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Many statements about sequences x = (xk) with gaps, that is sequences
x with the property that xk = 0 for all k belonging to a certain index
set JΓc Z+ — {1, 2, •• •} are of one of the following two types:

1. All sequences which belong to a certain space A and which fulfill
a certain gap condition, belong also to some space Bξ^A.

2. All sequences x which belong to a certain space A have the fol-
lowing property: There exists a sequence y = (yn)e Bξ^A such that for
a certain index set I — {nk} c Z+

ίxk if n = nk

(0 if n Φ nk .

All statements of type 1 can be expressed in the form

ωIf)A = ωIΓ\B

where ωΣ is the space of all sequences x = (xk) for which xk = 0 if k g I.
All statements of type 2 can be expressed in the form

A + ωΓ = B + (ύv

where Γ — Z+\I and for any sets Eγ and E2 of sequences the sum Eγ + Ez

of the two sets is defined by

E, + E2 = {x = (%): αfc = ^ + vfc where (uk) e Elf (yk) e E2} .

It is the purpose of this note to demonstrate how the theory of sums
and of intersections of .Pif-spaces can be used to simplify the proofs of
known theorems on lacunary sequences and to obtain new results.

The main results of this paper (except for a few basic theorems) can
be summarized as follows: Let {%}~=i be an increasing sequence of posi-
tive integers and let ω be the linear space of all complex valued sequences
x = (xk)ΐ=ι. Let ωz = {xe ω: xk = 0 if k Φ nh j = 1, 2, •}, let E be an
Fiί-space (see section 1), EN = {x e E: x has sectional convergence (AK)},
E1N = {xe E: x has Cesaro-sectional convergence, i.e. (xl9 (1 — n~ι)x2, (1 —
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2n~1)x3 , (1 — (n — l ) ^ " 1 ) ^ , 0, 0, •) —> x, (n -* c>o) in 2?}, cs = {& e ω:
Σ?=i χk exists}, σs = {xe ω: lim^*, Σ £ = 1 (1 — (k — l)n~ι)xk exists}. Then the
following is true: If σs ΓΊ (OΣ — cs Π o)z then E1N Π o)Σ = EN Π ω z . (ii) Let
nj+ι ^ gwy where g > 1 is fixed. If Σ*ΐ=-~ f(k)eikt ~/( ί ) e L\T), then there
exists a continuous function g on Γ with Fourier series of power series
type, i.e. such that g(t) ~ ΣΓ=o d(k)eίkt and such that g{n3) = /(%) for
i = 1,2, . . . . If μeM(T),μ(t)~Σι~=—μ(k)eikt where //(Λ) - 0 if 0<kΦnό,
then there exists a continuous function h on Γsuch that h(t)~Y^=_Ji{k)eikt

where h(k) = 0 if 0 < & Φ Uj and ^(%) = μ{n3) for i_= 1, 2,
This summary is identical with the abstract [8]. I am grateful to

Professor J. Fournier for bringing to my attention that statement (ii) can
be derived also from statements in his paper [4].

Theorem 4.4 is stronger than statement (ii). Since its formulation is
a little complicated I have preferred to state the simpler result (ii) in the
introduction.

1. Definitions. Let co be the linear space of all complex sequences
% — fe)?=i Any vector subspace E of ω will be called a sequence space.

A sequence space E with a locally convex topology τ is called a K-
space, if the inclusion map (E, τ) —* ω is continuous when ω is endowed
with the topology of coordinate wise convergence. If in addition (E, τ) is
complete and metrizable, then (E, τ) is called an FiΓ-space. The basic
properties of Fif-spaces can be found in papers of Zeller [17], [18] and in
books of Goίfman and Pedrick [10], Wilansky [15] or Zeller and Beekmann
[19]. ω is an iΓίΓ-space whose topology is given by the semi norms
pk(k = 1, 2, .-.) where pk(x) = \xk\ (xeω). An FiΓ-space whose topology
is given by a norm is called a .RfiΓ-space.

If IczZ+ then ωΣ = {xe ω: xk = 0 if kίl} is a closed subspace of ω,
hence itself an jPίΓ-space under the topology induced by ω.

If xeω, then the sequences Pnx defined by

(xx if k= 1,2, . . . , n
_

1 nX)k~ (0 if fc =
are called the w-th sections of x, and the sequences Pγ

nx defined by

ί(l - (k - l)/n)xk if k = 1, 2, , n

j{nX)k j 0 if k =

are called the w-th Cesaro-sections (of order one) of x.
If E is a iΓ-space, α? e JE7, P^α; e E for every ^ = 1, 2, « and if P Λ ^ —> x

(resp. P^α; —> a?) in E as w —• oo, then α? is said to have sectional conver-
gence or AK (resp. Cesaro-sectional convergence or σK). For a if-space
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E we define the spaces

EN = {xeE:x has AK}. E1N = {xeE:x has σK}

EAB = {xeω: {Pnx}~=1 is a bounded subset of E}

EσB = {xeω: {Plx}n=1 is a bounded subset of E} .

E has AK (resp. σK) if E = EN (resp. E = EιN). E has AB (resp. 0\B)
if E(zEAB (resp. EaEσB). It should be noted that it is not necessarily
true that EAB czE or EσB c E.

If (Pj) are the semi norms defining the topology of an FϋΓ-space E,
then EN and EAB are jFif-spaces with the topology given by the semi
norms g3(j = 1, 2, •• •) where g3-(x) = sup% p3{Pnx) [7]. Correspondingly E1N

and EσB are FjSΓ-spaces with the topology given by the semi norms
g3(j = 1, 2, •) where 0y(α) = supn Ps(P&).

The following J5UL-spaces with the indicated norms will be important
in the sequel: For 1 ^ p < oo

{ / oo

: sup

c0 is the closed subspace of l°° consisting of x with lim^^ xk = 0,

cs = Ixeω: Σ«*exists i , ||a;||β, = sup Σ χk

= {a? G ω: (C, 1) - Σ χk = lim Σ f 1 - fe ~ 1 Vfe exists} ,
t k = l n-+oo k = l \ 71 J )

.. = sup Σ (l - An l
A - l V 71

%

J

II«lift* = Σ l « * -
fc = l

+

g = J °: Σ (k + 1) I ^2 f̂c I < °°, where A2xk = xk — 2xk+ί + xk+2 \ ,
' k=ί )

sup
k

\\\\q Σ ( )M
k=ί

Qo = q Π cQ .

In addition we use the following notations:

φ = {xeω: xk = 0 except for finitely many ke Z+} .
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If x, y e ω then xy = (xkyk).
If Eaω, then for any real number a

daE = {xeω: (k~axk) e E) and ^CE = άraE .

For any pair of sets Aaω and Baω the space (A —• B) of multipliers
from A to B is defined by (A—>B) — {xeωixaeB for every aeA).

In particular we define the /5-and σ-(dual Kothe-) spaces Aβ respectively
Aσ of A by Aβ = (A-+ cs), A° = (A — <τs).

The set 4̂.± orthogonal to A, is defined by A± = (A ~> {0}) where {0}
is the set consisting of the null element in ω.

If E is any ίΓ-space then Έ' shall denote the space of linear continu-
ous functionals on E.

A sequence space E is called solid (or normal) if E = (V~—+E).

2. Basic Theorems
LEMMA 2.1. Suppose E is an FK-space.
(i) If E has AK, then E' can he identified with the quotient space

(ii) If E has σK, then Ef can he identified with the quotient space
E°\EL.

PROOF, (i) Suppose E is an FίΓ-space with AK. ThenφeE' if and
only if there exists a sequence ye Eβ such that

(l) φ{χ) = Σ

for every xeE ([18], Satz 2.1 and Satz 3.4).

Evidently

φ(x) = Σ MVk + zh)
J k = l

for every zeEL and EL is the kernel of the homomorphism h: Eβ —>E',
where h(y) = φ and ψ is given by (1). Hence the mapping g: Eβ/E± —> JE"
where #(?/ + £r

1) = 9> is an isomorphism. Thus Έ' can be identified with
Eβ/E± by means of the isomorphism g.

(ii) If E has σK a similar proof can be given using in this case the
fact that φeEf if and only if there exists a sequence yeE° such that

for every O G E ' ([7], Theorem 5).

THEOREM 2.2. Let E he an FK-space, φczE. IczZ+ and Γ = Z+\L
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(i) If E has AK, then {ωτ n E)? = ωΓ + E*.
(ii) If E has σK, then (ωz n E)a = ω7, + £".

PROOF, (i) Evidently ωΓ + Eβ<z(ωj f] E)K For the proof of the
opposite inclusion we use Lemma 2.1. Since α>7 Π E being the intersection
of two FiΓ-spaces with AίΓ is also an FZ-space with AK and since φ c E
implies (ω7 n i7)± = &>/', we can write

(1) (ωΣ Π # ) ' = (ω7 Π Ey/ωΓ

where the equality here and in similar cases later means identification of
the two spaces as explained in the proof of Lemma 2.1.

Now

(G>J n EY = (ω 7)' \WinE + E' \ωinE

where Af\B denotes the restriction to B of the functional on A ([17], p.
472. Satz 4.7 b)). Again by Lemma 2.1 we obtain

(a);)' I cϋj Π E = (ωJP/ωj,

and

E'\ (Oj Π E = E*lωΓ .

Hence

( 2 ) (ω7 n EY = ((OtY/a);, + E*lωv .

(1) and (2) imply

(ω7 n EY/ωΓ = (ωiy/ωΓ + BηωΓ .

Hence

(ω7 n E)^d {ωxy + ωΓ + ^ = ω7, + E''3

where the last equation follows from the obvious equation (o)j)β = ωΓ + φ
and φ c I?'9. This together with the opposite inclusion proves the equation
in (i).

(ii) This can be proved correspondingly using part (ii) of Lemma 2.1.

LEMMA 2.3. Let A and B be FK-spaces.
(i) If A has AK then (A-+B) = (A-+ BN).
(ii) // A has σK, then (A-+B) = (A-*BιN).

PROOF, (i) Evidently (A -+ BN) c (A —• B) since BNaF, Conversely
suppose xe(A—*B). The mappings TX:A-+B where Txa = xa for any
aeA, are linear and continuous [17]. Hence if {p3) are the semi norms
defining the topology in B, then qά = p3- Tx is a continuous semi norm on
A. Hence for each j = 1, 2,
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qj(Pna - Pma) = Pj[T.(Pna - Pma)] = Pi[P%(xa) - Pm(xά)] — 0

if n > m —* oo. This shows that xα e i?^. Thus x e (A —* i?^).
(ii) This can be proved correspondingly using now Pi instead of Pn.

LEMMA 2.4. If IczZ+ and φ PiCύjCzEadH* for some neZ+, then

(ωΣ -+E) = ωΓ + φ.

S n+2

E c cs. Hence

G τt+2 Cn++2 \ /fn+2 \ /fΛ+ 2 \β

Conversely if ^ Π ω 7 c E then (ω,, + φ) c (ω7 ~> ί7) since ft>7 ω7, = {0} and
Φ ω 7 c φ D ω 7 c E.

2.5. Let A and B be jPίΓ-spaces whose topologies are defined by the
collection of semi norms {Pj}T=1 and {q3)7=ι respectively. Then A + B is an
jFίΓ-space in the topology defined by the semi norms rj>k(j, ke Z+) where

rJtk(x) = inf {pj(ά) + qk(b): a e A, b e B, x = a + b)

(see [14] or [16]).

LEMMA, (i) If A and B have AB, then (A + B)N = AN + £^.
(ii) 7/ A α^ώ B have σB, then {A + B)1N = A1N + BιN.

PROOE. (i) Clearly AN + BNa {A + JB)^. The opposite inclusion fol-
lows from the following equation of Garling ([5]; p. 1007): If E is an
.FίΓ-space then EN = bv0 EAB = bv0 ^ . Since A + B has AJ5 if A and
B have AB it follows that (A + £ ) ^ = bvQ- (A + B) abv0- A + bv0- B = AN + BN.

(ii) This can be proved correspondingly using the obvious inclusion
Aw + BιNd {A + B)ίN and the equation of Buntinas ([3], p. 197): If E is
an FiΓ-space then EιN = q0 EσB = q0 E1N.

LEMMA 2.6. Let A, B, D be subsets of ω and B = ((JB-> D) ~^ D).

PROOF. Suppose xe {A~+B), aeA. Then xae B. Hence if he (B-+D),
then ααfc = (xh)aeD implies xe[(B-+D)~-*(A->D)]. If B = ((B->D)-+D),
then by the same reasoning

where the last inclusion follows from Aa[(A-+D)-+D] ([7]; p. 139).
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3. Lacunary sequence spaces with AK or with σK
THEOREM 3.1. Suppose IaZ+ such that

(1) α>7 Π σs = ωΣ Π cs

and suppose E is an FK-space with the property φ Π α>7 c E c dnl°° for
some n€Z+. Then

ωΣ Π E1N = o)j n EN .

PROOF, σs is an Fif-space with σίΓ[12]. Hence by Theorem 2.2

(ω7 Π os)σ = ω7, + (σs)σ.

Now (σs)σ = q, [2]. Hence

( 2 ) (ω 7 n σs)a = ωΓ + q .

Since ctfj Π cs is an Fif-space with AK and since {σs)N = cs we have
by Lemma 2.3 (i) and by Theorem 2.2

( 3 ) (o)j Π cs)σ = (a); n cs)^ = ω7, + (csy .

Now (cs)̂ 5 = bv [2]. Hence (1), (2) and (3) imply

ωi> + Q = ωi> + bv .

Hence ([ωIf + q] —>EιN) = ([ωIf + bv] —> EίN), which clearly implies

( 4 ) (ωΓ -> E1N) f)(q-> EίN) = (ωΓ -+ EίN) Π (bo — E1N) .

Evidently δv = bv0 + [1], where [1] is the linear space spanned by the
sequence x = (xk) with xk — 1 for all k. Therefore

( 5) (bv-+ E1N) = (bv0 + [1] — EιN) = (bvQ -> (E1N)N Π ί ? i y

where the last equation follows from Lemma 2.3 since bv0 has AK. Now
(E1N)N = JE^ since £71Λr c S implies (E1N)N c ^ = (EN)N c (£Ί^)^ where the
equation follows from ([5], p. 1016, Cor. 2). Hence

( 6) (bv0 — (E1N)N) = ( K — ^ ) .

Now

( 7 ) {bυo-+EN) = EAB

because bv0ΈABczEN ([5], p. 1006, Th. 4) implies EABc{bv,-*EN) and
conversely (bv0 -> EN) c (δv -> EAB) c ^ 5 ([5], p. 1002, Prop. 3, (e) =>(/)).

Therefore (5), (6) and (7) imply

( 8 ) (bv -+ E1N) = EAB n E1N .

Furthermore
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( 9 ) (q->EίN) = E1N ([3], Th. 3.11).

Thus (4), (8), (9) and Lemma 2.4 imply

(α>7 + Φ) n EAB n EIN = K + φ) n £ ^ .

Intersection of the sets on both sides of this equation with ωΣ yields

a); n EAB n .EW = ω7 n ^ .
Thus

ω, n £W c [a>j n j ^ Λ n E1N]1N = ω7 n ( ^ f l ) w n £W

since (E^i* = E1N ([3], Th. 3.11 and Prop. 3.6). But (EAB)ίN = q0-EAB

([3], Th. 3.11) and q0-EABabv0-EAB = EN ([5], p. 1006, Th. 4). Hence
ωΣ Π E1N c ω7 n ^ Since the opposite inclusion is obvious, the theorem
is proved.

EXAMPLE 3.2. Suppose I = Λ = {Xke Z+: Xk+ι > qXk for some q > 1 and
for all A: = 1, 2, •}. For any sequence space E the intersection ωΛ Π i?
is the space of sequences in E which have Hadamard gaps. It is well
known that ωΛf]σs = ωΛΠ cs ([20], vol. I, p. 70). Hence the last theorem
is applicable with I = Λ.

REMARK 3.3. The last proof contains several equations which are of
independent interest. For example

β)Γ + q = ωΓ + bv

and

(bv-+EίN) = EABΠE1N.

However the proof can be shortened considerably and the condition
φ n cΰi c E c dnl°° can be omitted if one uses the concept of weak sectional
convergence ( = SAK;see [18]).

Let E be an Fi£-space. An element x e E has SAK, if for every linear
continuous functional

lim φ(Pnx) = φ{x) .

Let

ESAK = {xeEix has SAK} .

In the proof of Theorem 3.4 we use the following important fact
proved by Zeller ([18], Satz 3.4):

If E is an Fif-space and E = ESAK, then E = EN.
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THEOREM 3.4. Suppose IaZ+ such that

( 1 ) ω z Π σs = ωΣ n cs.

Then for any FK-space E we have

( 2 ) ωIΠE1N = ωIΠEN.

PROOF. Suppose φ e (ωΣ Π EιN)'. Since ω1 n EιN is an Fif-space with
σK, we have for x e ^ ί l E1N

φ(x) = (C, 1) - Σ XkΦ{ek)
k = l

where ek is the sequence (w*)~=i with u) — 1 if j = fc and w* = 0 if j ^ &.
Hence {αvp(efc)}~=1 e σs Π ω7 which by (1) implies {xkφ(ek)} ecs Π ω z. Hence
lim^o,,φ(Pnx) — ΣΓ=i^kΨ{ek) = <p(x) exists for every a e ^ ί l -EΊ̂  and for
every φe (ωz n £7^)'. Thus by ([18], Satz 3.4)

(ω7 n £W) = (ω7 Π EιN)SAK = (ωx Π # i ^ = ύ)/Π (£7^)^ = ω f Π EN

where we used again the fact that {EιN)N — EN (see proof of Teeorem 3.1
just before equation (6)). Thus (2) follows.

4. Lacunary Fourier Series
4.1. In this section the technique developed in sections 2 and 3 will

be applied to spaces of sequences of Fourier coefficients. As usual 1)
Lp(l ^ p < oo), 2) L°°, 3) C, 4) M will denote respectively the space of
2ττ-periodic, complex valued measurable functions / or measures μ on the

real line for which 1) ^ \f\pdή = \\f\\p< - , 2) ess. s u p o ^ » | /( ί )) | =

II/Iloo < oo, 3) / is continuous, | | / | | σ = m a x 0 ^ ^ |/(ί) | , 4) μ is a regular

S 2τr

|d/^|. If JE is any of the above spaces, then the
0

space of sequences of Fourier coefficients of even (resp. odd) functions or
measures in E will be denoted by Ec (resp. E3). Thus

Ec = \x: Σ % cos λ ί — g(ί), where g e E> ,

and

^s = j ^ Σ ^* s i n ^ ^ M*)ι where h e E> .

gfdί = 0 (resp. I dg = 0 if

0 V JO

g = μ \ This will affect our results only in an obvious way.

The spaces Ee and E8 are evidently jBiΓ-spaces with the norms \\x\\%c =
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4.2. Our starting point is the following set of theorems of Paley and
Banach for sequences with Hadamard gaps and a theorem of Helson (which
had its origin in a theorem of Paley).

Let A be an index set defining Hadamard gaps (3.2); then the follow-
ing statements are true:

a) (Paley [13] or [20], vol. II, p. 133)

Lc n Ls + ωA, = I2 + ωA, .

b) (Banach [1] or [20], vol. II, p. 131 (7.1))

I2 + ωΛ, = Cc + ωA, = Cs + ωA, .

c) (Banach [1] or [20], vol. II, p. 131 (7.1))

Me Π d(Cs) + ωΛ, = Ms n d(Cc) + ωA, = l°° + ωA, .

d) (Helson [11])

(6C n c s - 1 ' ) = i2.
4.3. As immediate consequences of these statements we list the fol-

lowing:

e) Lc n Ls + ωΛ, = Cc + ωA, = Cs + ωA, .

PROOF. This follows from a) and b).

f) I- (Lc n Ls + ωΛ) = (Cc + ωΛ,)N = (C. + fl^,)* .

PROOF. The spaces in e) as sums of Fif-spaces are FίΓ-spaces (2.5).
Since each of them is equal to the FϋΓ-space I2 + ωΛ, by a), which is a
solid (= normal) FϋΓ-space with AίΓ, f) follows.

g) J- (M c n ωΛ) = I- ( M s ΓΊ ωΛ) = (l°° — (Cc + CS)N n ω,) .

PROOF. By taking the σ-dual spaces £7* of the spaces E in e) and

observing that Lσ

c = £ r , L°a = Lf ([6], p. 369) hence (Lc Π L8)
σ = Lr + ί/Γ

([9], Th. 4) and Cα

c = Mc, Cσ

s = M8 ([6], p. 369) we obtain

(ίr + ίr) n (ωΛ + ψ) = MC n (ω, + ̂ ) = MS n K + ^).

Intersection with ωΛ gives

(L? + Q)nωΛ = Mcf)ωA = M8f)ωA.

Since the spaces in the last line are evidently equal to the solid FK-

space Γ Π coΛ which has AK (since LΓ + L" c I2 c Mc and ϊ2 c ΛQ, we obtain
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(L~ + LΓ) n ωΛ = (£r + n?)N n ωA = (i~ -> (c c + c.)* n ωΛ)
= l~. (Mc n ωA) = i- (Mβ n ω,) .

Here we have used the relation (Lc°° + L7)N c (LΓ + L7)1N = Cc + C8. For

the last equation see Lemma 2.5 and observe that (L?)ίN = Cc, (LΓ)liΫ- = Cs

and hence (LΓ + LΓ)^c(C c + C8)^ ([18], Satz. 2.3).

We now present the main theorem of this section.

THEOREM 4.4. If A — {Xke Z+: λfc+1 > qXk for some q > 1 and k =
1, 2, •} then

a) I- . [(Mc + M.) n ωA] = (I00 -+ (Cc + C8)N Π ωJ

b) I- (Lβ n L s + ω,,) - (I- — [Cc Π Cs + ω,,]*) .

PROOF, a) by 4.2 d)

(l) ( C c n c s - Γ ) = ί2.

Also

(2) (Cc Π C8 ~> ί1) = (iσ -H. (Cc ΓΊ Cs)
σ) by Lemma 2.6 with D = σs since

(ί1 -> σs)σ = (l°°)σ = Z1 and (Cβ Π C8)
σ = Cσ

c + C; = iίϊc + Ms where the first
equation follows from ([9], Th. 4) and the second from ([6], p. 369). Hence
by (1) and (2) we have

(3) 12= (l~-+Mc + Ms).

By 4.2 c) we have

(4) I00 + ωA. = Mc + ωA, .

This implies

(5) ((ϊ- + ωΛ) - (Mβ + Ms)) - ((Mc + ωΛt) -+ (Mc

The left term is equal to (l°° -^ Mc + ikfs) n (ω^ -> Mc + Ms) where
(o)^ —»Mc + Mβ) = ω,< + ^ by Lemma 2.4.

The right term in (5) is equal to
(Mc -+MC + Ms) n (o)Λ + φ) (again by Lemma 2.4).
Now (Mc -> Mc + iίf.) = Mc + M8 since (1) e Mc and Mc o (Mc + Ms) c

iίίe Mc + Me M8 c Mc + M s. Thus by (5)

(6) (ϊ- — Mc + M8) n (ω, + φ) = (Mc + M8) n (ωΛ + φ) .

(6) and (3) imply

I2 n (ωΛ + Φ) = (Mc + M8) Π K + ^) .

By intersection with ωΛ we obtain
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(7) V ΓΊ ωA = (Mc + Ms) Π ωA .

It follows from 4.3, g) that I2 Γ\ ωΛ = (l°° -> (Cc + CS)N Π ωΛ). This im-
plies with (7)

(8) (j- ^ ( c c + σ.)* Π ωΛ) = I- [(Mc + M3) n ω j .

Thus a) is proved.
b) The equation in b) can be considered as the dual equation of the

following equation

(9) (Cc + C.) n α ) i = (Mc + Ms) ΓΊ ω,

which is immediate by (8).
Indeed (9) implies, by Theorem 2.2 (since Cc + Cs as sum of two FK-

space with with σK is also an FϋΓ-space σK)y that

[(Cc + C.) Π ωyl]
σ - (CJ Π CJ) + ωA, - (Mc Π Ms) + ωA,

= [(Le + £.) n ω,]σ = ί r n LΓ + ^ , .

Since the space represented by this equation is equal to I2 + ωA, which
is a solid J^ϋΓ-space with AK, we also have

Ϊ- . ( i i f . n i 3 ι ω,o - ( £ r n L Γ + coΛ)ιN- ( c c n c 8 + ω,,)̂

- (I- — [Cβ n C. + ωA,]N) .

Thus (b) follows.

REMARKS. 4.5. 1. Statement 4.4 b) improves the theorem of Paley
stated in 4.2 a) and the theorem of Banach in 4.2 b), as well as the
statements 4.3 e) and 4.3 f).

2. Statement 4.4 a) can also easily be derived from 4.4 b). Thus
both statements are equivalent (since we derived 4.4 b) from 4.4 a)).

3. To our knowledge theorem 4.4 contains the best results concerning
Hadamard gaps of Fourier series in the sense that it states the equalities
E Π coΛ = I2 Π o)Λ and Ex + ωΛ, = I2 + ωΛ, for the widest range of spaces E
and Eγ.

4. In view of Theorem 4.4 we note that Z°° (Mc + M8) — l°°, but
l°° (Lc Π L8) = c0 (Lc Π L3) g c0. It would be interesting to know what
c0 (Lc Π Ls) is.
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