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0. Introduction. Let M" be a differentiable manifold of class C=.
By a Morse function f on M", we mean a differentiable function f on
M™ having only non-degenerate critical points. A well-known topological
result of Reeb states that if M is compact and there is a Morse func-
tion f on M™ having exactly 2 critical points, then M" is homeomorphic
to an n-sphere, S* (see, for example, [3], p. 25).

In a recent paper, [4], Nomizu and Rodriguez found a geometric
characterization of a FEuclidean mn-sphere S"c R"*? in terms of the
critical point behavior of a certain class of functions L,, p € R, on M".
In that case, if pe R, xe¢ M", then L,(2) = (d(z, p))’, where d is the
Euclidean distance function.

Nomizu and Rodriguez proved that if M" (n = 2) is a connected,
complete Riemannian manifold isometrically immersed in R"*? such that
every Morse function of the form L, pe R"*?, has index 0 or » at any
of its critical points, then M" is embedded as a Euclidean subspace, R*,
or a Euclidean n-sphere, S*. This result includes the following: if M" is
compact such that every Morse function of the form L, has exactly 2
critical points, then M" = S*.

In this paper, we prove results analogous to those of Nomizu and
Rodriguez for a submanifold M" of hyperbolic space, H"*?, the space-
form of constant sectional curvature —1.

For pe H***, x ¢ M", we define the function L,(x) to be the distance
in H*** from p to x. We then define the concept of a focal point of
(M*, x) and prove an Index Theorem for L, which states that the index
of L, at a non-degenerate critical point & is equal to the number of
focal points of (M", x) on the geodesic in H"*” from x to p.

In section 2, we prove that a metric sphere S* c H"*” can be charac-
terized by the condition that every Morse function of the form L,
pe H"?, has exactly 2 critical points.

In section 3, we give an example which shows that a result analo-
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gous to that of Nomizu and Rodriguez for the non-compact case cannot
be proven. More explicitly, we exhibit a complete surface M:c H®
which is not umbilic on which every Morse function of the type L, has
index 0 at any of its critical points.

The author would like to express his sincere gratitude to his adviser,
Katsumi Nomizu, for his assistance in this work.

1. The functions L, and the index theorem. We will use the fol-
lowing representation of hyperbolic space H™ (for more detail, see [2],
vol. II, p. 268). Consider R™*' with a natural basis e, e, ---, ¢, and
a non-degenerate quadratic form H defined by

H(x, y) = —2%" + i okyk for x = i z*e, and y = i yre, .
k=1 k=0 k=0
Then H™ is the hypersurface
{xe Rm+ I H(x9 x) = —17 a’ = 1} ’

on which g, the restriction of H, is a positive definite metric of constant
sectional curvature —1.

Let M™ be a connected, Riemannian manifold, and let f be an iso-
metric immersion of M™ into H**?. We first define the following class
of functions on H"*?; for p, q in H"**

L,(q) = d(p, 9,

the distance in H"** from p to q. If we use the above representation
of H"*?, then we have

L,(q) = cosh™ (—H(p, 9)) .

For pe H**?, xe M", we define L,(x) = L,(f(x)). If pe¢f(M"), then the
restriction of L, to M" is a differentiable function on M". From this
point on, we will only consider L, such that pe¢ f(M™).

We now proceed to develop the concept of focal point and prove an
Index Theorem for L,. Let N(M") denote the normal bundle of M=,
Any point of N(M™) can be represented as (u, r§) where we M", r€ R, and
& is a unit length vector in T,*(M"), the normal space to M" at w.

We define 7(u, & r), — <r < o, to be the geodesic in H"*? para-
metrized by arc-length parameter » such that

Y(u, & 0) =« and Y(u, & 0) =¢&.

Let U be a local co-ordinate neighborhood of M* with co-ordinates
u', -+, w". Then, in terms of the co-ordinates a°, - -, "*? in R"***, the
immersion f(U) can be represented by the vector-valued function



METRIC SPHERES IN HYPERBOLIC SPACE 343
w(w, -, ut) = @Y e, wY), cee, (UL -, u")) .
In terms of this representation, the geodesic ~(u, & r) is given by
v(u, & r) = (cosh r)x (uw) + (sinh r)¢ .
We define a map F' from N(M") to H**? by
F(u, r§) = 7(w, & 7).

As in the Euclidean case, the concept of focal point is defined in terms
of the degeneracy of F,, the Jacobian of F.

DEFINITION. A point pe H"** is called a focal point of (M", w) of
multiplicity v if p = F(u, ) and F, has nullity ¥ > 0 at (u, r§) € N(M™).
(We say p is a focal point of M" if p is a focal point of (M", u) for
some € M".)

For ¢e T,*(M"), A, denotes the symmetric endomorphism of T, (M")
corresponding to the second fundamental form of M"* at u in the direc-
tion of &. The following proposition identifies the focal points of M™.

PROPOSITION 1. A point pe H*** is a focal point of (M", y) of
multiplicity v > 0 if and only if
»=F@y,rE) and cothr==FK
where k is an eigenvalue of A, of multiplicity v.

Proor. Fix (y, r§)e N(M™), and let U be a co-ordinate chart of M"
with co-ordinates w', ---, w* such that ye U. Then N(U) can be con-
sidered as U x R*. We now examine the nullity of F, at (y, ré).

We first assume r = 0. Choose &, ---, &, orthonormal normal vector
fields on U such that &(y) = & Let ge T,%(U) for some uwe U. Then
we can write

B = ;,e(«/l — ]Z,;(tf)zEl + 8+ o + t”Ep) where
0<p<ec and N @)s1.

The ¢ are the direction cosines of B, and ¢ = ||B||. The coordinates

(u!y <« u™ ¢, % « -+, t?) are local co-ordinates on N(U). For any j, we
compute from the definition of F that,
_3_> — P4 l
F*< oti ) lwrey (%) tizo

where the curve 7(¢%) is defined by
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N(t’) = (cosh r)x(y) + (sinh r)(V'1 — (#).(y) + t&,(y)) .

Then,
o . 0
W)| = (sinh &) # 0 and thus, F (2| =0,
ti=o ot / lw.re)
Similarly,
F*<_aa_> = 77(;:)! where 7(#) = (cosh p)x(y) + (sinh p)&,(y) .
‘u (y,r§) p=r
Then
7(#) = (sinh ) (y) + (cosh p)é(y) and |[|7()|| =1 for all p.
In particular,
. -y
77(#) p=r - F*< 6;z> (y, 7€)

In fact, the above calculations show that if
V=a(50) + S o55) € Tura N0,
then F (V) =0 only if V=0. If we let
X = 310(s2 ) € Tl N(UY ,

we shall soon compute F,(X). That computation and the above will
show that

F(X+V)=0 onlyif V=0.

(We remark that if » = 0, we must choose a slightly different co-ordinate

system to obtain the same result.)
Thus to find a vector Xe T\,,,.,(N(U)) such that F,(X) vanishes, we
must concern ourselves with vectors of the form

=Sl

It is convenient to let Ye T,(U) such that
X =(Y,0)

when we consider T',,..,(N(U)) as T,(M") @ R*. To facilitate the calcu-
lation of F', (X), we assume that the vector field & defined above has
been chosen so that V/,'£ =0, where VV* is the connection in the
normal bundle induced by %/, the covariant derivative in H***. From
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the definition of F we compute using the vector representation,
(1) F . (X) = F.(Y, 0) = Fy(cosh r)x + (sinh 7))
= (cosh r)Fyx + (sinh r)7yé, = (cosh 7)Y + (sinh 7)f,¢, .
However,
Préi= —A Y + 7yt6, .
Since we have chosen &, so that

Vyté, =0 and §&(y) =& we have /6, = —A.Y.
Thus (1) becomes

F.(X)=F,(Y,0) =(coshr)Y — (sinhr)A,Y,
and we see that F (Y, 0) vanishes if and only if
cothr =Fk,

where & is an eigenvalue of A, and Y is an eigenvector of k. This
shows that if coth » has multiplicity ¥ > 0 as an eigenvalue of A,, then
there is a yv-dimensional subspace of T, .., (N(U)) on which F', vanishes.
Thus in that case, p = F(y, r€) is a focal point of multiplicity v. q.e.d.

Next for pe H"*?, we want to examine the critical points on M* of
the function L,. We will find an expression for the index of L, at
a non-degenerate critical point y of L,. This and Proposition 1 yield
an Index Theorem for L, which states that the index of L, at y equals
the number of focal points on the geodesic in H"** from f(y) to ».
The following proposition characterizes the critical points of L, on M™".

PROPOSITION 2. Let pe H** and x,€ M" such that f(x,) # p.

(i) =, 18 a critical point of L, if and only if p = F(x, rf) for &
a unit vector in T,*(M™).

(ii) =, is a degenerate critical point of L, if and only if cothr =k
for k an eigenvalue of A..

(iii) If =, is a nom-degenerate critical point of L, then the index
of L, at x, is equal to the number of eigenvalues k, of A such that

k; > cothr.
Here each k; is counted with its multiplicity.

PrOOF. For ze M" and U a sufficiently small neighborhood of z, we
may identify U with its image f(U)c H"**. Then using the vector
representation of L, we compute the derivative of L,. Fix x,e M",
and let X be a differentiable vector field on U. Then
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XL,(x) = X cosh™ (— H(x, p))
(2) _ -1 H(D, _ 1 x
(H(xy p)2 — 1)1/2 ( €, p) (H(x, P P 1)1/2 ( ’ p) ’

where D is the Euclidean covariant derivative in R"*?*',
For the fixed point x,€ U, there is a unique unit-length vector
Be T,(H"?) such that

(3) p = (cosh r)x, + (sinh )8 where r = L,(x,) .
From (2) and (3) we have
(4) XL, (@) = —1___(sinh n)H(X, §),

(H(w,, p)* — 1)

since H(X, x,) = 0 because Xe T, (H"*?).

From (4) we see that x, is a critical point of L, if and only if
H(X, B) = 0 for all Xe T, (M"); that is, if and only if Be T:(M"), and
thus p = F(x,, r8). This proves (i).

Now let p = F(x,, r§); we calculate the Hessian of L, at », Let
X, Y be differentiable vector fields on U. Then for xe U, we have

—1
H(X, .
&G, oy — D ?)

p) = 0, we have

(2) XL,(x) =

Then since H(X,

0?

_1
YXL,(x,) = Y(H(X,
(5) A% = e, oy — 1 P
-1
- H(D, X,
&, 7y — D% D)

From knowledge of the embedding of H"*? in R"***!, we know that
for xe¢ U,

(6) DYXlx:'ﬁYXlz—*_H(X, Y)x
and
(7) PrX =V X + a(X, Y)

for a(X, Y) the second fundamental form of M" in H"*?, and for // the
covariant derivative in M*. Now (3), (6), (7) yield
H(DyX, p) ., = sinh rH(a(X, Y), §) — cosh rH(X, Y)
(8) = sinh rH(A.X, Y) — cosh rH(X, Y)
= H((sinh rA, — coshr])X, Y)

where I is the identity endomorphism on T, (M").
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We note that
H(x,, p)* = cosh*r and thus (H(w, p)* — 1)V = sinhr .
The above equation and (8) imply that we can re-write (5) as
(9) YXL,(x,) = H(—A; + cothr)X, Y)|,, .
From this expression for the terms of the Hessian of L, at x, we
conclude that «, is a degenerate critical point of L, if and only if
cothr =k

for k an eigenvalue of A,, proving (ii).

The index of L, at x, is defined as the number of negative eigen-
values of the Hessian of L, at x,. We see from (9) that if cothr is
not an eigenvalue of A,, then the index of L, at x, equals the number
of eigenvalues k, of A, counted with their multiplicities, such that

k,; > (:Oth r.
This proves (iii) and completes the proof of Proposition 2. q.e.d.
Propositions 1 and 2 yield immediately the Index Theorem for L,.

THEOREM 1. (Index Theorem for L,) For pe H"'?, the index of L,
at a non-degenerate critical point xe M™ is equal to the number of focal
points of (M", x) which lie on the geodesic in H"*® from f(x) to p. Each
focal point is counted with its multiplicity.

2. A characterization of metric spheres in terms of the functions

L,. We now proceed to prove the main result of this paper which we
state as follows.

THEOREM 2. Let M™ be a connected, compact, differentiable manifold
immersed in H"*. If every Morse function of the form L, pe H"*?,
has exactly 2 critical points, then M" is embedded as a metric sphere, S".

In the above statement, the notation “metric sphere” means the fol-
lowing. There exists a totally geodesic (n + 1)-dimensional submanifold
H»t'c H*?, a point ge H"*, and ce R, such that

S*={yeH"'|d(q, y) =c}.

In the remainder of this section, we assume M" satisfies the hypo-
theses of Theorem 2. We first consider the set T,

T = {pe H***| p is not a focal point of M"}.

By Sard’s Theorem, T is dense in H"*? (see [3], p. 36). Propositions 1
and 2 show that L, is a Morse function if and only if pe T. Using
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these facts, we can prove the following proposition. With minor changes,
the proof is identical to the proof of the corresponding proposition for
submanifolds of R™ proven by Nomizu and Rodriguez ([4], p. 199). Hence,
we omit the proof here.

PrOPOSITION 3. Let pe H"™?, and assume that L, has a non-degener-
ate critical point at xe M™ of index j. Then, there is a point g€ H™**
such that L, is a Morse function which has a critical point ze M™ of
index j (@ and z may be chosen as close to p and x, respectively, as
desired).

To prove Theorem 2 we will proceed in the following way. Let f
be the immersion of M" into H"*?. We will show that f is umbilie.
Then it is known that a compact umbilical submanifold of H"** must be
a metric sphere S*. The proof of this fact is very similar to Cartan’s
argument for submanifolds of R™ (see [1], p. 231).

We first prove the following result.

PROPOSITION 4. Let x€ M™ and suppose there is a unit length vector
e TiH(M™) such that A, has an eigenvalue whose absolute value is greater
than 1. Then, A, = M for A€ R.

Proor. Let M be the eigenvalue of A, with largest absolute value.
We know from the hypothesis that

I >1.

We may assume \ > 1; for if A < —1, then we simply prove the propo-
sition is true for A_., which has an eigenvalue —) > 1. This will, of
course, also prove the result for A..

Take » > 0 such that

¢ <cothr <X

where p¢ is the second largest positive eigenvalue of A,. If no such g
exists, we simply insist that

1 <cothr <.

By Proposition 2, we know that for p = F(x, r§), L, has a non-
degenerate critical point at x. Also by Proposition 2, the index of L,
at x is equal to the multiplicity, say j, of the eigenvalue A. If L, is
a Morse function, then the hypothesis of Theorem 2 imply that j = =,
since we know ;7> 0. If L, is not a Morse function, we know by
Proposition 3 that there is a point ge H"*?, such that L, is a Morse
function having a critical point of index j. Again we conclude j = n.
Thus A is an eigenvalue of multiplicity =, and so A, = \1. q.e.d.

We remark that unlike the case for submanifolds of B™ we cannot
conclude immediately that f is an umbilical immersion because of the
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needed requirement in Proposition 4 that A, must have an eigenvalue
whose absolute value is greater than 1. Thus, further reasoning is
necessary; the following proposition extends Proposition 4 to a local
neighborhood U of x. This proposition is the key to overcoming the
above-mentioned difficulties.

PROPOSITION 5. Let x€ M™ and suppose there is a unit length vector
oe TH(M™), such that A, has an eigenvalue whose absolute value 1is
greater than 1. Then there is a meighborhood U of x in M™ such that
f 1s umbilical on U and such that the second fundamental form a(X, Y)
does not vanish on U.

Proor. Let V be a co-ordinate neighborhood of x and let &, ---, ¢,
be orthonormal normal vector fields on V such that &(x) = +0; the sign
is chosen so that 4, (, has an eigenvalue g > 1.

Since the eigenvalues of A, are continuous, there is a neighborhood
U of %, U is contained in V, such that for any ue U, A, ., has an eigen-
value which is greater than 1. Thus a(X, Y) does not vanish on U.

We fix an arbitrary point e U. By Proposition 4 we know A ., = ¢l
for some ¢ > 1. Hence if the codimension p = 1, the proof is complete.

Assume p > 1. For the fixed we U, we define a function A on
Ti(M™) as follows. For any &e Ti(M"), M) is the largest eigenvalue
of A.. We know X\ is a continuous function on T:(M"). Thus there is
a neighborhood N of &,(w) in T:i(M™) such that (&) >1 if £e N. By
Proposition 4, A, = \(&)I if £ée N. Since N is open, we know that for
each j there is a unit length vector £e€ N such that

& =a& + b&; for some a,b>0 such that a*+bd*=1.
We know

(10) A =MHI
but we have
(11) Ae = Au51+b€j = a.z4e1 + bAeJ. .

Now A4, = \(¢)I and thus (10) and (11) give
PRGETIG P

J
Thus all the eigenvalues of Aej are the same, and we are justified
in writing
A= M) 15j<p.
Then if ¢;e R, 1 <j < p, we have
Ageye; = 3 cilley = 30D = 3, CMENT .
Hence,
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7\'(?; 0:’5’) = JZ: eiME5)

and ) is a linear function on Ti(M™).

We have shown that for each u € U, there is a linear function A(§)
on Ti(M™) such that A, = M¢é)I for any &€ Ty(M™). This means that f
is umbilical on U, and the proof is complete. q.e.d.

The following remark can be proven by methods similar to those
employed by Cartan ([1], p.231); the proof is essentially the proper use
of Codazzi’s equation and is omitted here.

REMARK 1. Let U be a neighborhood of M™ on which the second
fundamental form a(X, Y) does not vanish, and such that f is umbilical
on U. Then the mean curvature vector » has constant length on U.

The following proposition and Proposition 5 will show that f is an
umbilical immersion on M™.

PrOPOSITION 6. The mean curvature wvector 7 has constant length
7]l >1 on M™.

PrOOF. Let pe H"** such that L, is a Morse function. Since M" is
compact, there exists € M" such that L, has a non-degenerate maximum
at . Hence the index of L, at x is equal to =.

From Proposition 2, we know there exists » > 0 and a unit-length
normal &€ T (M") such that » = F(z, &), and we know A, = ¢I where
¢ > 1. Proposition 5 implies that there is a linear function A on T:(M*)
such that A, = M0)I for any oe T+(M™).

Let &, ---, &, be an orthonormal basis for 7:(M") such that & = é&.
Then

(@) = z”‘ (trace A;) g, = 2’3 nM(é;) g, = i MEES
j=1 n J=1 n J=1
and so A,, = (X2 V(€))L
Since A,., = g(n(x), 7(x))I, we conclude that

7@ = 3336 2 0ME) > 1.
Let 8 = || 7(#)|| and let

S={ueM"|||7w)|l =B} .

Since || 7]|| is continuous on M", we know S is closed. However, Propo-
sition 5 and Remark 1 imply that S is open. Since ze¢ S, S @, and
the connectedness of M" implies S = M". Thus we have |[7||=8>1
on M". q.e.d.
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Now Propositions 5 and 6 imply that f is an umbilical immersion of
M". As we remarked earlier, a compact umbilical M* immersed H"+?
must be a metric sphere S*, and the proof of Theorem 2 is complete.

3. A remark on the non-compact case. In this section, we note
that a result corresponding to that of Nomizu and Rodriguez for the
non-compact case does not hold. That is, let M* be a connected, com-
plete Riemannian manifold isometrically immersed in H"*?. Assume that
every Morse function of the form L, p€ H"*?, has index 0 or » at any
of its critical points. Then we cannot conclude that M™ is an umbilical
submanifold of H™"*?.

The reason why the method of Nomizu and Rodriguez cannot be
applied is that there may not be any focal points on the geodesic
Y(x, & r) for some xe€ M" and ¢ a unit length vector in T:(M"). In
fact, this occurs if | k;| < 1 for every eigenvalue k;, of A,. Without the
existence of a focal point on ¥(x, & r), we cannot use the Index Theorem
to prove A, = \I.

We supply here a simple example of a non-umbilic, complete surface
M* embedded in H*® such that every Morse function of the form L, has
index 0 at any of its critical points.

As before, we represent H® as a hypersurface of R'; then the surface
M? is defined by the global parametrization (s, t) as follows. Consider
A, ¢ such that 0 <)\ <1 and ¢ = (1 — A\)Y4 then

y(s, t) = —L—(cosh (¢t) cosh s, A cosh s, sinh (#¢) cosh s, ¢ sinh s) .

Geometrically, M*? is a cylinder in H*® over the curve

7(t) = %(cosh (¢t), , sinh (ut), 0)
which has constant curvature \.
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