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Introduction. In the recent paper [3], I proved the existence of
Kleinian groups with fundamental domains bounded by four circles whose
singular sets have positive 1-dimensional measure. Now in the natural
way the following problem arises; to what extent does the Hausdorff
dimension of the singular sets of Kleinian groups climb up, when the
number N of the boundary circles increases? It is conjectured and seems
still open that the 2-dimensional measure of the singular sets E of general
finitely generated Kleinian groups is always zero (see [1]).

The purpose of this paper is to investigate the properties of comput-
ing functions introduced in No. 3 of §1 in detail and the local property
of the singular set of the Kleinian group by using these properties.

We shall state preliminaries and notations about Kleinian groups in
§1. We shall prove the main theorem giving the relation between the
computing function and the Hausdorff measure of the singular set of
Kleinian group in §2. At last in §3 we shall seek for the relation between
the computing function and the Hausdorff dimension of the singular set
and further give an application to the convergence problem of Poincaré
theta-series by using the main theorem.

§1. Preliminaries and Notations.

1. Let us denote by B the domain bounded by N mutually disjoint
circles H;, H!(1 <1 < p) and K;(1 <Jj < q) and form the properly discon-
tinuous group of linear transformations with the fundamental domain B,
where N = 2p + q.

Let S; be a hyperbolic or loxodromic generator which transforms the
outside of H, onto the inside of H]. Then {S;}’., generates a Schottky
group whose fundamental domain is bounded by {H;, H}?,. Let {S}}i-,
be the elliptic transformations with period 2 corresponding to {K;}i-..
Then {S}}_, generates a properly discontinuous group whose fundamental
domain is the outside of the boundary circles {K}i.,.

*) This work was supported in part by a research contract AF 49 (638)-1591 (1967-68).



2 T. AKAZA

By combining two groups, a new group G, which is generated by
{S;}2, and {S*}i_,, is obtained and is a kind of Kleinian groups. We often
use the notation 2/ to denote the set of {S;}’,, their inverses and {S}}i-..
It is easily seen that the fundamental domain of G coincides with B.
We denote the singular set of G by E.

Defining the product ST in G by ST(z) = S(T(z)), we can write any

element of G in the form
S = S(vk)S;(k s S(ul)S;ﬁS(vo) ’

where the indices v;(i = 0, - - -, k) are non-negative integers and S, denotes
the product of y; generators of the Schottky group or their inverses and
S}, denotes any element of {S}}i.,. We call the sum

k
m=>v,+k
=0

the grade of S and for simplicity we use the notation S, to clarify the
grade m of S.

The image S,.,(B) of the fundamental domain B by S..(€G) with
grade m(= 1) is bounded by N circles

S(m)(Hi)y S(m)(Hi’)ﬁ and S(m)(Kj) (": = 1; % p;j = 1’ °t % q)

and for simplicity we call the outer boundary circles C of S, (B) a circle
of grade m. The number of circles of grade m is obviously equal to
NN — 1),

Consider two arbitrary transformations T and S of G. We assume
that S % T, where T' denotes the inverse of T. Denote by Ig, I,—
and Iy, the isometric circles of S, T~ and ST, respectively. Let Rg, R,
and Ry, be radii of I, I, and I, respectively. As to these values, the
relation

R.-R
1.1 Rer = s By
0 [T(=) — 5]

holds. The isometric circle of a transformation with grade m is called
the isometric circle of grade m.

2. Denoting by r and »; 4 =1, -+, N — 1) the radius of the outer
boundary circle C and the radii of N — 1 inner boundary circles C;
t=1,+--, N— 1) of the image S(B)(Se @), we have the following two
propositions ([2]).

PROPOSITION 1. There exist positive constants K, (< 1) and k, depend-
ing only on B such that
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(1.2) ko =7 < Kor (t=1,+-+,N—-1).

PROPOSITION 2. There exist positive constants k(G, ) and K(G, p)
depending on G and ft such that

1.3) k(G, B(Ry)" = r'* < K(G, ) (Rg)" ,
where Mt 18 any positive number.

Denote by F,, the family of all closed discs bounded by circles of
grade n (= m,). It is easily seen that F, is a covering of the singular
set of our Kleinian group G and by Proposition 1 we see that the diameter
of any disc of F, is less than a given 6(> 0) for a sufficiently large
integer .

For such a covering F, we have the following important proposition
(2.

PROPOSITION 3. Let F;/* be a covering of E constructed by discs in
F,, whose radit are mot greater than 06/(2k,) and let r, be the radius of a
disc C im F;l», where k, is a positive constant in Proposition 1. Then
1t holds
(1.4) L,(E) = lim inf 3 (2r)" < 5 (k/2)7"M,(E) ,

50 (F':L/ok"’ UEF’:/O"O
where 27" is an absolute constant and M,(E) denotes the 1-dimensional
measure of K.

3. Let T be any fixed element of 2. Denote by H, and H,-: the
boundary circles of B which are equivalent by T, that is, H, = T(H,-)
and further by D, the closed disc bounded by H,. If H, is one of
K;,1<j=q), then Hy- = Hy.

Let Sy = T, T, -+« T.T.(T;€ 2) be any element of G with grade =
and be the following form:

(1.5) Sl@) = L j (fl’ , ad —be = 1.

If we take the derivative of S, (), we obtain easily

. S, (2) |2 1\ _ Rsy “

1.6 Bulaab AN/ =) =), 0 4,
(-6 iz () = (s =) o<
where S;) denotes the inverse (S,,)™ = I;*+«+ T;' of S,,).

Forming the sum of (N — 1) terms with respect to all S,, such that
T.#= T and T; + Ti:! (1 <1 < n — 1), we have the following function

Ry ) s (2)
1.7 (m) — (m)
ol Smm=a) 2l

©l2

) (T,=T7).



4 T. AKAZA

The domain of definition of this function is D,. We denote it by xi"(2).

Since z moves on D, and T, = T, the (N — 1) denominators of (1.7)
do not vanish, and hence x{*’(z) is uniformly continuous in D;. Let S..
be an element of the form S, = TS(._y. Using the relations (1.1) and
(1.7), we obtain easily

Rs(n)s(m) #

L8 1" (Sim(e)) = %)(|sm<oo)RwS<m<oo>|)yzéx Ry,

b

where S.,,Sm = Sinim-

We call x4"(z) the p-dimensional computing function of order 7 on
T and there exist N computing functions y{“"(z) corresponding to the
choice of T from Z/.

If we differentiate S, (z) = T,T,_, --+ Ti(2) with respect to 2z, we get

dS.(2) m | dT(z:)
) dz 11:[—1 dz;

where 2, = z. Hence x{"(2) is also written in the following form
/
YU (7) = ( [ dTy(z) |* 2)
S(n)

= 1| dz
and this representation coincides with the function

RT- 2
; , 4 zeD,,
1_1---T1<z>|)} O<#<4 zeD

which was already introduced in ([3]).

nl2 ©l2

(1.9)

y Zi="Ti,«+-T(2), 2zeD,,

7@ = S (==

S(n)

By using %" (2) we have the following proposition.

ProPOSITION 4 ([3]). Let G be a Kleinian group as im No. 1. If
there exist some positive integer n, and a constant ¢ such that

(1.10) XE@) >0>1,
on the subset E N D, for any Te 2/, then M, (E) is positive.

4. Now let us seek for the relations between two computing functions
on the different elements of 2 and between two computing functions
on the same T with different orders.

PROPOSITION 5. It holds the following relation between two computing
Sunctions on the different elements of Z:

111 K(p) S% X Sw(@) > 0 (2) > k(L p) s% X (Sw (@)

where K(t) is a constant depending only on p, but k(l, 1) is a constant
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depending on 1 and ¢ and tends to zero for | — co. Further it holds the
following relation between two computing functions on the same T with
different orders:

(1.12) K\(n, )xi"(2) > 1450 (2) > Ko(n, 911" (2) ,
where K;(n, 1) (¢ = 0, 1) denote the constants depending only on n and p.

ProoF. Fix an element Te 2 and take a transformation S,, =
SwSwy = ToiiTperyoor Ty Ty« o+ T, T, with grade n + [ such that T, = T,
where T and T; ez 1<j=<n+1). If we differentiate the transforma-
tion S.,.y(®) = S, S (2) (ze D,) with respect to z, we have

wE <' dS(n)(z’) ‘ dS(U(z) >#Iz ) Z =S .

(1.18) \ dS(n+l)(z)

Hence we get from (1.6)
(1.14) ( MlRS(u+l) )" _ ( _ Ry, . —le(,, )/x )
|Sain(eo) — 2| [S7(0) = Sw@ | [SG(ee) — 2

Forming the sum of (N — 1)**' terms with respect to all S, of grade
n + 1 in G such that T, = T, we obtain from the definition of the com-
puting function the following relation

. Rs #
(#37) — (#3T) ()
(1.15) w0 @ = S S (g=m=)
where the domains of definition of ¥’ (2) and x{"¥(z) are the closed discs
D, and D;, bounded by H, and H;, respectively.

Since Sgj() = T;"+-- T'(«0) and z are contained in D, and D,
respectively and T # T;!, each denominator of the right hand side in
(1.15) does not vanish and is greater than some positive constant from
the assumption about B. Noting that Rs, tends to zero for [ — -, we
have the above inequality (1.11).

Since S;j(e0) and S,(2) are contained inD,- and D, in (1.14), respec-
tively, the factor |S;}() — S,,()| is greater than some positive constant
from T, T73.. Noting the definition of the computing function, we can
easily get from (1.14) the above inequality.

5. Now let us give an important property of the computing function.

THEOREM 1. (i) Suppose that the sequence of computing functions
{x#" @)} (n =1,2, -++) on some T e 2 is bounded at some point z,€ EN D;.
Then {x{"(2)} (n =1, 2, «++) s uniformly bounded and equi-continuous
on Dy. ‘
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(i) Suppose that the sequence of computing functions {7 (2)}
m=1,2, ++-) on some Te 2 diverges for n—  at some point z,€ EN Dy.
Put p{"(2) = 1/x%" (). Then (7)) (n =1, 2, «« ) is uniformly bounded
and equi-continuous on Dj.

PrRoorF. (i) From the definition of the computing function we have
for any ze D, the following estimation:
[[SGi(e0) — 2o]* — [SGi(e2) — 2[*]

[SGi(e0) — 2] [SGi(e0) — 2

Let us consider the behavior of the function |S;}() — z[* (0 < £ < 4)
in D,. Since Sgj(e) = T7" -+ T;'(e2) and 2 are contained in Dt and
D,, respectively, and T = T, there is a positive constant o depending
only on B such that

(1.17) [S@i(e0) — 2* > 0.

Denoting the rectangular coordinates S;} (<), z and z, by (@., b.), (x, ¥)
and (x,, ¥,), respectively, we can represent this function in the following

form:

(1.18) |S@i(0) — 2" = {(@ — a.)" + (y — b)), o<pe<4.
The partial derivatives of |S;)(«) — z|* with respect to = and y are
¢ SG () — 2| (v — @,) and p|S5i() — 2[“*(y — b,), respectively and
both functions are continuous on D, from the assumption on B. Using
the mean value theorem to |S;}() — z|#, we obtain easily

(1.19) 185G (o) — 2] — [SGi(e0) — 2|*| £ F 7|2 — 2],

where 9% is a constant depending only on B. Thus we have from (1.16),
(1.17) and (1.19)

(1.16) %" (@) — 2" (=) | = 3L BE,,,

(1.20) 1 240(2) — %P (2| < *—‘”Z'ip:—fix;w“(zo) :

Denote by d the maximum among the values of the diameters of N
boundary circles {H,, H/}?., U {K;}:-,. Then we have from (1.20)
(1.21) X1 () = Kyl (20)
where K = (¢ +d/p) + 1 is a constant depending only on B. Since (1.20)
is symmetric with respect to any pair of points z and 2z, contained in
D,;, we have

(1.22) %‘X;’“T)(Zo) = xiP(R) = Kyt (=)
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which shows that {¥!"()} (n =1,2, --+) is uniformly bounded on D,
under the assumption of boundedness of {y*"(z)} (n =1, 2, «-+).

Take any two points z and 2’ in D;. Since x*" () < M on D, from
the fact proved above, we have from (1.20)

(1.23) I2ED@) — 1) | < WTM 12 — 2] .

Thus {37 (®)} (n =1, 2, --+) is equi-continuous on D,.

(ii) Since lim,_ . ¥ (2y) = o=, PF(2)} (m =1, 2, +-+) is bounded at
2. We have the following estimation:

(1.24) |78 () — 747 (20)|

1 1
R
S%) S(M(|S(n)(°°) — 2" [Sqi(e0) — ZI“>
DT (o)t (g SW
O] TS — ar
( [S@i(e0) — 2|* — |Sm(ee) — 2o|* >
[S@i(0) — 2o]#

In the same manner and notations as in (i), we get the following
estimation:

(1.25) | 90(2) — Pz | < —‘%—'%“—z—”mf‘”%zo .

Denoting by d the maximum among the values of the diameters of N
boundary circles {H;, H/}?_, U {K;}!-, as in (i), we have also from (1.25)

(1.26) —I?Uﬁf‘”’(zo) ST (R) < Kni(z) ,

where K = (2¢7-d/p) + 1 is the same constant as in (1.21). Hence we can
show that {{*"(2)} (n =1, 2, «++) is uniformly bounded on D, under the
assumption at z,. The proof of the equi-continuity of (*"(2)} (=1, 2, «-+)
is also the same manner as in (i). q.e.d.

§2. Local property of the computing function.

6. By using the condition (1.10) (for ¢ = 2) of Proposition 4, the
existence of a Kleinian group with the fundamental domain bounded by
four circles, whose singular set has positive 1-dimensional measure, was
shown in [3]. On the other hand, it is well known that the 2-dimensional
measure of the singular sets of the Kleinian groups defined in No. 1 is
always zero. Therefore it seems an important and interesting problem
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to decide the upper bound of the value of the dimension for which the
singular set of our Kleinian group has positive measure, though our
Kleinian group is somewhat special as a Kleinian group. For this purpose
we must investigate profoundly the complicated property of the singular
set, in particular, the local property of it. We shall find that the com-
puting function gives the efficient tool to investigate the property of the
singular set of our Kleinian group.

7. Now let us give the main theorem under the preliminaries of the
computing function in §1.

THEOREM 2. The following three propositions are equivalent to each
other: (1) The sequence {y¥™(2)} (n =1,2, --+) on some fized T*(e %)
diverges (or converges to zero) at some singular point z,€ E N Dy, that is,

2.1) lim x™(2,) = o (or 0) for some 2z, € EN Dy .

(2) It holds
2.2) lim y{*"(z) = o (or 0)
for any T(e z7) uniformly on D,.

() M,x(E) = e (or 0).

As the proof of this theorem is complicated, we shall divide it into
six lemmas. At first we shall prove that (1) is equivalent to (2). Since
(1) is valid under (2), it is sufficient to show only that (1) implies (2).

Now we shall give the following lemma.

LEMMA 1. Suppose that the proposition (1) of Theorem 2 holds. Then
it holds

lim x%#"(z) = = (or 0)

for any T(e z’) uniformly on D;.

PRrROOF. (i) The case of the limit 0.
Take any point z€ D;.. Then we have from (1.22)

(2.3) LKX;#:T‘)(ZO) é X;#;T‘)(z) é Kx;f“.T")(zo) .

We can determine for any ¢ the order n,(7*) depending on &, T* and z,
such that

YT (7)) < _15{
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for any n (= n,). We obtain from (2.3)
2.4) 1™ <e, for any z€Dp.

Now from (1.11) of Proposition 5 we have for z,(e EN D,.) and its
image T(z,)(e EN D,, Te %) the following inequality

(2.5) X (20) > k1, )7 (T(20)) -
Since lim,_., x**(z,) = 0 from the assumption, it holds for T(z,)
(2.6) lim x#"(T(z)) =0 .

Hence from the above method there exists the order n,(T) depending on
e, T and T(z;) such that it holds for any n (= n,(T)) and for any ze¢ D,

(# T)(z) <Le€.

If we denote max,., n(T) by n*, we see easily that it holds for any T
and any n (= n%)

(2.7) 1T (R) <e
on D,. Thus it holds
(2.8) lim y#*"(z) = 0

for any T(e 2z7) uniformly on D,.

(ii) The case of the limit .

Take any point z€ D,.. Then we have from (1.26)
1
K

(2.9) NET(2) S V() = K0 (z,)

Let n,(T*) be the order depending on &, T* and 2z, such that it holds
NN (z,) < ¢/K for any n (= n)). Then we obtain from (2.9)
(2.10) n¢T(z) < e for any ze€ Dj..

From (1.11) of Proposition 5 we have for any 2'(e E N D;) and its image
T*2')(e EN Dy.) the inequality

1

2.1 ;#?T) ’ (.U T*) T*
@1 TDE) < T -
Since lim,_.. 7™ (T*(')) = 0 from (2.10), it holds
(2.12) lim P (@) = 0.

n—oo

Hence from the method in (i) there exists the order 7,(7T) depending on
e, T and 2’ such that it holds for any n (= n,(T)) and any ze D,
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77:,,‘”;7')(2) <e€.

If we denote max,., n,(7T) by n*, we see easily that it holds for any
T and any n (= n%)

(2.13) 7R < e

on D,. Thus it holds

2.14) lim y#7 () = oo

for any T(e€ 2’) uniformly on D,. q.e.d.

Thus we could prove that, in Theorem 2, (1) is equivalent to (2).

8. Suppose that the sequence {y¥""(2)} (n =1,2, «-+) diverges to in-
finity (or converges to zero) at some point z,€ E N D, for a fixed T*(e 2).
Then any subsequence {x! " (2)} (¢ =1,2,--+) diverges to infinity (or
converges to zero) at z,. Conversely, we shall prove the following result.

LEMMA 2. Suppose that for some subsequence {Y\5""(2)} (¢ =1,2, ++-)
of {({*™ )} (m =1,2,-++) with respect to some T*(e %)

(2.15) lim xi"(z) = oo (or 0) at some ze€EN Dy .

Then it holds
(2.16) lim ¥ (z,) = oo (or 0) .

PrOOF. (i) At first we shall prove the case for «. If we replace
the sequence {yi"(2)} (n =1,2,---) with the subsequence {xi""(z)}
(#=1,2, -++) in Proposition (1) of Theorem 2, we obtain from Proposition
(2) of it that it holds

2.17) lim x"(2) = oo
uniformly on D, for any T(€ 2’). Then for any large number M there

exists some positive integer 7, depending only on M such that it holds
for any ze D,

2.18) 2E0@) > M.

Consider the computing function y{"”(2) at 2, where ¢ is a positive
integer. Then for any small ¢’ (> 0) there exists some positive number
0'(¢') depending only on &’ such that

Xin ' (20) > X () — €', for any 2€ Dy(2) N Dy

where D,.(z,) denotes a disc of radius ¢’ with center z,. Hence if we take
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a sufficiently large integer [, then there exists an S, € G such that S ()
is contained in D, (2,) and such that

(2.19) Xiny @) > Xiad " (Sw(ee)) — €«

Here we have from (1.8)

s(qz')( S(gn, )S(z))
2.20 (S ) (c0)) = —0
( ) X 0 ( (l)( )) (RS(“)

We can modify the right hand side of (2.20) as in the following:
2 ( S(qn, )S(u) { Z ( S(5n, )S(n) }

e

S(qn,) (]«n
2.21 0 =
( ) (RS(Z)) I > (RS((,—M )S(z))

S((] l)n)

Il

1

where S, is the identity. Since

Z (RS(Jn )S(”)

S(ng) = TS, S, (oo S
(RS((j—l)no)S(l)) = X TS (nyngS () G=1,
we have from (2.18)
(2-22) X;L[(;"Ti)(S((j._l)no)S(“(OO)) > M , (j g 1) )

where S yupSw = TiSij—vng+1i-v and T;e 27. Applying (2.22) to (2.21),
we obtain from (2.20)

(2.23) X (Sw(e2)) > M*
and we get from (2.19)
(2.24) AL (=) > M — €

Since M can be taken sufficiently large, ‘”’T"(zo) tends to « for ¢ — co.

qngy

Thus we find that under the assumption (2.15) there exists a subsequence
(X% (2)} (¢ =1,2, ++-) such that it holds

11m XN (2g) = oo

Let %™ () be any term of {x!"™(®)} (n =1,2, ---). Then we have
from (1.12)
(2.25) K\ (10, )X ihyy " (20) > X" (20) > KoM, )Y gy (20)
where n’ = qn, + n* (n* < n,). Therefore we obtain

lim 7™ (2)) = o
n—+c0

(i) Next we shall treat the case for zero.
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If we replace the sequence {3{*""(2)} (n = 1,2, ---) with the subsequence
{xi5™ ()} (¢ =1,2, +-+) in Proposition (1) of Theorem 2, we obtain from
Proposition (2) of it that there exists for any small number ¢ (< 1) some
positive integer n, depending only on ¢ such that it holds

(2.26) XuiT(z) <e,

for any T(e z’) and any ze D,. In the analogous way as in (i), we can
easily prove from (2.21) that for {y!*""(2)} (n =1,2, ---) it holds

lim ™ (2,) = 0. q.e.d.

9. Now let us prove that (2) is equivalent to (3) in Theorem 2. Since
the proof is complicated, we divide it into four lemmas.

Suppose that lim,_. y¥7(2) = « for any 7T(e€ Z’) uniformly on D,.
Then for any large number M there exists some positive integer n, such
that it holds

(2.27) xa"@) > M

for any T(e 2’) and any ze D,.
From (1.8) it holds

R #
(2.28) 15" Sap(=2) = 2( ) > M.

Sag) RS(IO)
Since
s%;)(Rs(no)s(lo))" = %';)(Rsﬁé)s;;o))” and (Ry, )" = (Reg)"
we get
(2.29) S (Bogsz)* > M x (Ryg)"

(ng)
(ng)
where Zs(—”lo) denotes the sum of the radii of isometric circles Is(—,;, st
when S7;., runs over all the transformations with grade =, whose left
elements are not equal to the inverse of the right element of S7).
This was the sufficient condition for the (¢/2)-dimensional measure of
E to be positive and was given in [3]. Thus we have the following lemma.

LEMMA 3 ([3]). Suppose that lim,..xL " (R) = « for any T(e2)
uniformly on D;. Then it holds M,,(E) > 0.

10. On the other hand we can easily prove the following lemma.

LEMMA 4. Swuppose that lim,_. x{"(z) = 0 for any T(€ Z) uniformly
on D;. Then it holds M,,(E) = 0.
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ProOF. We can find, from the assumption, some positive integer =,
depending only on any given small ¢ such that it holds

(2.30) ALT(2) < e

for any T(e€Z’) and any ze D,. Consider the image of the infinity

Siy(e0) (S = TS,,_,)) by S;;(2). Then we have from (2.30) the following
inequality:

R # R —1q—1 ©
(2.31) X;’;:T)(S(L)(OO)) — Z ( S(no)s(z)) — Z ( Sms(no)) <e.

R —1 —1
(ng) S(1) S m0) S0

Denote by st @=1, -+, NN — 1)) the radii of circles ng; of
grade | greater than #n,. Then from (1.3) of Proposition 2, we get the
following inequality

NN=—nlT1 N(v=l—1
(2.32) S )= KG 3 (R
Putting I =p-n, + ¢ 1 £ q, < ny), where p is a positive integer and
arranging (N — 1)™ circles N —1 by N — 1 with respect to all inner
boundary circles contained in all circles of grade n, we obtain from (2.31)

N(v—lT1 N(N—1)9,"1

(2.33) 2 (Bap)r < (9 2 (Bsip)"

i=1 i=1 (g9)

N(N—p¥~1
s@mx (3 Byr).

1sv=qp M Jj=

Since the right hand side of (2.33) tends to 0 for p — «, we obtain from
(2.32)
N(N—l—1

Iim 3 (rge)"*=0.

oo = i3
Thus we can conclude that M,,(E) = 0 under the assumption of Lemma.
q.e.d.
11. Now let us prove the following lemma.
LEMMA 5. The following two propositions are equivalent to each
other: (i) The subsequence (™ (2)} 1 =1,2, +++) of ("™ (@)} (n=1,2,--+)
on some fized T*(e 2) converges to a (+ 0) at some z,€ EN Dy.. (i)

(2.34) 0< M,u(E) < oo .

ProoF. We have already showed in Lemma 1 that the propositions
(1) and (2) in Theorem 2 are equivalent to each other. From this result
and Lemma 2 we can easily see that the above proposition (i) is equivalent
to
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(2.35) 0 < x* () = X" () < oo,
for any T(€ 2’) and any ze€ D;, where

1“7 (@) = limyy () and Y*"(2) = hm AT (2) .

oo

Hence it is sufficient to show that (2.34) is equivalent to (2.35). We divide
the proof into two parts (A) and (B).

12. (A). At first we shall prove that ¥*7'(z) < o implies M,,(E) < oo
and that 0 < M,,(E) implies x*7(z) > 0. Suppose that ¥*7(2) < oo
establishes for any T'(e %). Then from Theorem 1 "R} (v =1,2, )
is uniformly bounded. Hence maXrey (SUP.en, L z) =M is a ﬁmte
number, that is,

(2.36) 1T @) < M
for any n, T(e 2/) and 2(€ D,).
Take any large integer [, and consider all closed discs
Dyp, G =1, -+, NN — 1))

bounded by all circles of grade I,.

Take any closed disc Dy, bounded by CS(“ among the above discs
for such a fixed l,. Denote by rsti =1, (N — 1)) the radii of the
inner boundary circles Csm of grade L(>1) contained in CS(ZO). Then from
(1.3) of Proposition 2, we get the inequality

(v—nl—lo (v—pl-lo

(2.37) S, ) S KG ) X (Rt

(1)

where S} = S;,S{L,). We can modify the sum of the right hand side
of (2.37) in the following:

_nl=lp il [ R,
(2.38) (Ng)l (Rogp)" = s (M) X (Rs)"
= 2D ST () X (Bag)
where S5, = TS, Hence we have from (2.36), (2.37) and (2.38)

(N—=1)ll

(2.39) 2 () = K(G, ) (B ) M .

i=1 (Lg)

i=1

Since Dy (i =1, -+, (N — 1)*™) is a covering of EN DS(ZO)’ we obtain from
(2.39)

(2.40) Mw(EN Dy, ) < + oo -
The above inequality (2.39) holds for any closed disc bounded by the
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circle of grade [, and hence we can conclude that M,,(E) < - under the
assumption (2.35). We see easily from (2.37) and (2.38)

(2.41) Mup(BE N Dy, ) = K(G, )i (Sigp(=2)) X (Bsgr)”
If we suppose that M,,.(F) > 0, there is at least one closed disc DS
among all closed disc Dsm =1+, NN — 1)) such that
M,..(EN Dsuo)) >0.

Hence we have from Theorem 1 and (2.41) that M,.(E) > 0 implies that
27 (@) > 0 for any T (€ 2) and any ze D,.

13. (B). Next we shall prove that M,,(E) < - implies }*"(z) <oo
for any T(e Z’) and any z€ D, and that y*“"(z) > 0 implies M,.(E) > 0.

Assume that this proposition is not true. From Lemmas 1 and 2 it
is easy to see that the sequence {y/"'(®)} (n =1,2, ...) diverges for any
T(e 2’) uniformly on D,. Hence there exists some positive integer I,
depending on any positive number M such that it holds for any T
(2.42) Xii" (@) > M
on D;.

Consider all closed discs Dsu'l)) @G=1, -+, N(N — 1)»™") bounded by .
ngf) with grade [,(> l,). Take any closed disc DS(“ bounded by CS(”
from these discs. Let F,;”"D be a covering of E defined in Proposition 3

of §1 and constructed by a finite number of closed discs Ds(ml), «e+, Dg, o’
which are bounded by circles

(2'43) CS(ml)) °% CS(mQ) ’

respectively, where C5, (1 =Jj =< Q) is a circle of grade m;. Here we
J

assume that 0 is a small number such that m; is sufficiently large and
satisfies the condition

(2.44) mij— b >l .
Let us denote by
(2-45) CS(nl), R CS(nR) N (R < Q)

the circles among (2.43) contained in Cs,,, as the inner boundary circles.

Denote min, ;< (n;) by n*. We amend the circles (2.45) in the fol-
lowing: (i) if n; — »* is an integral multiple of l,, we leave the circle
Cs(,, o and (@) if n;—n*=L-p+q 0<qg <), where p is a positive
1nteger, we replace the circle Cy, ) with the (N — 1)%~7 circles

—plo—?
Csu) o ceo, CS&V;)I)
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of grade m; contained in Cj > where n; — n* = l(p + 1). After such
amendment we get a new subcoverlng of ENDs,,, whose elements are all
discs bounded by the circles of grade n* + l,- p. Denote such circles by

(2'46) CS(,L;), CS(,.é)’ t CS(.,L'U) ’ (R = U) .
Then we get from (1.2) of Proposition 1 the following inequality:

Q R U
(2‘47) gl (TS(mi))#/z > ; (/"S(nj))#/z 2 K(ZO) ‘Z‘i (/’.S(n‘;_))ﬁlz ’

where s, ,7s,, and s, denote the radii of the circles (2.43), (2.45)
7 J J

and (2.46), respectively, and K(I,) is the constant depending only on [, and
B. By using (1.3) of Proposition 2, we obtain

u U
(2'48) ; (TS(,L‘;.))#IZ g K(G’ #) ; (RS(.,,’J))‘“ .

In the set of circles (2.46) there exist a finite number of systems W,.
(k =1, .-+, m), each of which consists of (N — 1) boundary circles with
the following properties: (i) (N — 1) circles of each W,. have the same
grade number n;, while the grades of circles of different systems are not
necessarily equal, (ii) (N — 1) circles of each system W,. are the totality
of inner boundary circles which are contained in a circle of grade n} — [,.
These (N — 1) circles in each W,. are arranged N — 1 by N — 1 and
are replaced by circles of grade nf — 1 and after that, we repeat also such
procedure and so on. After [, times of such procedure, we reach to the
circle of grade ni — l,, that is, the outer boundary circle of S ., (B).
If M > 1 is supposed in (2.42), it holds for each system
%“) (RS(nk—z S, >) > (Rs(n,,—z )
Here Zs%) denotes the sum of the radii of isometric circles IS("%_IO)SUO)’

when S, runs over all the transformations with grade I/, whose left
elements are not equal to the inverse of the right element of S._,,.
After replacing (IV — 1)% circles of each system W,,; by an outer boundary
circle of S,; 4, (B), we have also a new covering of EN D, consisting of
closed discs which are denoted by

'DS(nj’.’)ﬁ D ) DS(”%’) ’ (V < U) *

Repeating the above procedure to these circles and continuing (p — 1)
times, we obtain the following inequality

(2'49) _:,Z:l (RS(,, )) E (RS(”x,) S(n*) - S(ll)S('n‘ )

S(m 8]

S(ng)? :

where the summation in the right hand side is taken over all transforma-
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tions in G with grade n* such that the images S,,.(B) are contained in

Ds(h)
Since
Z (RS(ZI)S(.,L*—JI))F = Z (RS(::.~l )S';l)‘l ’
S('m‘-—ll) S(_nl*—ll) V()
we have
@50 N Ren)' = 5 [Reg,s)/Begs)] x Bez)r.

Sn*— —1) S(,”* N

We see easily from (1.8) that the term in the bracket of the right hand

side of (2.50) is equal to x{%) (S5 (ee)) for Si!, = TS;-. Then we obtain
from (2.42) and (2.44)

XEE(Sap(ee)) > M.
Hence we have from (2.50)
(2.51) 2 (Bs,n)" > (Sspr) X M.

Smr—1))

Since (2.51) holds for any closed disc Ds, ,, we obtain from (1.4), (2.47),
(2.48), (2.49) and (2.51) the following inequality:

1 —ul2
(2.52) sz(%) "M, (E N Dy

= KWK, 193 Ry FIER)) x (B x M

Here we have already assumed that M is any pos1t1ve number and I, is
any fixed positive integer greater that l,. If we take a sufficiently large
number I, for such a fixed [,, we see easily that (2.52) leads to the con-
tradiction under M,,(E) <. Thus we could prove that it holds ¥ (2) < oo
for any T(e 2’) and any ze€ D, under the assumption M,,(E) < c.

Let us prove that M,,(E) > 0 holds under the assumption that
2“"(z) > 0 for any T(e 2’) and any ze€ D;.

We obtain easily from (2.47), (2.48) and (2.50)

R
(2.53) 2 (s, )" = KW K(G, 1) (B ) A2 (Sap () -

If 0 tends to 0 in F/*, the radii of the inner boundary circles of (2.45)
contained in Cj,, tend also to 0 and hence from (2.48) and (2.49) the
grade number n* tends to . Therefore we have from (1.4) and (2.53)

(ly)

@50 (L) Mu(B0Ds,,) 2 KWKG, 1(Regp) 1" (Sii(==)) -
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If M,.(E)= 0 is assumed, it is easily concluded that x“"(Sg}(e)) = 0.
Hence from Lemmas 1 and 2 it holds for any T(e 2)

2#7() = lim 7¥7(@) = 0

uniformly on D;.
Thus we obtain from the contrapositive proposition that x“"(z) > 0
implies that M, ,(E) > 0. q.e.d.

14. Now let us prove that (2) is equivalent to (3) in Theorem 2.

LEMMA 6. If M,.(E) =0, then it holds that lim,_. %" (z) = 0 for
any T(e 2’) uniformly on D,.

PrRooF. From Lemmas 1 and 2, it is sufficient to show that L4 (z) =0
for some T and for some z2,€ D;. If 0 < x*"(z) for some T(e2) and
some point z,€ D;, we have from Lemma 5 that 0 < M,,(E), which is
also a contradiction. q.e.d.

Now we can give the proof of Theorem 2. We can conclude from
Lemmas 4 and 6 that M,.(E) = 0 is equivalent to the proposition that it
holds lim,_.. " (2) = 0 uniformly on D, for any T(€ 2/). Therefore we
get also from Lemmas 1,2 and 5 the following result: M,.(E) = « is
equivalent to the proposition that it holds lim,.. x/"(2) = o uniformly
on D, for any T(e 2/). Thus Theorem 2 was completely proved. g.e.d.

Arranging the above result, we have from Theorem 2 and Lemma 2
the following Theorem.

THEOREM 3. In Proposition (1) of Theorem 2 the assumption for
7@} (n=1,2, -++) can be replaced with that for the subsequence
iR =1,2,--).

§3. Hausdorff dimension of the singular set of a Kleinian group.

15. Let us investigate the relation between the computing function
and Hausdorff dimension of the singular set of a Kleinian group. Given
a compact set F'in the z-plane, the Hausdorff dimension of F' is the unique
non-negative number d(F') satisfying

MyF) =0, if d> d(F)
and
MF) = + o, if 0<d<d(F),

where M,;(F') denotes the d-dimensional Hausdorff measure of F.
The following is well-known ([4]).
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PROPOSITION 6. Let F be any point set in the z-plane and suppose
that a« > 0. If M (F) < +  and a < B, then My(F) = 0.

16. Looking at the above definition of the Hausdorff dimension of a
point set and considering Theorem 2 and Proposition 6, we may define
the Hausdorff dimension of the singular set E of a Kleinian group G in
the following way.

DEFINITION. Let T be any generator or its inverse of the Kleinian
group G, that is, let Te 2. Then the Hausdorff dimension d(E) of the
singular set E of G is defined as

sup {é‘z_ lim x“"(z) = o, for some T and for some zeDT}

= inf {% lim y{*"(z) = 0, for some T and for some z¢ DT} .

n—ro0

We shall prove the following theorem.

THEOREM 4. Let d(E) = p/2 be the Hausdorff dimension of E. Then
M, .(E) is positive and finite.

Rroor. If M, (E) = 0 is assumed, then for any sufficiently small ¢
there exists some positive integer n, such that

(3.1) A2 "(2) < e
for any Te 2 and any z€ D, from Theorem 2. Since .;"’(z) is a con-

tinuous function of ¢ for a fixed 7, and any 2z, we can take a positive
number 6 depending only on & such that

3.2) Ao~ (2) < 2e .

Then we have also from the method of Lemma 4 that M, _;,(E) = 0. This
contradicts the assumption that z,/2 is the Hausdorff dimension.

Next if M, .(E) = o is assumed, we get also a contradiction in the
similar manner. Thus we can see that M, (E) is finite. q.e.d.

From Theorems 2,3 and the above theorem we have the following
corollary.

COROLLARY. Let d(E) = p,/2 be the Hausdorff dimension of E. Then
X" (2) and y“(z) for any T(e 27) are both positive and finite on Dy.

It is natural that the following problem arises in the case of the
finite limit of the sequence of computing functions. Let /2 be the
Hausdorff dimension of E. Does X' (2) equal x'"(z) for any T(e 2)?
If it is true, is the function y*“o"(2) = " (2) = X" (2) identically equal
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to some constant in D,? If it is also true, what is the constant? It is
conjectured that this constant will be equal to 1.

17. ExAMPLE. We gave an example of Kleinian groups with funda-
mental domains bounded by four circles whose singular sets have positive
1-dimensional measure ([3]). Using the result of Theorem 2, we shall find
the more precise property about the singular set of a Kleinian group.

Consider the three circles H; (j = 1, 2, 3) with centers a; = 2¢**~"7/°
(G =1,2,3;% = —1) and equal radii '3 — ¢, respectively. We let these
three circles H; (j = 1,2, 3) correspond to the elliptic transformations
T; G =1,2,8) with period 2. Then we obtain a Fuchsian group G, of
the second kind with fixed circle (2] = 1 + ¢,, where ¢, is determined de-
pending only on . The singular set of G, is on the circle [z| =1 + ¢
and is nowhere dense. Next we describe a circle H, with center at the
origin and the radius 2 — V'3 and let it correspond to the elliptic trans-
formation 7T, with period 2.

Combining the Fuchsian group G, with G, generated by T, only, we
obtain a Kleinian group G, that is, a combination group G,-G,, whose
fundamental domain B is connected and bounded by four circles H;
(j =1,2,3,4).

For convenience of the calculation, we consider the limit case ¢ = 0.
Then B is no more connected and the fixed circle of G, is 2| = 1.

Denote by D; (=1, 2, 3, 4) the closed discs bounded by H; (j=1, 2, 38, 4)
and by U the closed unit dise. Then the singular set E of G lies in the
inside of U N {U%-. D;}.

By the symmetricity of the figure, it is sufficient to calculate the
values of the computing functions y*"9(2) and y»"¢(2) of order » in UN D,
and D,, respectively.

In the case of order n = 1,2, 3, 4, we can not obtain the inequality
AETV(z) > 1. But in the case of order » = 5, we get the result which
satisfies the condition of Proposition 4 in the following (see [3] with
respect to the calculation):

YET () > 1.002004 , x7(z) > 2.218873 .

By using the method in the proof of Lemma 2, we can find that the

1-dimensional measure M,(E) of the singular set E of this group G is
infinite.

18. Application of Theorem 2. Here we shall give the application
of Theorem 2. Let H(z) be a rational function none of whose poles is
contained in the singular set E of the Kleinian group G defined in §1.

Consider the series
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6,(z) = z H)(esz + dy)~

where f is a positive integer and the summation is taken over all elements
z; = (a;z + bj)/(c;z + d;) of G, in particular, z, means the identity trans-
formation. This is a so-called (— y)-dimensional Poincaré theta-series.

We put P.(2) = > |c;z + d;|7#, where g is a positive number. We
call P,(2) the (—p)-dimensional P-series. We have the following theorem
(see [2] as to the proof).

THEOREM 5 ([2]). Let i be a positive number. The following three
propositions are equivalent to each other: (i) The (— p)-dimensional P-
series P,(z) converges uniformly in any compact domain mot containing
the suitable neighborhoods of the poles of P.(2). (i) The series 3.5, |c;|™
converges. (iii) The series >,o_, 1l converges, where 1 1is the sum of
terms (r'™ )2 obtained for radii vV of all circles of grade m — 1.

In particular, if ¢ is a positive integer, the following proposition is also
equivalent to each of the above propositions: The (— t)-dimensional Poincaré
theta-series 6,(2) coverges absolutely and uniformly in any compact domain
not containing the suitable neighborhoods of the poles of @,(z).

It is evident that, if lim,_. [}’ = 0, then the singular set of G is of
(#/2)-dimensional measure zero. Hence, from the above theorem, we get
the following result.

COROLLARY. If any one of the conditions (i), (ii) and (iii) in Theorem
5 1s wvalid, then M,,(E) = 0.

19. The converse of the above corollary. Now let us suppose that
M, (E) = 0. Then from Theorem 2, for any sufficiently small ¢ there
exists some positive integer 7, such that it holds

(3.3) AEN(R) < &

0

for any T(e Z) and any ze EN D,. If we determine the grade number

1, depending only on the above ¢ in the same way as the proof of Lemma
5, it holds

(3.4) Xy " (Sim(e0)) <&

for all images S, () of the infinity which are contained in N(N — 1)
closed discs bounded by circles of grade m (= l,). Hence from (1.8) and
(3.4) we have for any transformation S, with grade m (= [,
(3'5) Z (RS(,,LO)S(M))# < E(RS(,,”)),‘ .

)

S(ng
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Denote by L{’ the sum of terms (Rs, )" obtained for radii R, of
all isometric circles of grade m, that is,
N(N—1m~1

LY =3 (Ryp)r.

i=1

Then the sum 37, |¢;[™* is written in the following way:

N(N—pm—1

ileil™ =3 LY =3 2 (Bsw)-.
=1 m=1 m=1 i=1 (m)

Therefore in order to show the convergence of the series >, |c;|™*,
it is enough to show the convergence of the series

o
> Ly,

m=lgy

where [, is the grade number determined by the above ¢. Then we get
from (3.5)

lo+(ng—1) 1 bty

SLe<( 3 L)Se--—1-"3 L.
m=lyp t=0 1

m=ly — & m=l

Thus we could prove the convergence of the series >, |¢;|™* under the
assumption M,..(E) = 0.
Thus we obtain from the above corollary the following theorem.

THEOREM 6. Let p be a positive number. Three propositions in
Theorem 5 and M, ,(E) = 0 are equivalent to each other.
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