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1. Introduction. We introduced in [4] the concept of a weak mar-
tingale, which is a natural extension of a martingale. The weak martingale
property is invariant through all changes of time, but the property is not
true with the definition of local martingales. This is the reason for con-
sidering weak martingales. We also proved that the theory of stochastic
integration of locally bounded previsible processes can be extended to these
weak martingales (see [4]).

In this paper we shall give some basic properties of weak martingales,
and consider stochastic integral equations relative to them.

2. Definitions. The reader is assumed to be familiar with the basic
notions of the general theory of processes as expounded in [6] and with
the theory of stochastic integrals relative to martingales as given in [2].

Now let (2, F, P) be a complete probability space, given an increasing,
right continuous family (F),s, of sub o-fields of F. We assume as usual
that F, contains all the negligible sets. A notation such that “let M =
(M,, F',) be a martingale” means that the martingale property is relative
to the F, family. All martingales below are assumed to be right continuous.
By a change of time T = (F',, 7,) is meant a family of stopping times z,,
t = 0, of the F', family, finite-valued, such that for a.e. w € 2, the sample
function 7 (w) is increasing and right continuous. We say that the change
of time is normal if these sample functions are strictly increasing, con-
tinuous, 7 (w) = 0 and 7. (w) = lim,_,, 7(®) = + . We do not distinguish
two processes X and Y such that for a.e. w e 2 X (w) = Y (w).

DEFINITION 1. A process M = (M,, F,) is said to be a weak martingale

if there exists an increasing sequence (7',) of finite stopping times of the
F, family such that

(i) lim,..T,= + o a.s.
(ii) for each n» there exists a martingale M" = (M?, F,) such that
M = M" on [0, T,[.

Obviously, any local martingale is a weak martingale. We say that
such a sequence (7T,) reduces M, and the process M" is said to be a
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martingale reduced by 7,. Note that hte word “reduces” is not used
here in the same sense as in [2], where it was demanded that M = M»

on the stochastic interval [0, T].
In particular, if each M" can be chosen to be an L*-bounded martingale
(i.e. SUDPoicte E[(M7)] < + o), then we say that the M is a weakly

square integrable martingale.

As is well known, every martingale X can be split into a continuous
part X° and a purely discontinuous part X¢, orthogonal to all continuous
martingales. We say that the weak martingale M is of discontinuous
type if each M" can be chosen to be purely discontinuous.

3. Basic properties of a weak martingale. The local martingale
property is not invariant through changes of time, but the weak martingale
has the invariance. Therefore a weak martingale is not always a local

martingale.
The following proposition gives a necessary and sufficient condition for

a weak martingale M to be a local martingale.

PROPOSITION 1. A weak martingale M is a local martingale if there
exists a sequence (T,) of stopping times reducing M and the martingales
M* reduced by T, such that for each n  (Myi);_,,,... is uniformly integrable
on the set {T, > 0}.

ProOF. From the definition of a weak martingale,

lim M7 = M,  a.s.

j—oo
for each fixed =, but since (Mz}?);_,,s,... is uniformly integrable on {T, > 0},

My o — My Iz, 5y in L' as j— + oo
Thus for each t, E[M?} 11 »o|F] — E[M; Iz, 50| F,] in L'. Similary
M:‘/_\FTJ.,,I(T,,>0}'_’ tAT,.IfT,,>o)
in L' for each ¢t. Since for each fixed n and j the process (M;i , F) is
a uniformly integrable martingale, then we get
E[M,,|F] = M\, on {T,>0}.

Consequently M is a local martingale. This completes the proof.

Furthermore, if sup; E [(M7!9)*I; 4] < + oo for each n, then the weak
martingale M is a locally square integrable martingale.

The next example shows that a weak martingale is not necessarily
a weakly square integrable martingale.

ExamMPLE 1. Let 2 = R,, F' the class of all linear Borel sets in 2 and
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we designate by S the identity mapping of 2 onto R,. Let F! be the
Borel field generated by S A ¢. We define the probability measure P on
2 by P(S>t)=¢" Let F, be the P-completion of F?. Note that the
family (F,) is right continuous and has no times of discontinuity. Clearly
S is a stopping time of the F', family.

Now we are going to verify that any weak martingale M is a
martingale on this probability space. Denote by T,, M*, stopping times
and martingales satisfying the conditions of Definition 1. For simplicity,
assume that each T, is bounded. C. Dellacherie [1] proved that
(8.1 R334 o, T,=5,as.if S=s,and T, =S a.s. on {S < s,}
Then it is easily checked that F, = F,,s for every ¢, and so M} = M?,,.
As the set {S >t} is an F',-atom, we get
(3.2) Mz = MsI(sgz) + CtI(s>t;

M? = Mfst(sgn + C?I¢s>t)
where C, and C? are constants.

From (8.1) and the definition of a weak martingale, it follows that
for each t < s,

M,=M; on {s, <S8} and {s, < S}c{t<S}.
Thus Cp = C, if t < s,. Consequently, by (3.2)
SJﬂMﬂzg MrdP = Ce™, s <t<s,

Js,00[
from which

(3.3) S] ]MgdP =Ce ™ —Cie?, s<t<s,.
Therefore for every k =1,2, .-

&]MMP:S MrP, s<t<s,

1s,t]
and so M2 = Mz** on {S < s,}. By letting k— + o, we have
Miliscry = Mslis<yy, (8 <8,).
Then from (3.2) M, = M for t <s,. As lim,..s, = + o, M is a mar-
tingale.
Similarly, one can prove that any weakly square integrable martingale

is a square integrable martingale.
Then it suffices to choose a martingale which is not a square integrable.

REMARK. I do not know whether a continuous weak martingale is a
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weakly square integrable martingale (as in the case of local martingales).

PROPOSITION 2. Let M be a weak martingale such that M, = 0. Then
there exists a unique decomposition of M into a sum of a continuous
local martingale M° and a weak martingale M?, which s of discontinuous
type.

ProoF. Denote by T,, M", stopping times and martingales satisfying
the conditions of Definition 1. Since for each n the process M™» = (M;z,)
is a semi-martingale (see [4]), one can show the existence of a unique
continuous local martingale M° such that M° = (M")° on [0, T,] for each
n. Thus the weak martingale M? = M — M* is of discontinuous type.
The uniqueness of the decomposition is evident.

It should be noted that a continuous weak martingale can be of dis-
continuous type. We now give such an example.

ExAMPLE 2. Let X = (X, F,) be a continuous martingale such that
X, =0 and limsup,_.... X; = + > a.s. Put now

7, = inf {u; X, > t}.

Then T = (F, 7,) is a change of time, and X, = ¢ by the sample continuity
of X. Since the weak martingale property is invariant through changes
of time, the process M = (¢, F'.) is a weak martingale. By Proposition 2,
M can be written in a unique way as t = M; + M¢. It is clear that the
M is not a local martingale, and so the process M? is a continuous weak
martingale which is of discontinuous type.

We can also define:
3.4) [M, M), = {M*>, + 8% 4m,y .

Here (M*) denotes the unique continuous increasing process such that
(M) — {M*) is a local martingale.

Then it is easy to see that for any weak martingale M the process
(M — [M, M],, F,) is also a weak martingale. The theory of stochastic
integration can be extended to weak martingales as follows. Let M= (M,,
F,) be a weak martingale and C = (C,, F',) a locally bounded previsible
process. Let (T,) be a sequence of stopping times reducing M. Then
there exists a unique weak martingale CoM such that CoM = CoM?» on
[0, T,[ for each n. The process CoM is said to be the stochastic integral
of C relative to M. Unfortunately we can not characterize the stochastic
integrals by an identity involving the bracket [, ] as in the case of local
martingales, because there exist (bounded) continuous weak martingales
M such that M = 0 and [M, M] = 0.
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4. A stochastic integral equation with respect to a weak martingale.
Let M = (M,, F,) be a weak martingale and A = (4,, F,) an increasing
process. Let f(x) and g(x) be two continuous functions defined on R. We
shall consider in this section the following stochastic integral equation:

4.1) .x=x+§ya;mMA{}a;m&,xeR

where the integral by dM, (resp. dA,) is understood in the sense of the
stochastic integral (resp. the Lebesgue-Stieltjes integral on R, for each w).

We have supposed in a previous paper [5] that f and g are bounded,
but this assumption is unnecessary as we shall see below.

DEFINITION 2. Let T be a stopping time of the F, family. By a local
solution of the equation (4.1) on the stochastic interval [0, T[, we mean
a process X = (X,, F,) with paths right continuous and free of oscillatory
discontinuities, which satisfies the equation (4.1) on [0, T].

The value + « is admissible for 7. In particular, if P(T = + o) =
1, then we simply call it a solution of (4.1).

Let X and Y be two right continuous processes with finite left limits,
and suppose that X =Y on [0, T[. Then, if X is a local solution on [0,
T[, so is Y. We say that the uniqueness on [0, T holds for (4.1) if for
any two local solutions X, Y on [0, T[ we have X =Y on this interval.

For example, if M is a continuous local martingale, then the local
uniqueness holds for the equation:

1

(4.2) x:Ym_mm,zga<+m

for any stopping time 7. Of course, this uniqueness does not always
hold (even if 1/2 < a). We shall give some non-trivial example such that
the uniqueness does not hold.

ExAMPLE 3. The classical problem
t
(4.3) mn:hmmws
has a unique solution # =0 for « = 1, but for 0 <a<landl —a =g,
w(t) = (Bt)"? is also a solution and so is
" © {0: t <t
. u =
) [B(t - tl)]”ﬂ: t> tl

for each choice of ¢, > 0.
Now let (2, F, P; F',) be the same probability space as discussed in Example
1. Denote by M a right continuous modification of E[S — 1|F,]. As the
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random variable S — 1 is square integrable, the martingale M is L*-bounded.
An easy computation shows

M,=tN\NS—- I(Sét}

and so
S'[X "M, = Sthu["du
0 0

on [0, S[.
Consequently, from (4.4), the equation (4.2) has an infinite number of
local solution on [0, S[ for 0 < @ < 1.

In the remainder of this paper, we assume that the functions f and
g are Lipschitz-continuous; namely

(4.5) Max {| f(z) — f()|, [9(x) — 9(W)} = Clz — y|, @, yeR

where C is some positive constant. We suppose in addition that the family
(F')) has no times of discontinuity.

Let us agree to say that a sequence of processes X converges uni-
formly in probability to a process X if for each ¢ > 0 and each ¢ > 0,

lim P{sup | X — X, | = e} =1.
n—oo 0ssst

Furthermore, if P{lim,.. supy<,<: |X™ — X,| = 0} =1 for every t = 0,
then we say that the processes X converge uniformly almost surely to X.

LeEMMA 1. Let X™ = (X{", F),n =1,2, ---, be a sequence of locally
bounded previsible processes, and assume that M is an L*-bounded mar-
tingale. If the processes X™ converge uniformly almost surely to X, then
X™o M converges uniformly in probability to Xo M.

Since this lemma is proved in [3], we omit its proof.

LEMMA 2. Suppose that the process M is an L*-bounded martingale
with M, = 0, and the process A is continuous. Then the equation (4.1)
has a unique local solution on [0, T[ for any stopping time T.

ProOOF. Define now:
A =t + M), + A, 0, = inf {u; \, > t}.

It is easy to see that @ = (F,, 6,) and 4 = (F,,, \,;) are normal changes of
time. Obviously A, is a stopping time of the F,, family, and the process
(t — {M>,, — Ao,, Fy,) is increasing. Therefore, in order to show the
existence of a unique local solution of the equation (4.1) on [0, T, by
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considering the time change transformation © there is no loss of generality
in assuming that the process (¢t — (M), — A,, F',) is increasing.
(a) Uniqueness: Let X and Y be two local solutions of (4.1) on [0, TT.
Put now

R, =inf{t; | X,|V|Y,|=n}, n=12 ...
Each R, is a stopping time of the F', family. It is easily checked that
R,<R,.,R.=1lm,. R, =T a.s. and

(4.6) D(t) = E[(X, — Yt)ZI(KTAR,,)] = 4n’

for each fixed m.
tAR, tARy
Then {S A(X.)AM,, F} and {S F(Y.)AM,, F} are L*bounded
0 120 t=20
martingales. For simplicity, we assume that C < 1/2.
Using the inequality (a + b)* < 2(a* + b°) and the continuity of {M).(w)
and A.(w), we get

D(t) = E[{ﬁ[ F(Xu) — F(Yu)ldM, + S:[g(Xu_) — o Yug)]dAu}zLKTAR,,)]
< 28 [ 1£(X0) = ST wcrna d<B*
+ A 100X) = (T TncrnnydA,
<1+ t)S:D(u)du

from which D = 0 follows. Hence, by making n— o, X = Y on [0, T].
(b) Existence: We first remark that a solution of (4.1) is also a local
solution for the equation on [0, T[. Therefore it suffices to verify the
existence of a solution for (4.1); otherwise stated, we may assume that
P(T =+ =) =1.
Define in succession:

(4.7) ....... . .
X =0+ [ ream, + (g aa, .

For each n, X" = (X7) is a process adapted to the F, family, with paths
right continuous and free of oscillatory discontinuities.
As the process (t — (M), — A,, F,) is increasing, we get
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B(Xr] < 20° + 48] | F(Xyan, + A o(Xe yda, ]
< 20 + 40+ 0B [ {700y + oxrfan] oy @H)
<20 + 4(1 + t)E'B:(X:)zdu + 2{f(0) + g(O)z}t]
< 207 + 84(L + £){F(0) + g(0)) + 4(L + t)E’[S:(X’J)’du]

for every n.
Thus, by an induction argument, we find for every ¢t > 0

E[St(X:)Zdu] <40, m=12-.
0

from which
4.8) EU' f(X"_)Zd(M)u] < + oo, E’Utg(X:)ZdA,,J < 4 oo, VESO0,Vn.
0 0

t
Consequently, for every m, the process {S f(Xr)dM,, Ft} is a square
0

integrable martingale. Now, for simplicity, the proof is spelled out for
0 <t¢t=<1 only. Then from (4.5)

D,(t) = BI(X:+ — X1y]
= 28] (['rexe) - rexmyan) + ([ - gaa) |
< 28 [ (F(X2) = S, + A (00X - o(X)dA,

2
< StD,,_l(u)du

where sup,<.<, D(t) < 2[f(x)2 + g(x)?].
Therefore we can derive the estimate:

(4.9) Da(t) < 2[f(@) + g(x)zl% :

An application of the extension of Kolmogorov’s inequality to martingales
now gives
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[ - £ z e
= o8| | (7(x) = Fyacan, |

<& S‘Dn_l(u)du
4 Jo

(4.10) P} sup

0st=<1

for every ¢ > 0,
On the other hand, by using the Schwarz inequality

z¢}

(4.11) P{ sup

g
< P{sup 4 § [0(Xz) — g(Xi)FdA, = &}
< P{|lo(xD) - g(xrrdu 2 ¢

Thus by (4.10) and (4.11) P{sup,<.<; | Xi* — X?| = 2¢} < Const. x (¢7%/n!).
Pick now ¢ = (n — 2)!. Then ¢7*/n! is the general term of a convergent
series, and so the first Borel-Cantelli lemma shows

(4.12) P{sup| Xi* — Xp| < 2((n— D nioo} = 1.

Because of this, X" converges uniformly almost surely to some process
X. Itis clear that the X is an adapted process with paths right continuous
and free of oscillatory discontinuities. Moreover, {f(X?), F\} and {g(X?),F}
converge uniformly almost surely to { /(X,_), F,} and {g(X ), F',} respectively.

Then, it is easy to check that {Sog(X")dAu, F,} also converges uniformly
almost surely to {X:g(Xu)dAu,Ft}. According to Lemma 1, {S: f(Xr)dM,, F,}
converges uniformly in probability to {S: f(X,.)dM,, F,}. Thus for some
subsequence (n,) the processes u: f (X::k)dMuLZO converge uniformly almost

surely to {S f(X,.)dM, } . Consequently, by (4.7), the process X is a solu-
t2

tion of (4.1). This completes the proof.
We are now in a position to state our main result.

THEOREM. Let T be a stopping time of the F, family. Then for any
weak martingale M = (M,, F,), M, = 0, and any quasi-left continuous in-
creasing process A = (A,, F,), the equation (4.1) has a unique local solution
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on [0, T[. In particular, if P(T = + o) = 1, then it is a unique solution
of (4.1).
ProoF. As is well known, there exists a unique continuous increasing

process A, such that the process A, = A, — A, is a martingale. Therefore
we can rewrite the equation (4.1) in the following form:

¢ ¢ x ¢ -~
(413) X =+ So A(X.)dM, + S o(X.)dA, + Sog(Xu_)dAu .
0
This allows us to assume that the process A is continuous.
Next, denote by T,, M*, stopping times and martingales satisfying
the conditions of Definition 1. As is well known, for each =, there exist
stopping times S,,, T + oo such that the process (M},s, ,):z0 can be written as

(4-14) M?Asﬂ,m =H,+V,

where H is an L*-bounded martingale stopped at S, and V is a process
with integrable variation. More precisely, V is written in the form:

(4.15) V.= B" — B + AMz

Sn,mI‘Sn,mgt) 4

where B® is a continuous increasing process (7 = 1, 2) (see Proposition
2, p. 99, in [7]). As lim,_..S,,.= + o a.s. for each n, we have

P(S.,., < T.) < 1/2"
for some subsequence (m,), and then by the first Borel-Cantelli lemma

lim S,,,, =1lim T, = + o a.s.

n— 7n -0

Put now: S} = (inf.., S;,n)) A T.. Clearly, S5 1 + oo and S¥ < T, for
every n. Thus the sequence (S}) reduces the weak martingale M. There-
fore without loss of generality, we may assume that S} = T, = S,,,, for

every n.
Now we shall treat the equation (4.1) on each stochastic interval

[0, T.[. By (4.14) and (4.15), we have
4160 X, =o+ | rxam, + | FXABY - BY) + |o(x)aa.

on this interval.

According to Lemma 2, this equation has a unique solution X™. X"
and X" are local solutions of the equation (4.16) on [0, T A T,[. Then
from Lemma 2 X™ = X+ on [0, T A T,[; that is, X I}, ;f = X"V I ;on
on [0, T,[. This relation therefore enables us to define a process X such
that
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(4.17) X=X"Iy, on [0,T,[, n=12 -

Obviously X is an adapted process with paths right continuous and free
of oscillatory discontinuities. Consequently the process X is a local solution
of the equation (4.1) on [0, T[.

Finally, if X and Y are two local solutions on [0, T of (4.1), then these
two processes are also solutions on [0, T A T,[ for the equation (4.16).
Thus, from Lemma 2, X =Y on [0, T A T,[, and letting n— + «~ we
have: X =Y on [0, T[. Hence the theorem is established completely.
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