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Introduction. A Riemannian manifold is called conformally flat if it
is locally conformally equivalent to a Euclidean space, i.e., if each point of
the manifold has a neighborhood where there exists a conformal diffeomor-
phism onto an open subset in a Euclidean space. Well-known examples of
such manifolds which are also hypersurfaces in a Euclidean (n + l)-space
En+1 are the following: a Euclidean w-space En, a Euclidean ^-sphere Sn, a
right circular cylinder En~γ x S1 and a Riemannian product manifold S""1 x
E\ It will then be natural to ask: Is there any other conformally flat
hypersurface in En+1 which is not conformally diffeomorphic to any of the
above examples? Generalizing this question, we can pose the following
problem: Classify the conformally flat hypersurfaces in a conformally flat
Riemannian manifold up to conformal equivalence. .This problem is attrac-
tive in conformal geometry.

As a first step to the above problem, we shall classify up to isometry
local structures of conformally flat hypersurfaces, especially in a Riemannian
manifold of constant curvature, and it is the main purpose of this paper.
In fact, our study goes as follows. After preparing some basic definitions
and formulas in §1, we shall determine, in §2, the types of the second
fundamental forms of these hypersurfaces. The result is that a hypersur-
face in a conformally flat Riemannian (n + lymanifold (n > 3) is con-
formally flat if and only if at each point, at least (n — 1) eigenvalues of
the second fundamental form are identical (Theorem 3). Making use of
this fact, in §3, we shall classify local structures of conformally flat
hypersurfaces in a Riemannian manifold of constant curvature. The result
is summarized as follows: Let Mn(n > 3) be a conformally flat hypersurface
of a Riemannian (n + lymanifold of constant curvature. Then there
exist four types {for details, see § 3) of the local structures of Mn, all of
which are loci of a moving (n — lysubmanifold M%"x(v) which is of constant
curvature for each value of a parameter v (Theorem 4).

*} The authors thank the referee for his valuable criticisms which gave much improvement
to this paper.
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1. Preliminaries. Let / : Mn —• Mn+1 be an isometric immersion of
a Riemannian ^-manifold Mn into a Riemannian (n + l)-manifold Mn+1

with metric g, i.e., Mn be a hypersurface in Mn+1. For all local formulas
and computations, we may consider / as an imbedding and thus identify
x e Mn with f(x) e Mn+1. The tangent space TJJM) of Mn at x is identified
with a subspace of the tangent space TX(M) of Mn+1 at x. In a usual
way we regard the second fundamental form A as a symmetric linear
transformation on the tangent space TX(M). For the basic definitions,
notations and formulas concerning differential geometry of submanifolds,
we mainly follow Chapter VII of Kobayashi-Nomizu [1].

The relationship between the curvature tensor R of Mn and the
curvature tensor R of Mn+1 is expressed by the Gauss equation

(1) R(X, Y) = RT(X, Y) + AXΛAY, X, Ye TX(M) ,

where XAY denotes the skew-symmetric linear transformation of TX(M)
defined by

(X A Y)Z = g(Y, Z)X - g{X, Z)Y,

and the superscript T means the orthogonal projection into TX(M), i.e.,
RT(X, Y)Z is the tangential component of R(X, Y)Z for X, Y,Ze TX(M).

It is well-known that if n > 3, then Mn is conformally flat if and
only if the curvature tensor R of Mn splits into the following form

n — 2

t r S

(2) R(X, Y) =
n — z

•IΛF, X,YeTx(M),
(n - l)(n - 2)

where S denotes the Ricci tensor of type (1, 1), i.e.,

g(SX, Y) = Ric(X, Y) = tr {Z-+ R{Z, X)Y),

and tr abbreviates the trace.

2. Principal curvatures of conformally flat hypersurfaces in a con-
formally flat space. In this section, we always assume that Mn and Mn+1

are both conformally flat, and n > 3.
Applying (2) to Mn+1, we have
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RT(Z, X)Y =-A.-{g(X, Y)STZ- g(SτZ, Y)X
n — 1

n(n — 1)

and then

g(SτX, Y)Z - g(Z,
t r § - g(Z, Y)X], X,Y,Ze TX{M),

tr {Z-+ RT(Z, X)Y) = g(^Lχ + lLz2.gr X -
\n 1 n 1

χ + g X χ9

n — 1 n — 1 n
On the other hand,

tr {Z-> (AZ Λ AX)Y) = g(tτ A-AX - A2X, Y) .

Since (1) implies

Ric (X, Y) = tr{Z-> RT(Z, X)Y) + tr{Z-> (AZ A AX)Y) ,

we obtain

( 3) S = J*Jt-l + 2L=ASτ - * l l j + tr A A - A2,
n — 1 n — 1 w

where / denotes the identity transformation, and then

(4 ) tr S = 2 tr SΓ - tr S + (tr A)2 - tr A2 .

Now, at a point a? e Mn, we take an orthonormal basis {elf , en} of
such that each et is an eigenvector of A, i.e.,

Then (1) implies for i ^ j" that

, e3) = — 1 — ( S ^ Λ βy + β, Λ S^,) - / r g

1 Λ ^ Λ βy^ — 1 π(ti — 1)

t Λ βy

On the other hand, from (2), (3) and (4) we have

(6 ) R(eif βy) = —^A§ τ e< A es + e4 Λ SΓβy) - - y ^ r r ^ Λ eo

n — 1 ^ ( w — 1)

+ ^-Γ-gtf^ + λΛ t r A ~ ( λ '

(Λ - l)(n - 2)

Thus, (5)-(6) gives

1 {(tr A)2 - t r A2}e, Λ es .
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( 7) (n - l)(n - 2)XiXj - (n - 1) tr A(\ + Xj) + (n - l)(λf + X))

+ (tr A)2 - tr A2 = 0 .

Consequently, for mutually distinct indices ί, j , &, we get

< 8) (λ, - Xk){(n - 2)Xi + λ, + Xk - tr A} = 0 .

From this equation, we can prove the following

PROPOSITION 1. The number of distinct principal curvatures is at
-most two at each point.

PROOF. Let Xl9 λ2, λ3 be distinct principal curvatures. Then from (8),
we have the following two relations:

(n - 2)λ3 + \ + λ2 - tr A = 0 ,

(n - 2)λ2 + X1 + λ3 - tr A = 0 .

Hence we get

(n - 3)(λ3 - λ2) = 0 .

This is a contradiction. q.e.d.

PROPOSITION 2. The multiplicity of a principal curvature X is 1,
n — 1 or n at each point.

PROOF. Suppose that the multiplicity of λ is p with 1 < p < n — 1.
Then from Proposition 1, there exists exactly one principal curvature μ
such that X Φ μ. Thus, (8) implies that

(n - 2)λ + X + μ - {pX + (n - p)μ) = 0, i.e.,

(n-p- l)(λ - μ) = 0 .

This contradicts our assumption, so p = 1, n — 1 or n. q.e.d.

Now the "only i f part of the following theorem is clear.

THEOREM 3. Let Mn be a hypersurface of a conformally flat Riemannian
(n + lymanifold Mn+\ n > 3. Then Mn is conformally flat if and only
if at each point of Mn, the second fundamental form A of Mn is one of
the following types'.

(I ) A = XI, I = the identity transformation,
(II) A has two distinct eigenvalues of multiplicity n — 1 and 1

respectively.

PROOF. We prove the "if" part. Let λ and μ be the (possibly equal)
eigenvalues of multiplicity n — 1 and 1 respectively. It is sufficient to
prove that λ, μ and tr A = (n — 1)X + μ satisfy the equation (7). But it



CONFORMALLY FLAT HYPERSURFACES 163

is a straightforward calculation, so we omit it here. q.e.d.

REMARK 1. The second fundamental form A does not have the con-
formal nature in the sense that A is not invariant by a conformal change
of metric. However, the property that the tensor j ^ = A — (tr A/n)I is
equal to 0 or not equal to 0 is unchanged by any conformal change of
metric. So total-umbilicalness is of conformal nature.

REMARK 2. Similar results in En+1 can be seen in [3].

3. Conformally flat hypersurfaces in a space of constant curvature.
Throughout this section, we assume that the ambient manifold Mn+ι(n > 3)
is a Riemannian manifold of constant (sectional) curvature c.

REMARK. Of course every Riemannian manifold of constant curvature
is conformally flat. Moreover, our assumption is reasonable in the following
sense: Firstly, by a theorem of Kuiper [2], a conformally flat simply
connected Riemannian π-manifold can be conformally developed over a
Euclidean ^-sphere. Secondly, conformal-flatness is of conformal nature.
So, if necessary, we have only to take the simply connected Riemannian
covering manifold.

Now we classify conformally flat hypersurfaces in a Riemannian mani-
fold of constant curvature.

Case I. A = λJ on Mn.
In this case, from the Gauss equation (1), we have

R(X, Y) = (λ2 + c)X A Y, X, Ye Tm(M) .

This shows that Mn is a totally umbilical hypersurface of constant curva-
ture λ2 + c.

Case II. A has two eigenvalues λ and μ, which are distinct at every
point of Mn

9 of multiplicity n — 1 and 1 respectively.
In this case it is convenient for our purpose to use moving frames.

Furthermore we agree on the following ranges of indices unless otherwise
stated:

1 ^ A, J5, C, ^ n + 1 ,

1 <: i, jf k, <; n — 1 .

We choose a local field of orthoήormal frames eA in Mn+1 such that,
restricted to Mn, the vectors el9 , en are tangent to Mn (and, consequently,
en+ι is normal to Mn). With respect to the frame field of Mn+1 chosen
above, let ωA and ωAB be the field of dual frames and connection forms
respectively. We restrict these forms to Mn. Then we have
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( 9 ) ωn+ι = 0 .

Moreover, by our assumption, we may choose the above frame field
eA in such a way that

(10) ωitn+1 = xω{,

(11) (ύn,n+ί = μo)n .

Now we put

(12) ωin = Σ^jBijCOj + Bi(o% .

Then, taking exterior differentiation of (10), we get

dωifn+1 = X Σy o>i3 A ωj + μ Σ , B^ωj A ωn ,

diXύύi) = Σi>*">ωJ Λ o)i + λ,mα>% Λ ω{ + λ Σ i ω ϋ Λ ω, + λ Σ i -B*^ Λ ω n ,

where we have put

dX = Σ ^<*>i + ^>nθ)n .

Hence we get

Σ i λ^ α),. Λ α>< + (λ - μ) Σy 5*i^i Λ con - λ^ω^ Λ ωn = 0 ,

from which we obtain

(13) λ,y = 0 and Biά - - ^ - S ^ .

λί — ^*

In a similar way, from (11), (12) and (13), we get

dωntn+1 = X Σ i B&t A ωn ,

d(μωn) = Σ i μπOi Aωn + μΣi B^ A ωn ,

where we have put
dμ = Σ i μ>iβ)i + μ,nωn.

Therefore we get

Consequently, combining (13) and (14), we obtain

(15) ωin = —-—(λ^cOi + μtiωn) .
λi — μ

It follows easily from (15) that the distribution of the space spanned
by principal vectors corresponding to each principal curvature is involutive.
In fact, (15) shows that the Pfaff equation ωn = 0 is completely integrable.



CONFORMALLY FLAT HYPERSURFACES 165

On the other hand, in (13), Xfj = 0 means that X is constant on each
integral submanifold of the distribution corresponding to λ. So we may-
consider that λ is a function of a parameter v, for example the arc length
of an orthogonal trajectory, which is an integral submanifold corresponding
to μ, of the family of these integral submanifolds. Furthermore, taking
exterior differentiation of (15) and comparing the coefficients of the term
(ύi A cύj, we obtain

(16) X,uμfJ = 0 .

From now on we restrict our discussion to a neighborhood U, diffeomor-
phic with an open ball, of a point xeMn where one of the following cases,
Case II-A, Case II-B and Case II-C, occurs.

Case II-A. X,n Φ 0 on U, hence μfj = 0 for all j on U.
In this case, with respect to an adapted frame field, the connection

form (o)AB) of ikf, restricted to £7, is given by

(17)

! I

-(W(λ-A£))ωlf. ,-(\,J(\-μ))ω.-1

(λ, J(λ - //))ω1

(χ,J(x—μtyOn-!

0

X0)n-

0

Substituting (17) into

da>ϋ = Σfc ̂ ίfc Λ o)kj + α; ί w Λ ωnj + α>< f n + 1 Λ ύ ) w + l f y - cω{ A ωά,

we have the curvature form

(18) i5 - dωiά - Λ ω kj = - ( ( X'n Y + λ2 + ή+ λ2 + ήω, A

Furthermore, from (17), we get dωn = 0 on U. This implies that we may
put ωn = dv on U. (17) also shows that the integral submanifold Mn~\v)
(restricted to U) corresponding to X (and so v) is totally umbilical in M\

Thus, on U, Mn is a locus of a moving (n — l)-submanifold Mn~\v)
along which the principal curvature X of multiplicity n — 1 is constant
and which is umbilical in Mn and of constant curvature

_1 dxV
— μ dv'

+ λ2 + c ,
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where v is the arc length of an orthogonal trajectory of the family Mn~\v).
Moreover, differentiating ωin = (λ,n/(λ — μ))α>i, we get

(19) — Y - (—^— Y -
- μ/ \χ- μ/

= 0 ,

where the prime denotes the differentiation with respect to v.

Case II-B. μti Φ 0 on U for some j , hence \,n = 0 on U.
In this case, the connection form (ωAB) above is given by

a, , o>un-ι j(/W(λ - μ))a

(20)

-μωn
0

and the curvature form ΩiS is

(21) Ωi5 = - (λ2 + c )ω< Λ ω, .

(20) shows that the integral submanifold Mn~ι{v) is totally geodesic
in Mn, but this is not of conformal nature.

Consequently, on U9 M
n is a locus of a moving (n — l)-submanifold

ΛP1"1^) which is totally geodesic in ikf* and of constant curvature λ2 + c.

Case II-C. λ,Λ = 0 and μ9j = 0 for all j on ?7.
This case can be considered as a particular one of Case II-A as well

as Case II-B. The connection form (o)AB) above becomes

(22)

0

0, , 0 I 0 I μω

Xωlf , — Xωn^ \ — μωn \ 0
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and the curvature form Ωiβ is

(23) Ωiά = - (λ2 + c )ω{ A ω3 .

Moreover, differentiating ωin = 0, we have

(24) Xμ + c = 0 .

From this and our assumption, λ and μ are both constant on U if c Φ 0.
Hence, in case c Φ 0, ΛfΛ is locally (i.e. on [/) a Riemannian product
manifold Jlί^1^2 + c) x ΛP, where Mn-\X2 + c) is a Riemannian (π - 1)-
manifold of constant curvature λ2 + c and M1 is a curve in M* whose
first curvature is constant along M1.

REMARK. Note that the point at which λ,n = Ό and μfj = 0 for all j
may occur as a boundary point of neighborhood of Case II-A or Case
II-B. The structure of Mn at that point is also determined by (22).

After all, Mn is covered, except for the set of measure zero, by a
family of neighborhoods discussed above.

Case III. A has possibly equal eigenvalues λ and μ of multiplicity
n — 1 and 1 respectively.

In this case, remark that an umbilical point comes also as a boundary
point of a neighborhood of Case II. However, we can see that Mn is
covered, except for the set of measure zero, by a family of neighborhoods
discussed in the preceding cases [i.e., the local version of Case I, Case
II-A, Case II-B, Case II-C].

Summarizing the above, we arrive at the following

THEOREM 4. Let Mn(n > 3) be a conformally flat hypersurface of a
Riemannian (n + ΐ)-manifold Mn+1 of constant curvature c. Then Mn is
locally a locus of a moving (n — l)submanifold Mn~\v) which is of constant
curvature for each value of a parameter v. The local structures of Mn is
determined, except for the set of measure zero, by Case II-A, Case II-B,
Case II-C and the local version of Case I.

REMARK 1. An umbilical hypersurface of constant curvature λ2 + c,
where λ is the principal curvature, is a particular case of this locus (Case I).

REMARK 2. If, in particular, Mn+1 is a Euclidean (n + l)-space En+1,
i.e. c — 0, then locally Mn is one of the following:

(Case I) a totally umbilical hypersurface (hence of constant curvature).
(Case II-A) a surface of revolution—Let (x1, , xn+1) be a canonical

coordinate system of En+1 and 7 a curve in the (x\ £2)-plane defined by
x1 = Ύ(X2), x2 > 0. Rotating 7 about £2-axis, we get a surface of revolution



168 S. NISHIKAWA AND Y. MAEDA

G Y where G is the rotation group G = SO(n) = SO(x\ x\ , xn+1).
(Case II-B) a tube—Let 7 be a curve in En+1. The normal sphere

bundle of 7 with (sufficiently small) fixed radius is, by definition, a tube.
(Case II-C) a product manifold S*~ι x E1 or a cylinder JE"1"1 X 7 built

over a plane curve 7.
The second assertion is obtained by observing the differential equation

(19).
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