T6hoku Math. Journ.
28 (1976), 583-590.

COMMUTATIVE NORMAL *-DERIVATIONS IIT*-*®

SHOICHIRO SAKAI

(Received July 14, 1975)

1. Introduction. In the present paper, we shall continue the study
of commutative derivations. We shall show general methods to obtain
all KMS-states. Also we shall generalize the theorem in [6] to commu-
tative derivations with infinite range interaction, and we shall examine
the relation between this theorem and Dyson conjecture [1] and Kac-
Thompson conjecture [1] concerning one-dimensional Ising ferromagnet.

2. Theorems. Let A be a uniformly hyperfinite C*-algebra, and
let 6 be a normal *-derivation in %-i.e., there is an increasing sequence
of finite type I subfactors {¥,} in A such that Uy, ¥, is dense in A
and the domain () of ¢ is Uy, ¥U,. Then there is a sequence of self-
adjoint elements {&,} in A such that i(e) = i[h,, a] (¢ €,) (n=1,2, --.).
Suppose that ¢ is commutative -i.e., we can choose (k,) as a commuta-
tive family.

Let 8, be the C*-subalgebra of 2 generated by ¥, and k,. Suppose
that 2, € UmoiUn(n =1, 2, --+); then &, is finitedimensional. Let (p,, ;)"
be the family of all minimal projections in the center Z, of £,. Then
g, =3m"e p,;. Let {0(t)} be the strongly continuous one-parameter
subgroup of *-automorphisms on 2 corresponding to ¢ (cf. [5]). Then
p(t)a) = e***r ae" " (@€ &,) and s0 O(t)8,P.,; = L., 5

Now we shall show the following theorem.

THEOREM 1. Suppose h,eUmo: W(n =1,2, ---) and let 4, ;(x) =
(xe ', ;)|c(e Prp, ;) (€ €N), where — o < B < + oo and T is the unique
tracial state on A. Let

Gy={Yuipll=j=mn) and n=1,23, ---}.

Then the set of all accumulation points in the o(U*, )-closure G, of G,
in the state space of N contains all extreme KMS states on U for {o(t)}
at B. Moreover every accumulation point of G, in the a(A*, A)-topology
is a KMS state for {o(t)} at B, where UA* is the dual Banach space of U.

*) This research is supported by National Science Foundation.
*%) The content of this paper was announced in the international conference of K
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Proor. Let ¢, be an accumulation point of G,;; then there is a
subsequence (n;) of (n) such that +,, ;.. — ¢s in o(A*, A).

For » with n =< n,, we can easily see that v, ; , is a KMS state
on &, for {o(t)} at B and so ¢, is a KMS state on U, ¥, for {o(t)} at
B; hence ¢, is a KMS state on U for {o(¢t)} at B (cf. Theorem 3.2 in [4]).

Conversely let 4, be a KMS state on U for {o(t)} at B. Since each
8,v,; is invariant under p(¢) and it is a full matrix algebra, ;=
™Y Ny, i 6Va,g,6 O0 B, where N, ;>0 and 37V N, ;s = 1. The strict
positivity of A, ;s comes from the fact that a KMS state on ¥ is faithful,
since YU is simple.

Hence +; is contained in the o(¥*, A)-closure of the convex subset
of & generated by G,;, where & is the state space of 2.

Now suppose that +; is an extreme KMS state on A for {o(t)} at 5;
then by the well known theorem about convex set, all extreme points
of the o(A*, A)-closed convex subset generated by G, belong to the
a(A*, A)-closure G; of G,. This completes the proof.

Now suppose that k,e Us_, U.(n =1, 2, ---). By replacing (n) by a
suitable subsequence, we may assume that k,e¥, (v =1,2, ---). Let
{#.;13=1,2, ---, m(n)} be a family of real numbers and let I, = &, +
™o, 0.5 then [k, —1,,a]l =0 (ac¥,). It is clear that (l,) is a
commutative family corresponding to 6. Moreover

z'(xe_“”) —m(n)f(pn,je_ﬁln) . T(xe_'al"pn,j)

T(e—l”'n,) Jj=1 T(e_ﬂln) z—(e‘ﬁl’np“’j)
N ™) 1@ ) (e |
=t t(e7fn) (e P, ;) ’

Since 7(p, ;¢ ") = ©(p,, ;e P*»)e f#mi, for an arbitrary family of {\,
Ney ** %y AMmw} Of positive numbers with 3% A; = 1, there is a family of
{Zuty Pnzs ** s Mumw) Of real numbers such that
T(pn,je_ﬁh")e—ﬂﬂn'j = 7\'.7' fOI' .7 = 1; 2; R m(n);
then

=Bl ) .
f(p,.,,fﬂ ) _ __ Nj =x; for j=1,2 -+, mn).
(e7") S (D, 67")

=1

From these considerations we can easily conclude the following theorem.

THEOREM 2. Suppose that 6 is a commutative normal *-derivation
with 6(D(0)) C D(9), and let {o(t)} be the strongly comtinwous one-para-
meter group of *-automorphisms on U corresponding to o.
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Let ¢; be an arbitrary KMS state on U for {o(t)} at B. Then there
exists a commutative family of self-adjoint elements {h,} (depending
on B) corresponding to 0 such that

haeD0) and ga) = L2 (aeg) (n=1,2, ),
T(e#"n)
where 8, is the C*-subalgebra of A generated by U, and h,.

Conversely, if for a state v, on U, there is a commutative family
{h,} of self-adjoint elements in A corresponding to 6 such that

_ﬁhn
(@) =29 (geg) (n=1,2, ),
z'(e B 'n)
where 8, is the C*-subalgebra generated by A, and h,, then s is a
KMS state on U for {o(t)} at B.

Proor. Take a commutative family (r,) of self-adjoint elements in
D(0) corresponding to d (the existence of (r,) with », € D(9) is equivalent
to 8(D(0)) € D(0) (cf. [4])); then d(a) = i[r,, a] (ac¥Y,) (n=1,2, ---).

Take a subsequence (r,,) of (r,) such that r, €, ...

Let I,, be the C*-subalgebra of 2 generated by ¥, and r,; then

»
s = 2‘: Ngodn6Vmgosos 00 M,
=

where p = the dimension of the center of IM,,, +,, ;s is the unique KMS
state on M, p,,,; for {0(t)} at B, Nn,js >0 and >2_, N,,.;s = 1. Then by
the previous discussions, we can choose &, in I, such that

[hnk - ’r'nkv a] =0 (a'e ﬂR'nk)
and

T(pnk,ie_ﬂhnk) =2

z-(e—ﬁh,,,,k) = Mnpedb for ] = 1, 2, 0, D,

where {p,,;}?-, is the family of all minimal central projections in the
center of M, . Then for aci,,,

t(ae ) _ & UD€ ") T(ae Ptrip,,,;)
(e Fm) S (e ) (e P mp,, ;)

By the uniqueness of KMS states on I, »,,.;

o(ae” " ep.,, ;)

T(e"’""kp ) = "#ﬂk,.‘f»ﬂ(apnk,f) (aeiD?,Lk) .
N

Hence
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z(ae P !
;T;-Wk;) = ; )"nk,a'yﬁ"lfnk,i,ﬁ(apnk,i) = ¢ﬁ(a’) (a’ € mnk) .

Let 8,, be the C*-subalgebra of A generated by ¥, and k,; then

£, CM,,; hence we have

T(ae P i) _
(e #hny)

Now for » with n,_, < =< n,, we define k, = h,,. Then clearly

gs(a) (a€l,).

_ﬂhn
pl) = D @eg),
where 2, is the C*-subalgebra of U generated by %, and hk,, since
A, <A, and so 8,8, . The second part of the theorem is clear. This
completes the proof.

REMARK 1. For ac¥, and » < m, consider two analytic functions
t(ae ™) /t(e7*n), T(ae”*m)/T(e7"m) on (—oco, +0) (YE(—o0, +)). They
coincide with ¢s(e¢) at 8. It would be an interesting problem how these
two functions are related each other in a neighborhood of A.

Let ¢, be the KMS-state on A for {o(¢t)} at v defined by an accumu-
lation point of

_ T(xe"™*n)
{erltuo =D @ew)
in the state space of .
Is there a nice relation between ¢, and ¢, where 7 is in a neighbor-

hood of B 7
Under what conditions can we choose (%,) such that

—rhy
(ag) =22 @ew,) (n=1,2 )
T(e77"n)
for v in a neighborhood of B8? There problems are quite important
from the stand point of the phase transition theory.

Next we shall extend Theorem 1 to commutative derivations with
infinite range interaction.

Suppose that A = @;_-, B,, where B, are finite type I factors and
®:.. B, is the infinite C*-tensor product of {B,}. Let C, be a maximal
commutative C*-subalgebra of B, and let C = @3_,C,. Then C is con-
sidered as a commutative C*-subalgebra of [A. Put %A, = @2_, B, A
and let  be a *-derivation of -, %, into A such that i(a) = i[k,, ]
(e, with 2,eC (n=1,2,---). Then ¢ is a commutative normal
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*-derivation. All derivations arising from classical lattice systems and
Ising models satisfy these properties. Let
D,=Q®n-0.C. C R B, @3-, B, = A: then A, ® D, is invariant
under o(t), and
o(t)a) = etithnqem i (e, QR D,) .

Put D, = C(K,), where C(K,) is the C*-algebra of all complex valued
continuous functions on a compact space K,. Let @ be the unique
C(K,)-valued tracial state on %, ® D,. For se K,, let

Sas = {2 | O(x*w)(s) = 0, v €A, ® D,};

then J,,. is a maximal ideal of A, ® D, and it is invariant under o(¢).
Since an extreme KMS state defines a factor representation,

D(xe Pra)(s)
O(e~?*)(s)

is the set of all extreme KMS states on A, D, for {o(t)} at B. Let

En,ﬁ = {'\b‘n»ﬂ,s l ’Wn,ﬁ,a(x) = %;%S‘z‘ (x GQI)} .

Now let ¢ be a KMS state on % for {o(¢)} at B; then for each » there
is a unique probability measure pg, on K, such that

{¢n,ﬁ,s ' ¢n,ﬁ,s(x) = (x € mn ® Dn); s€ Kn}

_ [ Oxe=)(s)
$(x) = SKanﬂ”(s) (xeA, QD,).

Hence we can easily show the following theorem.

THEOREM 3. Let Hy = Ui, E, s then the o(U*, A)-closure H, of H,
in the state space of A contains all extreme KMS state on U for {p(t)}
at B.

Since K, is totally disconnected, we can easily conclude the follow-
ing theorem from Theorem 3.

THEOREM 4. Let

_ T(ze p,)
"l"n,p”.ﬁ(x) - T(e_’”‘"p,,) (w e%l) ’

where —oo < B < 4+ and for a projection p, in D, and let
Uﬁ = {"P"mpwﬁln = 1-’ 27 ey pneD:} ’

where D? is the set of all non-zero projections in D,. Then the o(A*,
A-closure of U, in the state space of U contains. all extreme KMS
states on A for {o(t)} at B.
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Now we shall extend the theorem in [6] to derivations with infinite
interaction.

THEOREM 5. Suppose that h,€@5-.C, (n =1,2, ---) and let P, be
the canonical conditional expectation of U onto A, = @, B,.

If a sequence {||h, — P,(h,)||} is bounded, then the strongly conti-
nuous one-parameter group {o(t)} of *-automorphisms on U correspond-
ing to 0 has no phase transition at arbitrary inverse temperature.

ProOF. The proof is quite similar with the proof of the theorem in
[6].

Since P,(h,)e@®:-.C,, by the same method with the proof of
Lemma 1 in [6] we can show that

1 7(ye ") _t(ye "*p) o g T(ye ")
K t(e™ ") — t(e7tmp) T (e Fnhw)

for (= 0)e@:z-,C,, where p is an arbitrary non-zero projection p in
®:-...C, and K is a fixed number. Hence

1 z(ye ") - t(ye ' p) o g2 T(ye ™)
K? t(e*) ~ t(ehnp) T (e ™)

Without loss of generality, we may assume that {z(ye "*»)/t(¢ ")} con-
verges to a ¢(x) in o(A*, A); then by Theorem 4, we have

I%qﬁ(y) < ¥(y) < K*%(y) (= 0)e®@:.C.)

for all extreme KMS states 4 on A for {o(¢)} at B =1. On the other
hand, for ze€®,® D,, there is a unique probability measure z, on K,
such that

_ [ o(ze')(s)
¥(x) = Sxmmd#n(s)

and similarly there is a unique probability measure v, on K, such that

_ [ 9(zen)(s)
¢(x) = SKMW‘Z”"(S) .

Since

1

7T (¥) = ¥(¥) = K’(y) (¥(= 0)e®7-.C,),

1 :
_ﬁvn§#n§Kvn'
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Hence we have

gx) ((=0eU,®D,) (n=12---).

Therefore

Since +r is extreme, ¢ = +» and so there is no phase transition at 8 = 1.
Since ||Bh, — P,(Bh,)|| = |B|||h., — P(h,)||, by the same discussions we can
conclude that there is no phase transition at arbitrary temperature. This
completes the proof. Finally we shall state some remarks on the problem
whether we can relax the boundedness condition of the sequence {||k, —
P,(h,)]|} to incur ‘“no phase transition at arbitrary inverse temperature’’.

Consider one-dimensional Ising ferromagnet. Let Z be the group of
integers and let B be the full matrix algebra of 2 x 2. For each pe Z,

we shall consider a copy B, of B. Let A=@,.; B, and let 0:((1) _(1)> eB
and let ¢, be the element in B, corresponding to a.
Consider the total energy:
H = "—Z J(p - Q)Opaq

p>q

with J(n) =20, n=1,2, ---. Let 4, ={p|-n=<=p=n, peZ} and let
Ay = @pes, B,CU. Put M,=37_,J(n) and M, = 37, nJ(n). Suppose
that M, < + oo; then for ac¥,,

d(a) = i[H, a]
= —1 :Z_n ]2_1 J(5)0k150% + ;_leJ(k + 0+ )00 a] (aeW,).
Since
3 S TG0l + 3 ST+ 0+ o]

<@+ TG) + @+ 1) 3 JG) = 2@n + DM, < + o .
Jj=1 J=1
Therefore, put

h,= — Z ZJ(J)okHok— Z ZJ(k+n+ 3OO ;i .

k=—n j=1 k=—mn j=

Then h,€¥U and d(a) = i|h,, a] (@ €,). Clearly (h,) is a commutative
family, so that ¢ is a commutative normal *-derivation with () =
U: . ¥,. Therefore by the theorem in [5], there is a strongly continu-
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ous one-parameter group {o(tf)} of *-automorphisms on U such that
O(t)(a) = exp itd, (@) (ae,) and te(—co, ) (=12, --+), where
05, (@) = [hyy a] (@€W). Let r,= — i _, >t J(j)os,0. then r,e¥,
and so ||k, — P,(k,)|| =< ||k, — 7.|l. Moreover, in this case P,(k,) = 7,
since P,(g,) =0 (|p| > n) and P,(c,0,) = P,(d,)0, if |¢| < n. Hence

ho = Py() = by — 7, = — 3, J(§)0,.,0,

oo

- Jz‘l J(j)o"rb—1+io-n—l - 2 J(j)o.—'ﬂ+:fo'—'n
_k=

=2 j=2n+1
zn} DJk+n+ 9o ;.
—n J=1

Hence
[[hy — P,(h,)]l
< 2(J(1) + 2J@2) + -+ + @n + DJI@n + 1) + @n + 1) >

J=2n+

TG
<23 GG + @+ D) S TG

If M, < 4+ oo, then
1 = Pyl < 2 35 57 (5) = 2M, < + o .

Let C, be the C*-subalgebra of B, generated by {0, 1}; then #&,¢€
®,..C, (n=1,2, ---). Therefore {h,} satisfies all the conditions in
Theorem 6. Therefore if M, < + oo, there is no phase transition at
arbitrary temperature (cf. Ruelle’s theorem in [3]).

It is an outstanding open question whether or not ‘‘no phase transi-
tion at arbitrary inverse temperature’’ implies M, < + « (cf. [1,2]).
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