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In a euclidean space E™*' an n-plane or an m-sphere of radius r may
be characterized as an umbilical hypersurface with mean curvature equal
to 0 or 1/r. A similar characterization is possible for an n-plane or an
n-sphere in a euclidean space E™*? where p > 1, as shown by E. Cartan
[1], p. 281. Indeed, it is possible to determine all umbilical submanifolds
of dimension n in an (n + p)-dimensional space form M, which can be
regarded as “n-planes” or “m-spheres” according to whether the mean
curvature is 0 or not.

In an arbitrary Riemannian manifold M of dimension n + p, a natural
analogue of an n-plane is an n-dimensional totally geodesic submanifold
(equivalently, umbilical submanifold with zero mean curvature). In terms
of a geometric notion of the development of curves, Cartan [1], p. 116,
characterizes such n-planes in M as follows. Let M be an n-dimensional
submanifold of M. For every point z of M and for every curve 7 in M
starting at x, the development 7* of ¢ into the euclidean tangent space
T.(M) lies in the euclidean subspace T,(M) if and only if M is totally
geodesic in I.

The purpose of the present paper is to show that a natural analogue
of an m-sphere in an arbitrary Riemannian manifold M is an n-dimensional
umbilical submanifold with non-zero parallel mean curvature vector by
characterizing such a submanifold as follows: for every point = of M and
for every curve z in M starting at x, the development z* lies in an n-
sphere in T,(M). The situation can be further clarified by introducing a
generalization of central sphere defined in [5], which is also a generali-
zation of the notion of osculating circle for a space curve. Namely,
for an m-dimensional submanifold M with non-zero mean curvature in
an arbitrary Riemannian manifold M, we associate to each point x of
M a certain n-sphere S*(x) in T,(I) which we call the central mn-sphere
at . For every curve 7 in M from z to y, the affine parallel displace-
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ment along 7 (with respect to the affine connection in /7) maps S*(x) upon
S*(y) if and only if M is an “n-sphere” in 1. This fact (in the case of
codimension 1) is quite similar to the result on umbilical hypersurfaces in
a space with normal conformal connection due to S. Sasaki [4]. It is
perhaps possible to relate these two results in a direct way.

Our main results are stated as Theorems 1, 2 and 3.

Finally, we remark that it is proved in [3] that if a Riemannian
manifold I admits sufficiently many n-spheres for some #, 2 < n < dim M,
then I is a space form.

1. Preliminaries. We shall summarize the notations and facts which
we need in this paper.

Let M be an n-di~mensional submanifold in an (% + p)-dimensional
Riemannian Nmanifold M. The Riemannian connections of M and M are
denoted by V and V, resgectively, whereas the normal connection (in the
normal bundle of M in M) is denoted by V*‘. The second fundamental
form « is defined by

ViY=V,Y +aX,Y),
where X and Y are vector fields tangent to M. For any vector field &
normal to M, the tensor field A, of type (1,1) on M is given by
Vil = — A(X) + Vi&,
where X is a vector field tangent to M. We have
9(a(X, Y), 8 = g(4:X, Y)

for X and Y tangent to M and & normal to M, where g is the Riemannian
metric on M. For the detail, see [2], Vol. II, Chap. 7.
The mean curvature vector field » of M is defined by the relation

trace 4:/n = g(¢, 1)

for all £ normal to M. We say that 7 is parallel (with respect to the
normal connection) if Vin = 0 for every X tangent to M.
We say that M is umbilical in M if

a(X, Y) =g(X, Y)y
for all X and Y tangent to M. Equivalently, M is umbilical in M if
A =g I

for all & normal to M, Wh~ere I is the identity transformation.
It is known that if M is a space form (a Riemannian manifold of
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constant sectional curvature), then an umbilical submanifold M of M has
parallel mean curvature vector.

We now recall the notion of development of a curve. Let M be a
Riemannian manifold, and let = be a curve from x to y. In addition to
the linear parallel displacement along 7, we consider the affine parallel
displacement 7 along = which is an affine transformation of the affine
tangent space T,(I) at x onto the affine tangent space T,(I) at y. By
parametrizing ¢ by «, so that , = « and x, = y, we denote by 7} and #
the linear and affine parallel displacements along the curve 7 (in the
reversed direction) from x, to x,. When the point %, is considered as the
origin of the affine tangent space T,,(M),Ti(x,),0 =t =<1, is a curve in
the affine space T,(M), which is called the development 7* of 7 into
T.(M). For the detail, see [2], Vol. I, p. 131. Proposition 4.1 there

shows, for a smooth curve r = 2,, 0 < ¢ < 1, how we can obtain the develop-
ment 7*: Set

Yt:’l'éih, Oétél,

where %, denotes the tangent vector of = at x,. Then the development 7*
of  is a (unique) curve C,, 0 <t < 1, in the affine tangent space T,(M)
with C, = « such that the tangent vector dC,/dt is parallel to Y, in T,(I).

This process can be extended to the case of a piecewise smooth curve.
For simplicity, consider a curve composed of two smooth curves 7 = x,,
0t=za,and u=w,a=t=b Let t*=C,0=t=a, be the develop-
ment 7 in T,,(M ). Let C,,a =t =0, be a (unique) curve starting at the
end point of * such that its tangent vector dC,/dt is parallel to z5pi(%,)
for each {,a <t <b. Then C, 0=t < b, is the development of the com-
posed curve f-7. This fact depends on the following. If 7 is a curve
(smooth or piecewise smooth) from 2 to y and if ¢ is a curve from y to
z, then the affine parallel displacement along f¢-7 is the composite of those
along = and g¢. It also follows that if p* is the development of g in
T,(M), then the development (#-7)* in T,(M) is equal to the composite
Y (pu*).v*. We shall make use of these facts.

2. Main results. Let M be an mn-dimensional submanifold in an
(n + p)-dimensional Riemannian manifold M. TFor each point 2 of M, let
7, be the mean curvature vector and H, = ||7,|| the mean curvature. If
H, = 0, we consider the n-dimensional sphere S*(x) with center at %,/H:
and of radius 1/H, that lies in the euclidean subspace of dimension n + 1
of T,(M) spanned by T,(M) and 7,. We shall call S*(x) the central n-
sphere at x for the submanifold M.

REMARK. If the ambient space M is a euclidean space E"*?, then the
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affine tangent space T,(M) can be naturally identified with E"** itself.
Thus the central n-sphere S*(x) is indeed an n-sphere in E**?. We consider
two special cases:

(1) If M is a surface in E® with non-zero mean curvature H,, then
the central sphere S*(x) is a sphere in E*® with radius 1/H, that is tangent
to M at «.

(2) Let M = xz(s) be a curve in E® parametrized by arc length s with
non-zero curvature k(s). Considering M as a 1-dimensional submanifold,
we find that the mean curvature vector is equal to ke, where e, is the
principal normal vector. Thus the central 1-sphere at x(s) is nothing but
the osculating circle at this point.

We now assume that M has non-zero mean curvature at each point
2 and consider the following three properties:

(A) For every x in M and for every curve T in M starting at =,
the development t* of T into T,(M) lies in the cemtral n-spheres S™(x).

(B) For every curve T in M from x to y, the affine parallel displace-
ment T maps S"(x) upon S™(y).

(C) M 1is umbilical and has parallel mean curvature vector.

We now state our main results.

THEOREM 1. Let M be a connected n-dimensional submanifold in an
(n + p)-dimensional Riemannian manifold M with non-vanishing mean
curvature. Then conditions (A), (B) and (C) are equivalent.

In the case of M = E™?, the central n-spheres are n-spheres in E™*?.
On the other hand, if = is a curve in M from z to y, the development
t* of 7 into T,(M) = E* is nothing but ¢ itself. Thus if M satisfies
condition (A), every point y of M lies in the central n-sphere S"(x), and
hence M is part of the m-sphere S*(x) in E"**. The converse is obvious.
We may also paraphrase condition (B) by the statement that all central
n-spheres S™(x), x € M, coincide. As for condition (C), note that an umbilical
submanifold of E""? (more generally, of any space form) has parallel mean
curvature vector, provided dim M = 2. For dimM =1, if M = x(s) is a
curve with non-vanishing curvature, then the assumption of parallel mean
curvature implies that the curvature is constant and the torsion is 0,
that is, M is (part of) a circle.

THEOREM 2. Let M and M be as in Theorem 1. Under condition
(C), the development t* of a geodesic T in M starting at x is a great circle
of the central m-sphere S™(x).

Finally, we consider a condition weaker than (A) which does not involve
the mean curvature vector, namely,
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(A)) At some point x of M, there is an m-sphere 3I*(x) in T, ()
such that every curve v itn M starting at x is developed upon a curve on
2"(x).

We have

THEOREM 3. Let M and M be as in Theorem 1. If M satisfies con-
dition (A,), then M satisfies condition (C), hence (A) and (B) as well, and
I™(x) ts indeed the central m-sphere S™(x).

3. Proofs. We shall proceed to prove (1) equivalence of (A) and (B);
(2) implication (C) — (A); (8) Theorem 2; and, finally, (4) implication (A,) —
©).

(1) Assume (B) and let ¢ be a curve from x to y. Then T7(S*(y)) C
S*(x). Thus the end point 7'(y) of the development z* of = into T,(M)
lies in S*(x). Conversely, assume (A), and let 7 be a curve from x to y.
In order to show 7(S"(x)) < S™(y), it is sufficient to show that there exists
a neighborhood U* of x in S"(x) such that 7(U*) < S*(y). For this pur-
pose we first consider a mapping f of a normal neighborhood V of «
in M into S*(x): for any point z€ V, let f(z) be the end point of the
development p* of the geodesic # in V from « to z. Since f is a differen-
tiable mapping of V into S"(x) whose differential at x is the identity
mapping, it follows that there is a neighborhood U of x in M such that
U* = f(U) is a neighborhood of x in S™(x). In order to prove that 7(U*) C
S™(y), let z* e U*, z* = f(z),2z€ U, and let ¢ be the geodesic in U from
to z. Then the development (¢-77")* of the composed curve g-z7* lies in
S™(y). Sinee (#-v7H)* = F(u*)-(z7Y)*, its end point F(z*) lies in S*(y).

(2) We now assume (C) and prove (A). Let 7 = x, be a curve in
M with x, = x. Let &,6&, ---, &, be an orthonormal basis in the normal
space at x such that & = 7,/H, (unit mean curvature vector). We displace
&, +++,& along ¢ with respect to the normal connection V' to obtain
)¢, +++, (§,):, which form an orthonormal basis in the normal space at
x, for each t. Since the mean curvature vector 7 is parallel with respect
to V* by assumption, (£,), is the unit mean curvature vector at z, (and,
of course, H is a constant). Since M is umbilical, we have

A¢),=Hland A;,),,=0for 2=7=p
along <.
We observe that each (5),2=<i=p, is parallel along 7 with respect
to the linear connection V in M. Indeed, we have
%z—t(Si)t = —A<ei>t(57¢) + Vft(Ei), =0
along t.
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We set
X, = 7i(%,) for each t,
and let v* = &, be the development of = into T,(J) so that d&/dt = X,.
The relations
Q(Xe, &) = 9@, (&)) =0, 251<50p,

show that c* lies in the euclidean subspace of dimension n + 1 in T,(I)
spanned by T.(M) and é&,.

Define (£)), € T,(M) by (). = ti((€.).) for each t. Since

9(X., €)) = 9@, (E)) =0,
we see that (£,), is perpendicular to z* at #,. Set
u, = &, + 1/H)E). ,
which is a curve in T,(Jf). We shall show that u, is actually a single
point, say, v = x + (1/H)&, and so
& — wl =1/H,

which shows that ¢* lies on the hypersphere in T,(M) with center u and

of radius 1/H. Thus 7* lies on the central n-sphere S"(x).
To show that u, is a single point we need

LEMMA. dE)./dt = — HX,.
By definition of (¢,), and (), we have
(El)H—h = T(t)2-£+h(€1)t+h
and
(é)c = T(’)(&)t .
By linearity of z{ we have
[(gl)t+h - (gl)t]/h' = T[Tt (6D een — (é)ed/n .
As h— 0, we get d(€,)/dt from the left-hand side. The right-hand side
gives
(Vi (6)o) = Th(— Acy )
= —tY(H%) = —HX,.
This proves the lemma.
Now we use the lemma to obtain
du,/dt = dZ/dt + (1/H)d(E)),./dt
=X, + 1/H(—-HX) =0,
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which shows that u, is a single point and completes the proof that (C)
implies (A).

(8) We prove Theorem 2. Assume (C) and let = = x, be a geodesic
in M such that x, = . As before, let X, = z%(%,) for each t. For the
fixed value of ¢, X, is obtained as follows: let ¥,,0 < s < t, be a unique
parallel family of tangent vectors along r such that Y, = . Then X, =
Y,. Now choosing (&,),, ---, (§,). along 7 as before, we may write

Y,=Z + 3 #6)E)., 0ss<t,

where Z, is tangent to M at x,. We find
VoY, = V5, Z, + 3 (d9//ds) @),

- é P Ay, @) + g Lpivi(éi)a
= V;'SZB + Hg(ﬁa, Zs)(El)s
+ 3 @9ds)(), — HP o), ,

by virtue of a(%,, Z,) = 9(%,, Z,)7,, A¢y, = HI, Ae,, = 0 for 2 <1 < p, and
Vi(&), =0 for 1 <7 < p. Thus the equation V; Y, = 0 is equivalent to
a system of equations
Vz.Z, = Hp'(s)2,
do'/ds = — Hg(%,, Z,)
dp'lds = 0,2<i<p,
and the terminal condition Y, = %, is given by
Z, =%, and @) =0for L<i<p.
Since 7 is a geodesic, that is, V;%, = 0, we see that the unique solution
is given by
Z, = cos H(t — s)x,
P'(s) = sin H(t — s)
Ps)=0for 2<i1<p.
Thus we obtain

X, =Y, = Z, + P(0)(&),
= cos (Ht)z, + sin (Ht)(&), ,

where (£,), is the unit mean curvature vector &, at «. And %, is the initial
(unit) tangent vector of the geodesic 7. Thus the development z* of 7
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is given by
%, = (x + &/H) + (sin (Ht)Z, — cos (Ht)¢)/H ,

which is a great circle on the central w-sphere S"(xz). We have thus

proved Theorem 2.
(4) We now prove Theorem 3. Assume (A,) and let » and r be

the center and the radius of the given sphere ¥"(x). Let y be an arbitrary
point of M. For any curve ¢ = x, in M such that x, = « and =z, = y, its
development z* = %, lies on X*(x). For each ¢, we define

(El)t = (v — &)/re Tz(M) .

Let & = (), &, +++, &, be an orthonormal basis in the normal space to M
at . We define (§;), € T,t(M ) along 7 as follows:

T((6)0) = )y T((8)) = & for 2<i<p.

We show that for each value, say, s, of ¢, (&), is perpendicular to
M at x,, where 1 <1 < p. Indeed, if we alter the curve 7z after x, so
that it goes out of &, in the direction of a tangent vector Ye T, (M) and
call the new curve 7’, then its development 7’* still lies on 2"(x). Hence
73(Y) is perpendicular to (£,),, as well as to &, ---,&,. Thus Y is per-
pendicular to (£),, (&), +++, (§,),» Since Y is an arbitrary tangent vector
to M at z,, this proves our assertion.

Now, by definition of (£,),, we have

dE)./dt = — Xfr = —(U")Ti(@,)
where X, = d%,/dt. From the argument for the preceding lemma we have
dE)./dt = 7i(V5,E).) -
These two equations imply
Vi) = — (A, ,
‘that is,
Vi(6). = 0 and A, &) = /)&, .

The second equation is valid at each point x, of = if %, is replaced by
any tangent vector Ye T, (M), because the curve z may be altered to a
new curve ¢’ which goes out of x, in the direction Y just as in the pre-
vious argument, whereas A.,, depends only on (§)t and is not affected
by the alteration of 7. We have thus

(1) Vi(&l)t =0
(2) Aepe = AN .
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For 2 < i < p, (&), is parallel along 7, that is,
Vi) =0,
which implies
Vi), = 0 and A, (3) = 0.

Applying the previous argument, we see that the second equation is valid
if %, is replaced by any Ye T,,(M). Hence

(3) Vi) =0, 2=<i<p
(4) Ae,, =0, 2=<i=<p.

From (1) and (8) it follows that (£),,1 <1 < p, form an orthonormal
basis in the normal space at z,. From (2) and (4) we see that the mean
curvature vector 7 is given by

(5) ., = @/r)(&).
and that for each point =,
(6) A: = g(&, n)I for every & normal to M at x, .

The relation (5) for ¢ = 0 shows that 1/» = H, = ||7,|| and &, = 7,/H,.
Thus the given sphere X"(x) is indeed the central n-sphere S™(z).

The relation (6) for ¢ = 1, namely, at the end point y of = shows that
y is umbilical. Since ¥ is an arbitrary point of M, we conclude that every
point of M is umbilical. It now remains to show that 7 is parallel with re-
spect to V. Letye Mand Ye T, (M). Let ¢t be a curve starting at y in
the direction of Y. By applying our argument to the curve g.c, we see
that (5) is valid at every point, namely, the mean curvature vector 7 is 1/r
times (&), which is parallel along the curve with respect to V* by virtue
of (1). In particular, Vin = 0 at y. This completes the proof of Theorem 3.
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