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Many statements about sequences ¢ = (x,) with gaps, that is sequences
x with the property that x, = 0 for all k belonging to a certain index
set ICcZ*=1{1,2, ---} are of one of the following two types:

1. All sequences which belong to a certain space A and which fulfill
a certain gap condition, belong also to some space B& A.

2. All sequences ¢ which belong to a certain space A have the fol-
lowing property: There exists a sequence y = (y,) € B& A such that for
a certain index set I = {n,} C Z*

(x, if n = n,

=10 if m#mn,.

All statements of type 1 can be expressed in the form
o, NA=w;,NB

where w, is the space of all sequences x = (x,) for which x, = 0 if ke I.
All statements of type 2 can be expressed in the form

A+ w, =B+ w,

where I’ = Z*\I and for any sets F, and E, of sequences the sum E, + E,
of the two sets is defined by

E + E,={x = (x,): ¢, = u, + v, where (u,) € E,, (y,) € Ky} .

It is the purpose of this note to demonstrate how the theory of sums
and of intersections of F'K-spaces can be used to simplify the proofs of
known theorems on lacunary sequences and to obtain new results.

The main results of this paper (except for a few basic theorems) can
be summarized as follows: Let {n;}7., be an increasing sequence of posi-
tive integers and let @ be the linear space of all complex valued sequences
©= (x)5,. Let w,={wew:w, =0 if k#n;j=12 ---}, let E be an
FK-space (see section 1), E, = {x€ E: x has sectional convergence (AK)},
E,y = {xe E: x has Cesaro-sectional convergence, i.e. (x, (1 — n7Y)a,, (1 —
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20 )gy oo, 1 — (n — ) N)2,, 0,0, «++) >2, (n—c0) in K}, es={rcw:
S, @, exists}, 0s = {ge w: lim,... >it-, (1 — (k — 1)n ")z, exists}. Then the
following is true: If osN®; = c¢sNw; then EyNw, = Ey N w,. (i) Let
Ne = qn; where ¢ > 1 is fixed. If 37 . fk)e’* ~ f(¢) € L'(T), then there
exists a continuous function g on T with Fourier series of power series
type, i.e. such that g(¢) ~ S, d(k)e’* and such that §(n,) = f(n,) for
i=1,2 .. If pe M(T), p(t) ~ Sip-—.. fi(k)e* where fi(k) = 0 if 0 < k+#mn;,
then there exists a continuous function % on T such that h(t)~2;’:=_w}?(k)e““
where (k) = 0 if 0 < k = n; and h(n;) = fi(n;) for j =1,2, «--.

This summary is identical with the abstract [8]. I am grateful to
Professor J. Fournier for bringing to my attention that statement (ii) can
be derived also from statements in his paper [4].

Theorem 4.4 is stronger than statement (ii). Since its formulation is
a little complicated I have preferred to state the simpler result (ii) in the

introduction.

1. Definitions. Let @ be the linear space of all complex sequences
¢ = (,);=. Any vector subspace E of @ will be called a sequence space.

A sequence space E with a locally convex topology 7 is called a K-
space, if the inclusion map (&, ) — @ is continuous when ® is endowed
with the topology of coordinatewise convergence. If in addition (E, 7) is
complete and metrizable, then (E, 7) is called an F'K-space. The basic
properties of FK-spaces can be found in papers of Zeller [17], [18] and in
books of Goffman and Pedrick [10], Wilansky [15] or Zeller and Beekmann
[19]. @w is an FK-space whose topology is given by the semi norms
ek =1,2, ---) where p,(x) = |2, (x€w). An FK-space whose topology
is given by a norm is called a BK-space.

It IcZ+ then w, = {xew:x, =0 if k¢ I} is a closed subspace of w,
hence itself an F'K-space under the topology induced by w.

If x€ w, then the sequences P,xr defined by

v, if k=12 +--,m
0 ifk=n+1,n+2---
are called the n-th sections of x, and the sequences P.x defined by
A—-F—-DDn)zx, if k=1,2,--+, 1
0 fk=n+1,n+2 -

are called the n-th Cesaro-sections (of order one) of .

If Eis a K-space, x€ F, P,x€ E for every n =1,2, -+ and if P,v —x
(resp. P,x —x) in E as n— o, then z is said to have sectional conver-
gence or AK (resp. Cesaro-sectional convergence or ¢dK). For a K-space

(Pa)s = {

(Pa), = {
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E we define the spaces

Ey={xeE:x has AK}. E,y = {vxc E: x has oK}
E,; = {wecw:{Px}r, is a bounded subset of E}
E,; = {xcw: {Px};_, is a bounded subset of E}.

E has AK (resp. oK) if E = Ey (resp. E = E,;). E has AB (resp. oB)
if Fc E,; (resp. EC E,;). It should be noted that it is not necessarily
true that E,;,C FE or E,;,C E.

If (p;) are the semi norms defining the topology of an FK-space E,
then E, and E,, are FK-spaces with the topology given by the semi
norms ¢;(j = 1,2, -++) where g;(x) = sup, p;(P,x) [7]. Correspondingly E.y
and E,, are FK-spaces with the topology given by the semi norms
9i(d = 1,2, --+) where g;(x) = sup, p;(P,x).

The following BK-spaces with the indicated norms will be important
in the sequel: For 1 < p < o

p={vew:(Zlal)” = lalr<e),

> = {zewisup @] = f|ollm <o},
¢, is the closed subspace of !~ consisting of # with lim,_ .z, = 0,

’

cs = {ace w: Zxkexists}, 2]l = sup!z X,
k=1 n k=1

n—oo k=1

08 = {wew:(C’, 1) — glxk = limﬁ}(l _k ; 1>xk exists} ,

]l = sgplkﬁ;}l(l _k ; 1)%! ,

by = {xea):i [ — T | <00} )
k=1

2]l = kZ_llx,, — Tpa| + lkimlxkl ,
bv,=bvNeg,,

q = {xe = i (k + 1)| Lx,| < oo, where fx, = 2, — 20,4, + xk+2} ,
k=1

olly = 30 + 1)| 4y + sup [ ,
HL=qgNC¢.
In addition we use the following notations:

¢ = {xew:z, =0 except for finitely many ke Z*}.
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If , ye ® then zy = (z,y,).
If Ec w, then for any real number «

&“E = {we : (k-z;) € E) and SE — d~E.

For any pair of sets A C w and BC o the space (A — B) of multipliers
from A to B is defined by (A — B) = {x€ w:za€ B for every ac 4}.

In particular we define the g-and o-(dual Kothe-) spaces A’ respectively
A° of A by A? = (A —c¢s), A° = (A — 09).

The set A, orthogonal to A, is defined by A, = (A — {0}) where {0}
is the set consisting of the null element in w.

If F is any K-space then E’ shall denote the space of linear continu-
ous functionals on E.

A sequence space E is called solid (or normal) if E = (I°— E).

2. Basic Theorems

LemMMmA 2.1. Suppose E is an FK-space.

(i) If E has AK, then E’' can be identified with the quotient space
EsE,.

(ii) If E has oK, then E’ can be identified with the quotient space
E'|E,.

ProOF. (i) Suppose E is an FK-space with AK. Then ¢ € E’ if and
only if there exists a sequence y € E*# such that

M P@) = 3 vy

for every x€ E ([18], Satz 2.1 and Satz 3.4).
Evidently

P(x) = 21 (Y + 21)

for every z€ K/, and E, is the kernel of the homomorphism hi: E?— E’,
where h(y) = ® and ® is given by (1). Hence the mapping g¢: E¢/E, — E’
where g(y + E,) = ® is an isomorphism. Thus E’ can be identified with
E*E, by means of the isomorphism g.

(ii) If E has 0K a similar proof can be given using in this case the
fact that @€ £’ if and only if there exists a sequence y€ E° such that

P@) = (C.1) - 3wy,
for every x€ E ([7], Theorem 5).
THEOREM 2.2. Let E be an FK-space, s CE. ICZ* and I' = Z*\I.
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(i) If E has AK, then (w; N E)* = w,; + E*.
(ii) If E has oK, then (w; N E)’ = 0, + E°.

Proor. (i) Evidently w; + EfC (0w, N E).. For the proof of the
opposite inclusion we use Lemma 2.1. Since w; N E being the intersection
of two FK-spaces with AK is also an FK-space with AK and since ¢ C E
implies (w; N E), = w,;, we can write
(1) (0N E) = (0N E|w,
where the equality here and in similar cases later means identification of
the two spaces as explained in the proof of Lemma 2.1.

Now ’

(wI N E)’ = (wl)’lwIﬂE + E’ImIﬂE

where A’| B denotes the restriction to B of the functionals on A ([17], p.
472, Satz 4.7 b)). Again by Lemma 2.1 we obtain

(@) |, N E = (0)w,

and
E'|w;NE = Efow, .
Hence
(2) (0, N E) = (0)f|w, + E*|o, .
(1) and (2) imply
(0; N E)lw,; = (0,)f|w; + Bflw,;. .
Hence
(w;NE)C (W) + 0, + Ef =w, + Ef

where the last equation follows from the obvious equation (@;)* = w,, + ¢
and ¢ C E®. This together with the opposite inclusion proves the equation
in (i).

(ii) This can be proved correspondingly using part (ii) of Lemma 2.1.

LEMMA 2.3. Let A and B be FK-spaces.

(i) If A has AK then (A— B) = (A — By).

(i) If A has oK, then (A— B) = (A — B,y).

Proor. (i) Evidently (4 — By) © (A — B) since ByC R. Conversely
suppose € (A — B). The mappings T,: A— B where T,a = xa for any
a€ A, are linear and continuous [17]. Hence if {p;} are the semi norms
defining the topology in B, then ¢; = p;- T, is a continuous semi norm on
A. Hence for each 7=1,2, ---
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q.?'(Pna - Pma) = pf[Tx(Pna' - Pma)] = pi[Pn(xa) - P‘m(wa’)] '_)0
if m > m — . This shows that za€ By. Thus x€ (4 — By).
(i) This can be proved correspondingly using now P, instead of P,.

LEMMA 2.4. If Ic Z* and ¢ Nw,C EcCd™® for some neZ*, then
(0, — E) = o, + ¢.

PRoOOF. Let E c d"l™ for some ne Z*. This implies SHZE ccs. Hence

1= ([0 B ([ o) = ()

= &0y +9) = 0 + 9.
Conversely if ¢ N w, C E then (®,; + ¢) C (0, — E) since w,-w, = {0} and
oW, CoNw,CH.

2.5. Let A and B be FK-spaces whose topologies are defined by the
collection of semi norms {p;}-, and {q;};=, respectively. Then A + B is an
FK-space in the topology defined by the semi norms 7;,(j, k€ Z*) where

r;,x(2) = inf {p;(a) + ¢, (b):ac A, be B, x = a + b}
(see [14] or [16]).

LemMA. (i) If A and B have AB, then (A + B)y = Ay + By.

(ii) If A and B have 0B, then (A + B),y = A,y + Byy.

PROOE. (i) Clearly Ay + By< (4 + B)y. The opposite inclusion fol-
lows from the following equation of Garling ([5]; p. 1007): If E is an
FK-space then Ey = by, E; = bv,- Ey. Since A + B has AB if A and
B have AB it follows that (A+B)y=bv,- (A+B) C bv,+ A+bv,- B= Ay+ By.

(ii) This can be proved correspondingly using the obvious inclusion

Ay + ByC (A + B),y and the equation of Buntinas ([3], p. 197): If F is
an FK-space then K., = q,* E.; = q,+ E.y.

LEMMA 2.6. Let A, B, D be subsets of w and B = (B— D) — D). Then
(A—B) = [(B—D)—(A— D)] = ((A— D) — D] — B).

PrOOF. Suppose x€ (A— B), a€ A. Then xa€ B. Hence if h e (B— D),
then xah = (zh)a € D implies 2 € [(B— D)— (A—D)]. If B= (B—D)—D),
then by the same reasoning

[(B— D)—(A— D)]c{[(A— D)— D] —[(B— D) — D]}
=({(A—D)—D]—B)c(A—B),

where the last inclusion follows from A < [(A — D) — D] ([7]; p. 139).
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3. Lacunary sequence spaces with AK or with K
THEOREM 3.1. Suppose I < Z* such that

and suppose E is an FK-space with the property ¢ N w,C EcCd"l™ for
some n€Z*. Then

O, NEy=w,NEy.
PRrRoOF. o0s is an FK-space with 0K[12]. Hence by Theorem 2.2
(w;N0as)’ = v, + (0s)°.
Now (0s)° = ¢, [2]. Hence
(2) (w;N0s)y° =w, +4q.

Since w; Nc¢s is an FK-space with AK and since (0s)y = ¢s we have
by Lemma 2.3 (i) and by Theorem 2.2

(3) (w;Nes) = (w;Nes)f = v, + (es)? .
Now (cs)® = bv [2]. Hence (1), (2) and (3) imply
W, +qg=0w, +b.

Hence ([w;, + q] — E\y) = (@, + v] — E.y), which clearly implies
(4) (w, —Ewy) N(Q— Ey) = (0, — Ey) N (bv— Ey) .
Evidently bv = bv, + [1], where [1] is the linear space spanned by the
sequence z = (x,) with z, = 1 for all k. Therefore
(5) (v — Eiy) = (bv, + [1] = Evy) = (bv,— (Eww)y N Ery

where the last equation follows from Lemma 2.3 since bv, has AK. Now
(Ew)y = Ey since E,yC E implies (E,y)yC Ey = (Ey)y C (E\y)y where the
equation follows from ([5], p. 1016, Cor. 2). Hence

(6) (bvy — (Eiy)y) = (bv,— Ey) .
Now
( 7 ) (bvo - EN) = E;

because bv,- E,;C Ey ([5], p. 1006, Th. 4) implies E,;C (bv,— Ey) and
conversely (bv,— Ey) C (bv — E,;) < E,; ([5], p. 1002, Prop. 3, (¢) = (f)).
Therefore (5), (6) and (7) imply

(8) (b'v'_’ELN):EABnEuv'

Furthermore
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(9) (@— Ey) = Ey (3], Th. 3.11).
Thus (4), (8), (9) and Lemma 2.4 imply
(wl+¢)nEABnEIN: (wl +¢)OE1N'
Intersection of the sets on both sides of this equation with w, yields

wlnEABnElN:wlnElN-
Thus

;N Euv c [wl N EAB N E’uv]uv = w; N (EAB)lN N Euv

since (E\y).x = E.y ([3], Th. 8.11 and Prop. 3.6). But (E.,;).w = ¢ E.s
([3], Th. 8.11) and ¢, E,;Cbv,- E,; = Ey ([5], p. 1006, Th. 4). Hence
w,NEyCcw,NE, Since the opposite inclusion is obvious, the theorem
is proved.

EXAMPLE 3.2. Suppose I = 4 = {\. € Z*: Ny, > g, for some ¢ > 1 and
for all k = 1,2, ---}. For any sequence space E the intersection w,N E
is the space of sequences in E which have Hadamard gaps. It is well
known that w, N os = @, N es ([20], vol. I, p. 70). Hence the last theorem
is applicable with I = 4.

REMARK 3.3. The last proof contains several equations which are of
independent interest. For example

W, +q=w, + bv
and
(b’l) - Euv) =K,z N Euv .

However the proof can be shortened considerably and the condition
6N w,C Ecd"l” can be omitted if one uses the concept of weak sectional
convergence (=SAK; see [18]).

Let E be an FK-space. An element x€ E has SAK, if for every linear
continuous functional @ € E’

lim p(P,%) = @() .

n—oo

Let

In the proof of Theorem 3.4 we use the following important fact
proved by Zeller ([18], Satz 3.4):
If E is an FK-space and E = Eg,x, then E = E,.
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THEOREM 3.4. Suppose I = Z* such that
(1) ®; N0os = w, N es.

Then for any FK-space E we have
(2) (OlﬂElNzwlﬂEN.

PrOOF. Suppose @€ (w; N E,y). Since @, N E\y is an FK-space with
oK, we have for rew, N E,,

P@) = (C,1) — 5, mP(e")

where ¢ is the sequence (w%)7., with »! =1 if j = kand % =0 if j = k.
Hence {z.9(e*)}r=.€ 0s N w, which by (1) implies {z,®(e*)}€cs N ;. Hence
lim,_. P(P,x) = 35, 52" = @(x) exists for every zew,; N E,y and for
every € (w; N E). Thus by ([18], Satz 3.4)

(@, NEy) = (0,NEy)six = (@;NEy)y=0,N(Eyy=0;NEy

where we used again the fact that (E.,)y = Ey (see proof of Teeorem 3.1
just before equation (6)). Thus (2) follows.

4. Lacunary Fourier Series

4.1. In this section the technique developed in sections 2 and 3 will
be applied to spaces of sequences of Fourier coefficients. As usual 1)
L*1 £ p< =), 2) L=, 3) C, 4 M will denote respectively the space of
27-periodic, complex valued measurable functions f or measures £ on the

real line for which 1) <§Zz|f|z’dt>”p = || fll, < =, 2) ess.sUDy<s<z: | S (#)] =

[| flle < o0, 3) f is continuous, || f|lc = maX, . |f(t)], 4 ¢ is a regular

Borel measure, [|¢|| = Skldm. If E is any of the above spaces, then the
0

space of sequences of Fourier coefficients of even (resp. odd) functions or
measures in E will be denoted by E, (resp. E,). Thus

E = {x: i‘, x, cos kt ~ g(t), where g€ E} ,
k=1
and
B = {x: S, sin kt ~ h(t), where he E} .
k=1
b1 2
For convenience we have assumed that S gdt =0 (resp. S dg =0 if
0 0

g=u ) This will affect our results only in an obvious way.
The spaces E, and E, are evidently BK-spaces with the norms @z, =
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llgllz and |||z, = [[A]]e-

4.2. Our starting point is the following set of theorems of Paley and
Banach for sequences with Hadamard gaps and a theorem of Helson (which
had its origin in a theorem of Paley).

Let 4 be an index set defining Hadamard gaps (3.2); then the follow-
ing statements are true:

a) (Paley [13] or [20], vol. II, p. 138)

f,cﬂf,s—kw,‘,: P+ wy.
b) (Banach [1] or [20], vol. II, p. 181 (7.1))

E+w,=C +w,=C,+w,.
¢) (Banach [1] or [20], vol. II, p. 131 (7.1))
M,ndC) +w, =MndC) + v, =1+ 0, .
d) (Helson [11])
C.nC,—1)=1.
4.3. As immediate consequences of these statements we list the fol-
lowing:

e) L.NnL,+w,=C, +w,=C, +w, .
Proor. This follows from a) and b).
f) = (L.NL,+w)=(C. + w)y=C, + @)y .

Proor. The spaces in e) as sums of F'K-spaces are FK-spaces (2.5).
Since each of them is equal to the FK-space I + w, by a), which is a
solid (= normal) FK-space with AK, f) follows.

2) (M nw)=1"-(Mno)=@0—C.+Clynw,).
ProoF. By taking the o-dual spaces E° of the spaces E in e) and
~ AN AN ~ o~ NN
observing that L = L2, L? = L7 ([6], p. 369) hence (L.N L,)° = L7 + L7
(9], Th. 4) and Cc = M,, C; = M, ([6], p. 369) we obtain
AN A N _
L+ L) N(wi+¢) = M, N (0, + ¢) = M, N (0, + ¢) -
Intersection with w, gives
AR N N
Ly + L)nw, =M, Nw,=MNaw,.
Since the spaces in the last li/rie ars\ evidently equal to the solid FK-
space I* N w, which has AK (since L® + L= I*C M, and I* C J1,), we obtain
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/\ /\ /\ /\ A ~
L+ LY)Nw,= (L7 + L)ynNw, = (1"—(C, + C)y Nw,)
=l>-MNnw,)=1-MNwo,).

AN A ~ o
Here we have used the relation (L + L)y (LT + /{f")m = C, —L-\ C,. For
the last equatlon see Lemma 2.5 and observe that (L?),y = C., (L%),y = C,
and hence (L°° + L“)NC €. + Cx ([18], Satz. 2.3).

We now present the main theorem of this section.

THEOREM 4.4. If A= {ME€ZT: Ny > g\, for some g >1 and k =
1,2, -} then

a) I-[(M,+ M)no,]= =—(C. + CoyNw)

b) - (L.NL, +w)=(00"—[C.NnC, + ol .

ProOOF. a) by 4.2 d)

1) C.nC -1y =1r.

Also

@ (€.nC,—1 =@ —(C,nC)) by Lemma 2.6 with D = s since
('—o08) =) =101and (C.,NC,) =C?+ C; =M, + M, where the first
equation follows from ([9], Th. 4) and the second from ([6], p. 369). Hence
by (1) and (2) we have

(3) P=("—M+M,).

By 4.2 ¢) we have

(4) I+ w, =M +o,.

This implies

®) (@ + @) = (M. + M) = (M. + @,) — (M, + 1)) .

The left term is equal to (I*— M, + M, N (0, — M, + M,) where
(wy, — M, + M, = ®, + ¢ by Lemma 2.4.
The rlght term in (5) is equal to
(M, — M, + M) N (a)A + ¢) (agaln by Lemma 2.4).
Now (M—»M +M)_M + M, since (1) € M, and M, (M, + M,)
-M, + M, - M,c M, + M,. Thus by (5)

=

) (I=— M, + M) N (@ + ¢) = (M, + M) 0 (@0, + ¢) .
(6) and (3) imply
PN@i+¢)= M+ M)N (@0, + ¢) .

By intersection with w, we obtain
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(M Enw,= (M + M)No,.

It follows from 4.3, g) that *Nw, = (I"— (C, + C)y N w,). This im-
plies with (7)

®) == (C.+ CoyNw) =1=-[(M, + M)Nw,].

Thus a) is proved.

b) The equation in b) can be considered as the dual equation of the
following equation

©) C.+Cynaw,= (M, + M) N o,
which is immediate by (8).

Indeed (9) implies, by Theorem 2.2 (since C, + C, as sum of two FK-
space with with ¢K is also an FK-space oK), that

[(C.+Cynw) =CnC) +w, =MnNM)+ o,
~ ~ N\ AN
=[L:+L)yNw)°=L>NL + wy

Since the space represented by this equation is equal to I* + w, which
is a solid F'K-space with AK, we also have

~ ~ AN AN ~ PN
lm. (Mc n Ms + w/i’) = (L:o n L:o + w/l’)lN = (Cc m Ca + w/i’)N
= (- [éc N és + wyly) -

Thus (b) follows.

REMARKS. 4.5. 1. Statement 4.4 b) improves the theorem of Paley
stated in 4.2 a) and the theorem of Banach in 4.2 b), as well as the

statements 4.3 e) and 4.3 f).
2. Statement 4.4 a) can also easily be derived from 4.4 b). Thus

both statements are equivalent (since we derived 4.4 b) from 4.4 a)).

3. To our knowledge theorem 4.4 contains the best results concerning
Hadamard gaps of Fourier series in the sense that it states the equalities
EFnw,="Nnw, and E, + w, = I* + w, for the widest range of spaces F
and E..

4. In view of Theorem 4.4 we note that I=- (M, + M, = I=, but
I (L.NnL)=c¢, - (L.NL)Se¢, It would be interesting to know what
¢+ (L, N L) is.
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