(x)yr+η)nδ+η)] , (0 < 7 < δ) .

Next suppose that 7 > 0 and δ — 1 < 7 < <5, then we obtain

<4 10) A'"(x} = r(S+7ny-> + i>\>- ty"A'm

- ty-st-πaw{t)dt\ = <Lcaw{χ)\i°(χ- ty-st-adt\

θ[xr-δ+1 W(X)\ ,

by (2.6) (i) and (2.9). From (4.9), (4.10) and (2.7), we get

(4.11) Ar(x) = (l/x)[Br{x) + ΊA^1{X)\

= o[(V(χ)y-ίr+η)ns+r>)(W(χ)yr+'!)lιs+r') + χr-'W(χ)\

= o[(V(x))1-ir+rι)ltδ+ΎI)(W(x)yr+r>)l{δ+r')] a s x-^co.

If 0 < δ ^ 1, the result may be proved. And if δ > 1, suppose now
0 < 7 < δ — 1 and assume the result with 7 replaced by 7 + 1. Then it
follows that

(4.12) A*(x)

= o[(l/x){x(V(x)y^r+r>)nd+")(W(x)yr+'')nδ+' )

= o[(V(x)y~(r+Ύl)l(δ+r')(W(x)yr+r')lίδ+")] as
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and the result is proved by induction on 7.

(Ill) Proof of the case. - 1 < a < 1 and β > 0. First assume Theorem
I with β replaced by β — 1. Then, since — 1 < a < 1, it follows from
(2.9) and (2.6) (i) that

(4.13) Aδ+ι(x) = [XAδ(t)dt = oΓ(V(ί)dί]

] [ ( V l = o[xW(x)] .

By (1.1) and (4.13), we get

(4.14) Bδ(x) = o[xW(x)] ,

By (2.8), we have, for 0 < t = 0[W(x)/V(x)]ll{δ+"\

(4.15) B(x) - B(x -t) = (x- t)[A(x) - A(x - ί)] + Γ [A(x) - A(u)]du

- O[xPV{x)\ + θ\\v>V{x)dv\ = O[PxV(x)] .

Thus, the hypotheses of Theorem I are satisfied with B(x) — B(x — t)
instead of A(x) — A(x — t), with Bδ(x) instead of Aδ(x) and with β — 1
instead of β.

The rest of the proof is essentially the same as for case (II), then
the result is proved by induction on β.

5. Proof of Theorem II. First suppose that — l < α ^ 0 , /S^O and
let us put, for any ε > 0, ζ = [εW(x)/V(x)Yί{δ+r]). Then we have some ε
such that x - (p + l)ζ > 0 by (2.7), and let δ = p + α, where 0 < a < 1
and p is a non-negative integer.

Then we obtain, by (3.3),

(5.1) ζp+aA(x) = (1/Γ(p + ΐ))jdξ+aAp(x)

dtt"-\t [A(tp) - A

= It + It, say.

By (2.12) and Lemma A, we have

(5.2) I, = 4ξ+'A'(x) = a\*+\x + ζ - t)'-^'ζA'(t)dt
Jx

= a ± (-ir(P)[+\χ + ζ - t)-Ά'(t + (p- m)ζ)dt
m=0 \mJ Jx

= α Σ (-1)"(^) (α + (p + 1 - m)ζ - tt)"-1

m=0 \ 7 ^ / Ja;+(j)-m)ζ

Q χ
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By (2.11) we have, for x - (p + l)ζ > 0,

(5.3) I2 = -J^'dt, J''"1+C[A(i,) - A(x)]dtp]

= -a\\ζ - uy-'du^dt, - ̂ {A(u + tι+- +tp)- A

c ~ v)-ιV(u + pζ)du

Then, we have, by (5.1), (5.2) and (5.3),

(5.4) A(x)< (ε/ζ')W(x) + KVV(x)

= (1 + K')er'ns^\V{x))l~">ns+11)\W{x))r'nd+r')

Next, by (3.4) and (2.11) we obtain

(5.5) A(x) = [

+ J°J[X dt\*τ dί, ..Γ'~ ι {A(x) - A(tp)}dtX\

>-εζ~δW(x) - K'VV{x)

Thus, by (5.4) and (5.5), we have

(5.6) \A(x)\ = O[(V(x)y-"l{δ+")(W(x)yl^)] as x-+ oo .

The rest of the proof is similar to that of Theorem I.
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