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1. Introduction. We introduced in [4] the concept of a weak mar-
tingale, which is a natural extension of a martingale. The weak martingale
property is invariant through all changes of time, but the property is not
true with the definition of local martingales. This is the reason for con-
sidering weak martingales. We also proved that the theory of stochastic
integration of locally bounded previsible processes can be extended to these
weak martingales (see [4]).

In this paper we shall give some basic properties of weak martingales,
and consider stochastic integral equations relative to them.

2. Definitions. The reader is assumed to be familiar with the basic
notions of the general theory of processes as expounded in [6] and with
the theory of stochastic integrals relative to martingales as given in [2].

Now let (Ω, F, P) be a complete probability space, given an increasing,
right continuous family (Ft)t^0 of sub σ-fields of F. We assume as usual
that Fo contains all the negligible sets. A notation such that "let M =
(Mt, Ft) be a martingale" means that the martingale property is relative
to the Ft family. All martingales below are assumed to be right continuous.
By a change of time T = (Ft, τt) is meant a family of stopping times τt,
t^Oy of the Ft family, finite-valued, such that for a.e. ωeΩ, the sample
function τ(ω) is increasing and right continuous. We say that the change
of time is normal if these sample functions are strictly increasing, con-
tinuous, τo(ω) = 0 and τjjo) = lim^.. r4(ω) = + <χ>. We do not distinguish
two processes X and Y such that for a.e. ωeΩ X.(co) = Y{ω).

DEFINITION 1. A process M = (Mt9 Ft) is said to be a weak martingale
if there exists an increasing sequence (Tn) of finite stopping times of the
Ft family such that

(i) l i m ^ T . = + oo a.s.
(ii) for each n there exists a martingale Mn — (Mf, Ft) such that

M = Mn on [0, Tn[.

Obviously, any local martingale is a weak martingale. We say that
such a sequence (Tn) reduces M, and the process Mn is said to be a
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martingale reduced by Tn. Note that hte word "reduces" is not used
here in the same sense as in [2], where it was demanded that M = M*
on the stochastic interval [0, Tn\.

In particular, if each Mn can be chosen to be an ZΛbounded martingale
(i.e. sup0<;t<+oo E[{Mΐ)2\ < + oo), then we say that the M is a weakly
square integrable martingale.

As is well known, every martingale X can be split into a continuous
part X% and a purely discontinuous part Xd, orthogonal to all continuous
martingales. We say that the weak martingale M is of discontinuous
type if each Mn can be chosen to be purely discontinuous.

3. Basic properties of a weak martingale. The local martingale
property is not invariant through changes of time, but the weak martingale
has the in variance. Therefore a weak martingale is not always a local
martingale.

The following proposition gives a necessary and sufficient condition for
a weak martingale M to be a local martingale.

PROPOSITION 1. A weak martingale M is a local martingale if there
exists a sequence (Tn) of stopping times reducing M and the martingales
Mn reduced by Tn such that for each n (ilίί+y)i=i,2f... is uniformly integrable
on the set {Tn > 0}.

PROOF. From the definition of a weak martingale,

lim ΛTJ+' = MTn a.s.
j-*oo

for each fixed n, but since (M%+j)j==l,2f... is uniformly integrable on {Tn > 0},

Mΐl3ΊιTn>0} -> MτJ{Tn>0) in L1 as j -+ + oo .

Thus for each t, E[Mΐ+jI{Tn>0} | Ft] -+ E[MτJ{Tn>0} | Ft] in L\ Similary

M™Aτnl{Tn>Q} • MtATnl{Tn>Q}

in U for each t. Since for each fixed n and j the process (MtZτn9 Ft) is
a uniformly integrable martingale, then we get

E[MTn\Ft] = MtATn on {Tn > 0} .

Consequently M is a local martingale. This completes the proof.

Furthermore, if sup, E [(Mτ+syi{Tn>o)] < + °° for each n, then the weak
martingale M is a locally square integrable martingale.

The next example shows that a weak martingale is not necessarily
a weakly square integrable martingale.

EXAMPLE 1. Let Ω = R+, F the class of all linear Borel sets in Ω and
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we designate by S the identity mapping of Ω onto R+. Let F°t be the
Borel field generated by S Λ t. We define the probability measure P on
Ω by P(S >t) = e~K Let Ft be the P-completion of Ft°. Note that the
family (Ft) is right continuous and has no times of discontinuity. Clearly
S is a stopping time of the Ft family.

Now we are going to verify that any weak martingale M is a
martingale on this probability space. Denote by Tn, M

n, stopping times
and martingales satisfying the conditions of Definition 1. For simplicity,
assume that each Tn is bounded. C. Dellacherie [1] proved that

(3.1) R+ 3 3 s j + oo, Tn = sn a.s if S ^ sn and Tn ^ S a.s. on {S < sn}

Then it is easily checked that Ft = FtAS for every t, and so M? = M?AS.
As the set {S > t} is an i^-atom, we get

* = ™sl{s^t} + ~CtI{s>t}2)
I T U T T U T T ι

where Ct and C? are constants.
From (3.1) and the definition of a weak martingale, it follows that

for each t < sn

Mt = Mΐ on {sn < S] and {sn <S}cz{t<S}.

Thus Cΐ = Ct if t < sn. Consequently, by (3.2)

( MΐdP = \ M«dP = C8e~% s < t < sn
Jjs,oo[ J]β,oo[

from which

(3.3) ( M%dP = C8e~β - Cte~\ s < t < sn .

Therefore for every k = 1, 2,

( M%dP = \ Mn

s

+kdP, s<t<sn

and so ΛfS = M^+A: on {S < sn). By letting fe—> + oo, we have

MUis^t) = MsI{s^t}, (t < sn) .

Then from (3.2) Mt = Λf? for ί < sn. As lim^^s^ = + oo, M is a mar-
tingale.
Similarly, one can prove that any weakly square integrable martingale
is a square integrable martingale.
Then it suffices to choose a martingale which is not a square integrable.

REMARK. I do not know whether a continuous weak martingale is a
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weakly square integrable martingale (as in the case of local martingales).

PROPOSITION 2. Let M be a weak martingale such that Mo = 0. Then
there exists a unique decomposition of M into a sum of a continuous
local martingale Mc and a weak martingale Md, which is of discontinuous
type.

PROOF. Denote by Tn, M
n, stopping times and martingales satisfying

the conditions of Definition 1. Since for each n the process MTn = (MtATn)
is a semi-martingale (see [4]), one can show the existence of a unique
continuous local martingale Mc such that M° = (Mn)° on [0, Tn] for each
n. Thus the weak martingale Jlfd = Jlf — Mc is of discontinuous type.
The uniqueness of the decomposition is evident.

It should be noted that a continuous weak martingale can be of dis-
continuous type. We now give such an example.

EXAMPLE 2. Let X — (Xt, Ft) be a continuous martingale such that
Xo — 0 and lim supt_+oo Xt = + °o a.s. Put now

τt = inf {u; Xu> t} .

Then T = (Ft, τt) is a change of time, and XTt = t by the sample continuity
of X. Since the weak martingale property is invariant through changes
of time, the process Jlf = (t, Fu) is a weak martingale. By Proposition 2,
Jlf can be written in a unique way as t = Mc

t + Jiff. It is clear that the
Jlf is not a local martingale, and so the process Md is a continuous weak
martingale which is of discontinuous type.

We can also define:

(3.4) [M,M]*

Here <Jlfc> denotes the unique continuous increasing process such that
(Jlfc)2 — <JkP> is a local martingale.

Then it is easy to see that for any weak martingale Jlf the process
(Jlft

2 — [Jlf, Jlf]ί, Ft) is also a weak martingale. The theory of stochastic
integration can be extended to weak martingales as follows. Let Jlf = (Mt,
Ft) be a weak martingale and C = (Ct, Ft) a locally bounded previsible
process. Let (Tn) be a sequence of stopping times reducing Jlf. Then
there exists a unique weak martingale Co Jlf such that Co Jlf = CΌJkF* on
[0, Tn[ for each n. The process Co Jlf is said to be the stochastic integral
of C relative to Jlf. Unfortunately we can not characterize the stochastic
integrals by an identity involving the bracket [ , ] as in the case of local
martingales, because there exist (bounded) continuous weak martingales
Jlf such that Jlf Φ 0 and [Jlf, Jlf] = 0.



ON A STOCHASTIC INTEGRAL EQUATION 57

4. A stochastic integral equation with respect to a weak martingale.
Let M = (Mt, Ft) be a weak martingale and A = (At, Ft) an increasing
process. Let f(x) and g(x) be two continuous functions defined on R. We
shall consider in this section the following stochastic integral equation:

(4.1) Xt = x + (7(-ar.-)AM« + [giX^dAv, x e R
J J

where the integral by dMu (resp. dAu) is understood in the sense of the
stochastic integral (resp. the Lebesgue-Stieltjes integral on R+ for each ω).

We have supposed in a previous paper [5] that / and g are bounded,
but this assumption is unnecessary as we shall see below.

DEFINITION 2. Let T be a stopping time of the Ft family. By a local
solution of the equation (4.1) on the stochastic interval [0, T[, we mean
a process -X" = (Xt, Ft) with paths right continuous and free of oscillatory
discontinuities, which satisfies the equation (4.1) on [0, T[.

The value + oo is admissible for T. In particular, if P(T = + oo) =
1, then we simply call it a solution of (4.1).

Let X and Y be two right continuous processes with finite left limits,
and suppose that X = Y on [0, T[. Then, if X is a local solution on [0,
T[, so is Y. We say that the uniqueness on [0, T[ holds for (4.1) if for
any two local solutions X, Y on [0, T[ we have X = Y on this interval.

For example, if M is a continuous local martingale, then the local
uniqueness holds for the equation:

(4.2) Xt =

for any stopping time T. Of course, this uniqueness does not always
hold (even if 1/2 ^ a). We shall give some non-trivial example such that
the uniqueness does not hold.

EXAMPLE 3. The classical problem

(4.3) u(t) =

has a unique solution u = 0 for a ^ 1, but for 0 < a < 1 and 1 — a = β,
u(t) = (βtflβ is also a solution and so is

(0: t ^ tx

for each choice of ίx > 0.
Now let (Ω, F, P; Ft) be the same probability space as discussed in Example

1. Denote by M a right continuous modification of E[S —11^]. As the
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random variable S — 1 is square integrable, the martingale M is ZΛbounded.
An easy computation shows

Mt = t AS- I{s^t}

and so

[\X%-\adM% = [*\Xu\
adu

Jo Jo

on [0, S[.
Consequently, from (4.4), the equation (4.2) has an infinite number of
local solution on [0, S[ for 0 < a < 1.

In the remainder of this paper, we assume that the functions / and
g are Lipschitz-continuous; namely

(4.5) M a x ( | / ( α ? ) - f ( y ) \ , \g(x) - g(y)\} rg C\x - y \ , x , y e R

where C is some positive constant. We suppose in addition that the family
(Ft) has no times of discontinuity.

Let us agree to say that a sequence of processes X{n) converges uni-
formly in probability to a process X if for each ε > 0 and each t > 0,

limPfsup \X{

s

n) - X8\ ^ e\ = 1 .

Furthermore, if P f l i m ^ supo^s^f | X{

s

n) - X8 \ = 0} = 1 for every t ^ 0,
then we say that the processes X{n) converge uniformly almost surely to X.

LEMMA 1. Let X{n) = {X{

t

n\ Ft), n = 1, 2, . . , be a sequence of locally
bounded previsible processes, and assume that M is an U-bounded mar-
tingale. If the processes Xin) converge uniformly almost surely to X, then
X{n) o M converges uniformly in probability to Xo M.

Since this lemma is proved in [3], we omit its proof.

LEMMA 2. Suppose that the process M is an U-bounded martingale
with Mo — 0, and the process A is continuous. Then the equation (4.1)
has a unique local solution on [0, T[ for any stopping time T.

PROOF. Define now:

\ = t + <M>t + At, θt = inf {u; \u > t} .

It is easy to see that θ = (Fu θt) and A — (Fθt, \) are normal changes of
time. Obviously Xτ is a stopping time of the Fθt family, and the process
(t — (M}θt — Aθt, Fθt) is increasing. Therefore, in order to show the
existence of a unique local solution of the equation (4.1) on [0, Γ[, by
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considering the time change transformation Θ there is no loss of generality
in assuming that the process (t — (M)t — At, Ft) is increasing.

(a) Uniqueness: Let Xand Ybe two local solutions of (4.1) on [0, T[.

Put now

Rn = inf{ί; |-Zi | V \Yt\ ^ n}, n = l,2, .

Each Rn is a stopping time of the Ft family. It is easily checked that

Rn ^ Rn+lf R~ = l ί m — R» ^ T a ' S

(4.6) D(t) = E[(Xt - Γt)

for each fixed n.
( CtΛRn ) ( CtΛRn )

Then f(XuJ)dMu,FΛ and f(Y^)dMu,FΛ are ^-bounded
( J o ) ί^o I J o ) ί^o

martingales. For simplicity, we assume that C ^ 1/2.
Using the inequality (α + 6)2 ^ 2(α2 + 62) and the continuity of <M>. (ω)

and A.(ω), we get

D(t) = E[§[f(XuJ - f(YuJ]dMu

^ (1 +

from which D = 0 follows. Hence, by making w—> oo, X = 7 o n [0, T[.

(b) Existence: We first remark that a solution of (4.1) is also a local
solution for the equation on [0, T[. Therefore it suffices to verify the
existence of a solution for (4.1); otherwise stated, we may assume that
P(T = + oo) = 1.

Define in succession:

'X°t =

(4.7)

For each n, Xn = (Xf) is a process adapted to the Ft family, with paths
right continuous and free of oscillatory discontinuities.

As the process (t — (M)t — Au Ft) is increasing, we get
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+ At

2x* + 4(1 + t)EΪ[\f(X:γ + g(X:γ\du] (by (4.5))

2α;2 + 4(1 + t)EΪ[\x:)2du + 2{/(0):

2α;2 + 8ί(l + t){f(0Y + (̂0)2} + 4(1 -

for every n.
Thus, by an induction argument, we find for every t > 0

β ] < + oo, n = 1, 2,

from which

(4.8) ΐ7[[/(X:_)2d<M>tt] < + oo, E^g(X:ydAu^ < + oo, vί > 0,

Consequently, for every n, the process 11 f{XlJ)dMu, FΛ is a square

integrable martingale. Now, for simplicity, the proof is spelled out for

0 ^ t ^ 1 only. Then from (4.5)

AΛO - E[(Xΐ+ί - Xlf]

At

where sup 0 ^^ D0(t) ^ 2[f(x)2 + g(x)2].
Therefore we can derive the estimate:

(4.9) DM 5Ϊ 2[f(xf + 9(xf]-^

An application of the extension of Kolmogorov's inequality to martingales
now gives



ON A STOCHASTIC INTEGRAL EQUATION 61

(4.10) p] sup |Γ[/CXΪ-) - AXZWM. ^ el
( o^ί^i I Jo )

\f(XZ) =

4 Jo

for every ε > 0.
On the other hand, by using the Schwarz inequality

(4.11) P\ sup I\\g(X:) - g(XΓι)]dAu Ξ> el

<: PJsup At Γf
Uέtέi Jo

il Γ
4 Jo

Thus by (4.10) and (4.11) P{sup0SίS1 \Xf+1 - Xΐ\ ^ 2ε} g Const, x (e
Pick now e~2 = (n — 2)1. Then ε~*/nl is the general term of a convergent
series, and so the first Borel-Cantelli lemma shows

(4.12) p ( sup I X?+1 - Xf I ̂  2[(» - 2)!]1'2, n | oo I = 1 .

Because of this, Xn converges uniformly almost surely to some process
X. It is clear that the X is an adapted process with paths right continuous
and free of oscillatory discontinuities. Moreover, {/(-ΣJL), Ft} and {g(X?),Ft}
converge uniformly almost surely to {f(Xt~), Ft] and {g(Xt), Ft} respectively.
Then, it is easy to check that jl g(Xl)dAu, Ft\ also converges uniformly

almost surely to | \ g(Xu)dAu, FΛ. According to Lemma 1, j \ f{XlS)dMu, FΛ

converges uniformly in probability to jl f(XuJ)dMu,FΛ. Thus for some

subsequence (nk) the processes ] \ f(Xlt)dMu \ converge uniformly almost
( J o J ί^o

surely to \ \ f(XuJ)dMΛ . Consequently, by (4.7), the process X is a solu-
Uo ) ί^o

tion of (4.1). This completes the proof.
We are now in a position to state our main result.
THEOREM. Let T be a stopping time of the Ft family. Then for any

weak martingale M = (Mt, Ft), Mo — 0, and any quasi-left continuous in-
creasing process A = (At, Ft), the equation (4.1) has a unique local solution
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on [0, T[. In particular, if P(T = + °°) = 1, then it is a unique solution
of (4.1).

PROOF. AS is well known, there exists a unique continuous increasing
process Άt such that the process At = At — At is a martingale. Therefore
we can rewrite the equation (4.1) in the following form:

(4.13) Xt = x

This allows us to assume that the process A is continuous.
Next, denote by Tn, M

n, stopping times and martingales satisfying
the conditions of Definition 1. As is well known, for each n, there exist
stopping times Sn,m t + °° such that the process (M?ASntm)t*o c a n be written as

(4.14) MtASΛtm = Ht+Vt

where H is an ZΛbounded martingale stopped at Sn,m and V is a process
with integrable variation. More precisely, V is written in the form:

(4.15) Vt = «» - B? nJn^

where B{i) is a continuous increasing process (i = 1, 2) (see Proposition
2, p. 99, in [7]). As lim^^^ Sn,m = + 00 a.s. for each n9 we have

P(Sn,mn < Tn) < l/2

for some subsequence (mw), and then by the first Borel-Cantelli lemma

lim Sn,m% = lim Tn = + 00 a.s.

Put now: S* = (inf^. Sί>m.) Λ Γ. Clearly, S* | + °° and S* ^ ΓΛ for
every n. Thus the sequence (Sί) reduces the weak martingale M. There-
fore without loss of generality, we may assume that Si — Tn = Sn,mn for
every n.

Now we shall treat the equation (4.1) on each stochastic interval
[0, Tn[. By (4.14) and (4.15), we have

(4.16) Xt = x + [f(Xu_)dHu + [f(Xu_)d(B^ - B™)
Jo Jo

on this interval.
According to Lemma 2, this equation has a unique solution X{n). X(n)

and Xn+1) are local solutions of the equation (4.16) on [0, T A Tn[. Then
from Lemma 2 Xn) = Xn+ί) on [0, T A Tn[; that is, Xn)Iί0, n = Xn+1)I[0,n

on [0, Tn[. This relation therefore enables us to define a process X such
that
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(4.17) X = X^Il0fTί on [0, Tn[, n = 1, 2, . .

Obviously X is an adapted process with paths right continuous and free
of oscillatory discontinuities. Consequently the process X is a local solution
of the equation (4.1) on [0, T[.

Finally, if X and Y are two local solutions on [0, T[ of (4.1), then these
two processes are also solutions on [0, T A Tn[ for the equation (4.16).
Thus, from Lemma 2, J = 7 o n [0, T A Tn[, and letting n —> + oo we
have: J = 7 o n [0, T[. Hence the theorem is established completely.
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