SUBGROUP OF SOME LIE GROUP AS A RIEMANNIAN SUBMANIFOLD

Dedicated to Professor Shigeo Sasaki on his 60th birthday

HIDEKIYO WAKAKUWA

(Received February 23, 1973)

Let G be a connected Lie group such that Ad(G) is compact. Then G admits a (positive definite) Riemannian metric g which is bi-invariant (left and right invariant). A submanifold H of G is endowed with the induced Riemannian metric g' by means of g. We consider G and H in such a situation. The purpose of this paper is to prove the following theorem.

THEOREM. Let G be a connected Lie group such that Ad(G) is compact. Then an abstract subgroup H of G is a Lie subgroup (of dimension > 0) if and only if H is a totally geodesic submanifold of G.

This is applicable, of course, in the case where G is connected and compact.

We keep in mind on the following facts. Let V (resp. V_X) denote the covariant differential (resp. derivative) with respect to the Riemannian connection on G induced from g, then $V_XY = (1/2)[X, Y]$. Any 1-parameter subgroup a(t), $-\infty < t < +\infty$ is a geodesic in G and the canonical parameter t is an affine parameter on the geodesic. Conversely a geodesic through e (unit element of G) is contained in a 1-parameter subgroup of G.

PROOF OF THE THEOREM. The necessity is easily verified. Conversely assume that H is an abstract subgroup of G which is a totally geodesic submanifold of G. The identity injection $H \to G$ is denoted by f. G and H are metric spaces by means of the Riemannian metric g and the induced Riemannian metric g' respectively, whose distance functions are denoted by $d_G(x, y)$, x, $y \in G$ and $d_H(x, y)$, x, $y \in H$ respectively. The topology of G (resp. H) coincides with that given by the distance d_G (resp. d_H), which is denoted by $\widetilde{\Sigma}$ (resp. Σ). In general, Σ is stronger than the induced topology from $\widetilde{\Sigma}$.

Let p be an arbitrary point of H and let V be an arbitrary open set (with respect to Σ) containing $q = L_a p(\in H)$. There exists an open ball

 $B_{\epsilon}(q) = \{x' \mid d_H(q, x') < \epsilon\}$ around q with radius $\epsilon > 0$ contained in V. On the other hand, there exists a neighborhood $U \subset H$ of p such that

$$(*) d_{\scriptscriptstyle H}(y,z) = d_{\scriptscriptstyle G}(y,z) \text{for } y,z \in U,$$

([1], p. 79), since H is totally geodesic. Let $B_{\epsilon'}(p) = \{x \mid d_H(p,x) < \epsilon'\}$ be an open ball around p with radius $\epsilon' > 0$ contained in U, then (*) holds in $B_{\epsilon'}(p)$. We choose $\epsilon' < \epsilon$. If furthermore we choose ϵ' sufficiently small, then any point $x \in B_{\epsilon'}(p)$ can be joined to p by the minimizing geodesic γ_{px} of H lying in $B_{\epsilon'}(p)$: length of $\gamma_{px} = d_H(p,x)$. Since H is totally geodesic, $f(\gamma_{px})$ is a geodesic in G which is minimizing in G by virtue of (*). $L_{f(a)}$, $a \in H$ being an isometry on G, the left translation of $f(\gamma_{px})$ by $L_{f(a)}: L_{f(a)}(f(\gamma_{px})) = f(L_a(\gamma_{px}))$ is a minimizing geodesic in G joining q to $x' = L_a x$. We denote this geodesic by $\widetilde{\gamma}_{qx'}$ whose length is equal to $d_G(q, x') = d_G(p, x) < \epsilon' < \epsilon$. Since H is an abstract subgroup of G, $\widetilde{\gamma}_{qx'}$ lies in H so that the tangent vector of $\widetilde{\gamma}_{qx'}$ at q must be tangent to H. We denote $\widetilde{\gamma}_{qx'}$ as a subset of H by $\gamma_{qx'}: \widetilde{\gamma}_{qx'} = f(\gamma_{qx'})$. Since H is totally geodesic, $\gamma_{qx'}$ is a geodesic in H, which is also minimizing because the metric on H is the induced one. Then we have

$$d_{\scriptscriptstyle H}(q,\,x')= {
m length} \ {
m of} \ \gamma_{q_{x'}} \ {
m in} \ H$$

$$= {
m length} \ {
m of} \ \widetilde{\gamma}_{q_{x'}} \ {
m in} \ G=d_{\scriptscriptstyle G}(q,\,x')<\varepsilon \ .$$

Hence $x'=L_ax\in B_\epsilon(q)$. The point $x\in B_{\epsilon'}(p)$ being arbitrary, we have $L_a(B_{\epsilon'}(p))\subset B_\epsilon(q)\subset V$.

This shows that L_a , $a \in H$ is continuous on H. Since $L_{f(a)}$ is differentiable on G, L_a , $a \in H$ is differentiable on H.

The right translation R_a , $a \in G$ and the diffeomorphism

$$\psi \colon G \to G$$
 given by $x \to x^{-1}$ $(x \in G)$,

give isometries of G onto itself. Hence we can prove that R_a , $a \in H$ and $\psi \mid H$ (restriction of ψ to H) are both differentiable on H, quite similarly as in the case of L_a , $a \in H$. Thus L_a , R_a $(a \in H)$ and $\psi \mid H$ give isometries on H. Making use of these facts, we can prove that H is a Lie subgroup. One method is as follows.

Suppose that xy=z, $x,y\in H$ and we shall prove that the mapping $H\times H\to H$ given by $(x,y)\to z$ is differentiable on H. Let U be an arbitrary open set containing z in H and $B_{\varepsilon}(z)$ be an open ball around z with radius $\varepsilon>0$ contained in U. Let $B_{\varepsilon|z}(y)$ be an open ball around y with radius $\varepsilon/2$. Since the right translation R_y is continuous, we can choose a ball $B_{\rho}(x)$ around x with radius $\rho>0$ such that $R_y(B_{\rho}(x))\subset B_{\varepsilon|z}(z)$, namely for any $x'\in B_{\rho}(x)$, $R_yx'=x'y\in B_{\varepsilon|z}(z)$. Let $x'\in B_{\rho}(x)$ and $y'\in B_{\varepsilon|z}(y)$

be arbitrary, then

$$d_{H}(z, x'y') \leq d_{H}(z, x'y) + d_{H}(x'y, x'y')$$
.

Since $x'y \in B_{\epsilon/2}(z)$, we have $d_H(z, x'y) < \epsilon/2$. And since $L_{x'}$ is an isometry on H, we have $d_H(x'y, x'y') = d_H(y, y') < \epsilon/2$, so that

$$d_{\scriptscriptstyle H}(z,x'y') .$$

This means that $x'y' \in B_{\epsilon}(z)$, namely $B_{\rho}(x) \cdot B_{\epsilon/2}(y) \subset B_{\epsilon}(z) \subset U$. Hence the mapping $H \times H \to H$ given by $(x, y) \to z$ is continuous and so differentiable because it is differentiable on $G \times G$ onto G.

REFERENCE

[1] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962

DEPARTMENT OF MATHEMATICS TOKYO GAKUGEI UNIVERSITY KOGANEI, TOKYO, JAPAN