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CRITERIA FOR THE NORMALITY OF A COMPACT OPERATOR

Kon-1cHI KITANO
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We present in this note some criteria for the normality of a com-
pact operator on the result of J. R. Ringrose [5] that every compact
operator has a maximal nest of invariant subspaces. The main result
of this note is a generalization of the known result (see, p. 93 of [3] or
[1D.

Throughout this note 57 denotes a complex Hilbert space, operator
and subspace mean a bounded linear operator and a closed linear manifold,
respectively. Now suppose that 7' is a compact operator acting in &
The operator T*T is positive and compact, that has a unique non-negative
square root which is also compact. The characteristic numbers of T are
defined to be the eigenvalues p,, tty, -, tt,, +++ of (T*T)"* enumerated
with their multiplicities; we arrange them in decreasing order. For
1< p< =, we define [T, to be {3; #2}'/>. The von Neumann-Schatten
class &, is the set of all compact operators for which |T'|, is finite.
The class &, is a two-sided ideal in <& (2#°) (the algebra of all operators
on 57°) which is a Banach algebra under the &,-norm, ||, (see, Chap.
III of [3]).

Next more general than the characteristic numbers of T, we shall
consider the non-negative square roots of the eigenvalues v, v,,++-, Y, * -,
arranged in decreasing order and repeated according to their multiplicities,
of aT*T + (1 — a)TT*, where « is any constant with 0 <a <1 and T
is a compact operator on 5# We shall denote by N\, Ny *++, Ay, -+ the
eigenvalues of T. Suppose that are arranged in order of decreasing
absolute value, repeated according to their multiplicities.

A generalization of Weyl’s inequality; a set of inequalities compar-
ing |»;| with v;, has been found in [K. Fan, 2] (Weyl’s inequality is the
case for a = 1).

Let T be an operator on 52 A family & of subspaces of 57 which
is totally ordered by the inclusion relation, will be termed a nest of sub-
spaces. If in addition each subspace belonging to .# is invariant under
T we shall describe # as an invariant nest. For nests the following
terminologies are contained in [5]. If & is a complete nest and F'e &,

we define F'__ by
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F_=V{G:GeFGEF}.

If there is no G in # such that G F, we define F__ ={0}. If T is a
compact operator, then there exists a maximal invariant nest &, i.e.,
the quotient space F/F__ is at most one-dimensional for every F' in #
[J. R. Ringrose, 5].

If % is a set of subspaces of 5% A linear combination of two
operators that leaves & invariant is another such operator, and the
same is true of their product, the identity operator I leaves every F in
& invariant. In other words, the set of all operators that leave &
invariant is always an algebra containing I, it will be denoted in this
note by Alg &#.

In [J. A. Erdos, 1] a simple proof of Lidskii’s theorem [4] is given
based on the fact that every compact operator has a maximal invariant

nest.

1. Preliminary results. From the theory of triangular forms, the
lemma below summarizes the required results [1, 5].

LEMMA 1. Let T be a compact operator on 5% and let F be a
maximal invariant nest for T. Then T is uniquely represented in the

Jorm
T=D+V

where D, D* and V are all members of Alg &, D is normal and V is

quasinilpotent.
The eigenvalues of T and D coincide and have the same multi-

plicities.

The compact operator T is quasi-nilpotent if and only if TFCF__
for all F in & and consequently the compact quasi-nilpotent operator
of Alg & form a two-sided ideal of Alg #.

Moreover, if the operator T belongs to the class &, for 1 £ p < o,
then D and V belong to the same class &,

LEMMA 2. If an operator A belongs to the class &, for 1 £ p < oo,
then
S 1(4g, I < Al

where {¢.} and {y.} are any orthonormal bases of 7.

PrOOF. We note if A =0, 1 £ p < « and ¢ is any unit vector in
&%, then we have

(Ag, ¢ = (47, 9) .
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In fact, let E(-) denote the spectral resolution of A. Then we have from
the Holder’s inequality,

(45, 9) = | ME@, 9

= {["vE@vs, o} {] vo @@, 9 |

= (6, 9) BT = (g, 7

By the above considerations and the polar representation of A; A =
U( A* A)l/z,

S 1(4g, y)IP = S (U445, ¥)I? S 5 [(A*4) 7,1 .
= 5.(4* A, 67" S 5 (A% A", )
= tr(A*A)y? = |Al3.

2. Necessary and sufficient conditions that a compact operator be
normal. The following result has been found by K. Fan [2].

(p—1)/p

LEMMA 3. Let T be a compact operator on 5#. Let the eigenvalues
of T and the non-negative square roots of the eigenvalues of

alT*T + 1 — a)TT*
for any constant @, 0 < a <1, be denoted by \; and v; (j =1,2,8, --+)

with their multiplicities. Suppose that are arranged in order of de-
creasing absolute value, respectively. Then we have

Yo oV = [ Mg (B=1,2,8,--4).

By virture of this lemma and Lemma 3.4 [p. 37, 3] is applicable to
the numbers a; = log |\;], b; =logy; (j=1,2,8, ---) and the function
&(t) = (expt)” for 1 < p < . From this one obtains the relations

k k
E|M|pé2”? (k=1;2’ 3’ "')'
j=1 j=1

In particular, if a compact operator T belongs to the class &, 1< p <
o), then T*T and TT* belong to the class &,,. Thus we have

S NPE Vi< oo,
j=1 j=1

Next we will give proofs of some criteria for the normality of a
certain compact operator.

THEOREM 4. If a compact operator T belongs to the class &, (for
some p, 1 £ p < =), then the following are equivalent:



462 K. KITANO

(i) T is a mormal operator;
(ii) there ewists a constant & with 0 < @ < 1 such that

3l =597 (= 1al*T + (L — oTT* |3 .

where \; and Y; are as the same as in Lemma 3.

PrROOF. The fact that (i) implies (ii) is elementary. Let us go on
to the proof of the converse implications. Let & be a maximal in-
variant nest for T and write T'= D + V as in Lemma 1.

(A) We first prove that (ii) implies (i) for p = 2. By virture of
Lidskii’s theorem [4, 1] and Lemma 1 we show that

tr (DV) = tr (D*V) = 0.

We have from the results in Chap. III of [3], aT*T + (1 — a)TT* € &,
and

tr (@T*T + (1 — a)TT*) = tr (D*D) + atr (V*V)+ 1 — a)tr (VV¥*),
that is

jz';u; I+ @l VE+ (@ — @)V

Il

iMs Ms

M+ V.

Therefore (ii) is equivalent to | V|, = 0, this implies that V' = 0 and hence

T is normal.
B) Forl=p<2if Te%, and

>\,l”

Ms

P
Vi =

?Ms

1

o,
I

then T e %, and
N[

Ms

yi =

iMs

.
Il
-

Therefore this case can be reduced the case for p = 2.

In fact, Lemma 3.4 [p. 37; 3] is applicable to the numbers a; = log |\;|,
b, =logy;(j =1,2 8, ---) and the strictly convex function @(t) = (expt).
Thus the relation (ii) will hold if and only if |N;|=v;  =1,2,8, :-).

(C) For p > 2, let K = (D*D)****/*, Let F be an arbitrary subspace
in & and let P be the orthogonal projection onto F. Since F is in-
variant under the operators D and D* (i.e., F' is the reducing subspace
of D), thus PD = DP. According the above operator K belongs to the
second commutant of D, it follows that K € Alg . We note the normality
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of D implies that KD and DK are normal and from the quasi-nilpotentness
of V implies that KV and VK are quasi-nilpotent. By definition of K,
Ke %y -y and K@T*T + (1 — a)TT*)Ke &,. We note that

tr (K(aT*T + (1 — o)TT*)K) < |K(aT*T + (1 — a)TT*)K|,
= |aT*T + (1 — O)TT* |, /ol Klop/ip-0) -
Next, by virture of Lemma 1 and Lemma 8,
| K |52 < {aT*T + (1 — a) TP 2 | BRG  wi (psny -t
= aT*T + (1 — TT* |3,
therefore we have
{| Ky} = @T*T + (1 — )TT* 77" .
Summarizing of the aboves we have
tr (K(@T*T + (1 — @)TT*)K) < |aT*T + (1 — a)TT* |22 .
Now it is easy to verify that
tr {(DK)*(DK)} = tr {(KDXKD)*} = |KD|; = | D|; .
By the considerations of the aboves and Lemma 1,
tr (K(aT*T + (1 — a)TT*)K) = 2{ N2+ @l VK[ + (1 — )| KV}
< |aT*T + (1 — &)TT*|2:.
Hence, if 0 < @ < 1, the given relation shows that | KV|, = 0 and |VK|, =
0, that is
(1) KV=VK=0.
If «a=0, we have KV =0; if a =1, we have VK = 0, respectively.
Another by virture of similar arguments one obtains that VK =0 in
the case of @« = 0 and KV = 0 in the case of & = 1, respectively. There-

fore the given condition (ii) implies in any case that the relation (1) hold.
Now, if E is the orthogonal projection onto the range of D, we have

from the relation (1)

(2) VE=EV=0.
We complete the proof by showing that
(3) VI—-—E)=0 or VI—E)=0.

Note that for any two orthonormal sets {¢.}, {y}, from Lemma 2
21({aT*T + A — )TT*g, v) I < |@T*T + (1 — )TT* (55 .
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Let ¢, be an arbitrary unit vector in the range of I — E and let ¢, =
4, = ), where {).} is a set of eigenvectors of D which is complete in the
range of D. Since from the relation (2) and T = D + V, for each ¢

sz = DX: = 7\/:%: ’ T*X! = D*Xf = X‘X‘ ’
it follows that
[({aT*T + (1 — @)TT*}go, ¢o) 7% + % IN|?

= |({aT*T + (1 — QTT*)g, 41" + z A7

A
Ms

V7.
1

Il

Since T¢, = Vg, T*¢, = V*¢,, we have from the given relation (ii)

a( V¢0, V¢o) + (1 - a)( V*¢o’ V*¢o) =0.
Thus we have the relation (3) (if «a =0, a =1 and 0 < a <1, then
VI{—-—E)=0, VI—E)=0 and V(I — E)= V*(I— E) =0, respec-
tively). Hence, by virture of the relations (2) and (3) implies that ¥V = 0.
Therefore T' = D, that is normal. This completes the proof of Theorem 4.

REMARK. For a compact operator T' belonging to &, (1 < p < <),
if there exists a constant a (0 < @ £ 1) such that the equality (ii) in
Theorem 4 holds, then for any constant a (0 < « < 1) the equality (ii)

holds.

Similar arguments in the proof of Theorem 4 implies that the fol-
lowing theorem holds.

THEOREM 5. (cf. p. 58 Theorem 6.1 in Chap. II of [3], [1]) Let T
be @ compact operator belonging to the class &, (L = p < ). Then the
following are equivalent:

(i) T is a normal operator;

(ii) %l%kjl” =|2T|5

(i) 31wl = AT,
i=1
where BT = (T + T*)/2, AT = (T — T*)/2i and #\;, F\; are the real
part and the imaginary part of \;, respectively.
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