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SASAKIAN ¢-SYMMETRIC SPACES*

TosHIO TAKAHASHI

(Received December 16, 1975)

1. Introduction. It is known that a Sasakian manifold which is at
the same time a locally symmetric space is a space of constant curvature
(Okumura [6]). This fact means that a symmetric space condition is
too strong for a Sasakian manifold. In this note, we introduce a notion
of Sasakian g-symmetric space which is an analogous notion of Hermitian
symmetric space, and discuss about its properties.

The author wishes to express his hearty thanks to Prof. S. Tanno
for his kind advices and constant encouragement.

2. Definition of Sasakian locally ¢-symmetric space. Let M be a
(2n + 1)-dimensional Sasakian manifold with structure tensors ¢, &, 7 and ¢:

FX = —X + 7(X)8
1) {n(s) ~1
. {g(X, &) = 7(X)
06X, $7) = g(X, Y) — 7(X)(Y)
. {dr;(x, Y) = g(¢X, ¥)
79 Y = N(V)X — g(X, V)¢ ,

where 7 is the Riemannian connection for g and X, Y are tangent vectors
on M. Let U be a small open neighborhood of ze M such that the
induced Sasakian structure on U, denoted by the same letters, is regular.
Let 7: U— U = U/ be a (local) fibering, and let (J, ) be the induced
Kahlerian structure on U (cf. Tanno-Baik [10], Ogiue [5]). Let R and R
be the curvature tensors constructed by ¢ and g, respectively. For a
vector field X on U, we denote its horizontal lift (with respect to the
connection from %) by X*. Then we have, for any vector fields X, ¥
and Z on U,

2.4) FzY)* =reY* — PexY*)E,

* This paper, prepared during the author’s stay at Mathematical Institute of T6hoku
University, is a part of the author’s doctoral dissertation written under the direction of Pro-
fessor Shigeo SASAKI.
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(2.5) (R(X, Y)Z)*
= R(X*, Y0)Z* + g(¢7*, Z*)pX* — g(¢X*, Z*) ¥
where 7 is the Riemannian connection for g (Ogiue [5]). From (2.3), we
get

(2.6) 7if = oX

and hence

(2.7) R(X, Y)¢ = n(Y)X — n(X)Y

(2.8) R(X, )Y = n(Y)X — g(X, Y)§ .
Making use of (2.4)~(2.8), we get

(2.9) (77R)X, Y)2)* = —¢'[(77=R)(X*, Y*)Z*]

for any vector fields X, Y, Z and V on U. Hence the following definition
seems to be quite natural.

DEFINITION. A Sasakian manifold is said to be a locally ¢-symmetrie
space if

(2.10) #l(7vEXX, Y)Z] =0

holds for any horizontal vectors X, Y, Z and V, where a horizontal vector
means that it is horizontal with respect to the connection form 7 of the
local fibering; namely, a horizontal vector is nothing but a vector which
is orthogonal to &.

THEOREM 2.1. A Sasakian manifold is a locally ¢-symmetric space
if and only if each Kdahlerian manifold, which is a base space of a
local fibering, is a Hermitian locally symmetric space.

ExAMPLE 2.2. Suppose a Sasakian manifold is of constant g-holomorphic
sectional curvature. Then the Kahlerian manifolds given by local fiberings
are of constant holomorphic sectional curvature (Ogiue [5]), and hence
Hermitian locally symmetric spaces. Thus a Sasakian manifold which is
of constant ¢-holomorphic sectional curvature is a locally ¢-symmetric
space.

ExampPLE 2.3. The following example is due to Kato-Motomiya [2].

Let M = G/G, be a homogeneous space of a semisimple, compact and
simply connected Lie group G over a connected, closed subgroup G, of
G, and assume that the Lie algebra & of G has a family (8,),,, of sub-
spaces of & satisfying the following conditions (i)~ (vi):
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(i) &=3@G, (direct sum)

(ii) I8, ;] B, + G,y

(iii) dim@®, =1, and &, = {0} if 1 > 2

(iv) There is an element % of &, such that

[u, [u, X]] = —X for all Xe@®,

(v) @, is the Lie algebra of G,, and [®, &] = G,
(vi) Ad(9)®; =G, and Ad(g)u =u for all g € G,, where Ad (g) denotes
the adjoint representation of G, in ®.
Then the homogeneous space M = G/G, admits a G-invariant normal
almost contact metric structure (g, &, 77, g) such that

5o:admu9 & =u, N, =w%* and §= ——l—Bsmy
2n
where M = &, + &, which is identified with the tangent space T(G/G,)
of G/G, at 0 = {G,} € G/G,, ady % is the restriction of ad% on I, u* is a
1-form on M defined by w*(u) =1 and u*(X) =0 for all Xe@®, By is
the restriction of the Killing form B of & on M, and dim M = 2un + 1.
This almost contact metric structure satisfies

2d7(X, Y) = 9(X, ¢Y) .
Hence, if we put

- = 1 1_

¢" ¢9 E_ZE, "‘?77 and g“‘_4—g9
then (g, &, 7, 9) is a G-invariant Sasakian structure of M. This Sasakian
manifold is a principal circle bundle over a Hermitian symmetric space
M = G/H with the Kahlerian structure (J, @), where H is the connected
Lie subgroup of G with the Lie algebra &, + @,, J, = —ad,, u, and @, =
—(1/8n)Bs,. Thus the Sasakian manifold M = G/G, is a locally ¢-symmetric
space.

REMARK 2.4. In Example 2.3, it turns out that G is simple. Because,
since G/H is a compact type Hermitian symmetric space, H has a non-
discrete center, say Z; and if G/H is reducible, we have dim Z = 2. On
the other hand, the condition (v) implies that dim Z = 1. Hence G/H
must be irreducible and hence G must be simple.

ExAMPLE 2.5. Let G/H be an irreducible Hermitian symmetric space
so that G is a simple Lie group and H is a compact Lie subgroup of G.
In this case, G acts effectively on G/H, H is connected (cf. Helgason [1],
p. 214, Thm. 1.1 and p. 305, the proof of Thm. 4.6), G/H is simply con-
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nected (cf. Helgason [1], p. 305, Thm. 4.6), and hence we may assume
that G is simply connected. Let & and § be the Lie algebras of G and
H, respectively, and let

G=9+ I

be the canonical decomposition. Let B be the Killing form of & and
let (J, @) be the Kahlerian structure of G/H such that, if G is com-
pact, @, = (—1/8n)By and if G is noncompact, @, = (1/8n)By., where
@, is the restriction of @ to the tangent space T,(G/H) of G/H at
0 ={H}eG/H, I is identified with T(G/H), By is the restriction of B
to M’ and 2n is the dimension of G/H (cf. Kobayashi-Nomizu [3], p. 250,
Prop. 7.4). The center 8 of © is 1-dimensional and there exists Z,€ 3
such that

Jo= —ady Z,,

where J, is the restriction of J to T(G/H) and ady is the restriction to
IR of the adjoint representation of @ in & (cf. Kobayashi-Nomizu [3],
p. 261, Thm. 9.6). Since H is compact, we have the direct sum decom-
position

@'—"@04‘@2,

where @, is the center 8 of §, and ®, is the ideal [9, ] of © and it is
semisimple and compact (cf. Helgason [1], p. 122, Prop. 6.6). If we put
S, = M’, we get the following:
(i) 6=6, + &, + G, (direct sum)
(ii) [®, 8;]c®,,; + G,_;, where &, = {0} for | > 2
(iii) dim@®,=1
iv) [Z,]Z, X]] = —X for all Xe @,
(v) [@oy 6f’o] =@,
(vi) Ad(¢)®, = ®, and Ad (¢9)Z, = Z, for all ge G, where G, is a
connected Lie subgroup of H with the Lie algebra &, and Ad
is the adjoint representation of G in ®.

Proor. (i), (iii), (iv) and (v) are trivial by the definitions of &, and Z,.

[@(» @o] = ®o; [®o; @1] C['@; Emllcwe, = @51; [©o’ 652] = {O}’ [®19 ®1] =
[, MNcH =6, + G, [G, ] =[W, Z,] = J D =M =, and [G,, &,] =
{0} show (ii).

Since G, is connected, (ii) implies Ad (9)®; = ®&; for all geG,, and
since Z, is an element of the center of §, we get Ad(9)Z, = Z, for all
g€ G,. Thus we get (vi). q.e.d.

Hence, according to Kato-Motomiya [2] (with simple modifications),
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G/G, admits a G-invariant Sasakian structure (g, &, 7, g) such that

¢0 = _adﬂn Z09 Eo = ZZO! 770 = ';—Z(;k ’
and g, = ——LB;‘n if G is compact
8n
and g, = 81_an + 279, ® 1, if G is noncompact ,

where I = @, + &, which is identified with the tangent space T\(G/G,),
Z¥ is a 1-form on M defined by Z¥(Z,) =1 and Z5(X) = 0 for all Xe@,.
Moreover, this Sasakian manifold G/G, is a principal circle bundle over
the original Hermitian symmetric space, and hence it is a locally ¢-sym-
metric space.

If G is compact (resp. noncompact), we call the homogeneous Sasakian
manifold with the above Sasakian structure to be a Sasakian ¢-symmetric
space of the compact (resp. noncompact) type. The precise definitions
of the types will be given in the Section 6.

REMARK 2.6. In Example 2.5, if G is noncompact and if we put
go = (1/8n)By, g, induces a G-invariant pseudo-Riemannian metric g’ on
G/G, and (¢, &, 7, ¢') is a Sasakian structure with a pseudo-Riemannian
metric in the sense of Takahashi [7].

REMARK 2.7. Let M be a Sasakian manifold with the property that
(2.11) #1(7/R)X, V)] = 0

holds for any horizontal vectors X, Y and V. Then M is of constant
curvature 1. To show it, we need the following lemmas which follow
from direct calculations.

LEMMA 2.8 (Tanno [9]). For any tangent vectors X, Y and Z of M,
(2.12) R(X, Y)pZ = 9(¢X, Z)Y — g(Y, Z)pX — 9(¢Y, Z)X + 9(X, Z)pY
+¢R(X, Y)Z
holds good.
Lemmas 2.8 and (2.7) imply the following:
LEMMA 2.9. For any tangent vectors X, Y and V of M, we get
213) (FRYX, Y)=9(Y, V)X — g(X, V)Y — ¢R(X, Y)V .

Now, if X, Y and V are horizontal, then (2.11) implies that the left
hand side of (2.13) is a scalar multiple of £&. On the other hand, the
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right hand side of (2.13) is horizontal. Hence we get ¢R(X, Y)V =
9(Y, V)¢ X—g(X, V)?Y, which implies that R(X, Y)V=9(Y, V) X—g(X, V)Y
holds for any horizontal vectors X, Y and V. Hence M is of constant
#-holomorphic sectional curvature 1 and hence of constant curvature 1.

REMARK 2.10. Suppose a Sasakian manifold is a locally ¢-symmetric
space, then (2.10) and (2.13) imply that

(2.14) ("vRYXX,Y)Z={9(X,V)9(8Y, Z)—9(Y,V)9(X, Z)+9(Z, sR(X,Y)V)}¢
holds good for any horizontal vectors X, Y, Z and V, and vice versa.

3. ¢-geodesic symmetry. A geodesic ¥ = 7¥(s) in a Sasakian manifold
M is said to be ¢-geodesic if its velocity vectors are horizontal; that is,
N(Y'(s)) = 0 holds for each s. A local diffeomorphism o, of a Sasakian
manifold M, x € M, is said to be ¢-geodesic symmetry at z if, for each
¢-geodesic ¥ = ¥(s) such that 7(0) lies in the trajectory of & passing
through =z,

3.1) 0.7(s) = Y(—s)
holds for each s.

REMARK 3.1. Any geodesic v = ¥(s) with 7(7'(0)) = 0 is a g-geodesic,
because the angles of a geodesic and a Killing vector field are constant
along the geodesic.

Now, suppose a g¢- -geodesic symmetry o, at £ € M be a local automor-
phlsm Let U be an open neighborhood of z with a local fibering 7: U —
U= U/E. Then 7 induces a geodesic symmetry &., of U at m(x) such
that G,,,°omT = mo0,, which is an automorphism of the induced Kahlerian
structure of U. Hence, making use of Theorem 2.1, we see that if
a Sasakian manifold admits a ¢-geodesic symmetry, which is a local
automorphism, at each point, then it is a locally ¢-symmetric space. The
converse also holds good, and its proof will be given in the Section 5.
Namely, we get

THEOREM 3.2. A mnecessary and sufficient condition for a Sasakian
manifold to be a locally ¢-symmetric space is that it admits a g-geodesic
symmetry, which is a local automorphism, at every point.

REMARK 3.3. We can similarly define a notion of ¢-geodesic symmetry
for a K-contact Riemannian manifold. (2.4) and Remark 3.1 also hold
for a K-contact Riemannian manifold. Suppose a ¢-geodesic symmetry
of a K-contact Riemannian manifold is a local automorphism. Then the
induced geodesic symmetry of the base space of the local fibering is an
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automorphism of the induced almost Kihlerian structure. Hence a K-
contact Riemannian manifold with a ¢-geodesic symmetry, which is an
automorphism, at every point is a Sasakian manifold.

4. Sectional curvature. Let 7 = 7(s) be a ¢-geodesic of a Sasakian
manifold M, and let X, be a horizontal vector of M at x, = 7(0). Let
X = X(s) and Z = Z(s) be the parallel vector fields along 7 such that
X(0) = X, and Z(0) = ¢7'(0). Put f(s) = g(X(s), &). Then we get f'(s) =
9(X(8), 47'(s)) and f"(s) = —g(X(s), &) = —f(s). Hence, since f(0)=0,
we get f(s) = a sin s for some constant @. Since 7'(s) and X(s) are parallel
along v, g(X(s), 7'(s)) is constant along 7, say ¢. Let Y = Y(s) be a vector
field along v defined by

(4.1) Y(s) = ¢X(s) + a(cos s — 1)Y'(s) — cg7'(s) + ¢Z(s) .
Then we get
Y(0) = ¢X, — ¢¢7'(0) + ¢47'(0) = ¢X, ,
VeY = F¢)X — asinsY — c(V.¢)Y
= X)YV — g(¥, X)¢ —asinsY + ¢eg(¥,7)E=0.
Hence Y(s) is the parallel translate of ¢X, along 7.

LemMA 4.1. If a horizontal vector Y, is orthogonal to 7'(0) and ¢7'(0),
then its parallel translate Y(s) along 7 is also horizontal.

Proor. Since Y, is horizontal and orthogonal to ¥'(0) and 47'(0),
there exists a horizontal vector X, such that ¢X, =Y, and it is orthogonal
to 7’(0) and ¢7'(0). Let X(s) and Y{(s) be the parallel translates of X,
and Y,, respectively, along 7. Then Y{(s) is given by (4.1) with ¢ =0,
and hence it is horizontal along . q.e.d.

On the other hand, (2.3) and (2.6) imply the following:
LEMMA 4.2. The parallel translate Z(s) of ¢7' (0) along 7 is given by
(4.2) Z(s) = cos s¢Y'(s) + sin st .

Now, let {X,, Y,} be orthonormal horizontal vectors such that each
of them is equal to ¢7'(0) or orthogonal to ¢7'(0). Let X(s) and Y{(s) be
parallel translates of X, and Y, along 7, respectively, and let X(s) and
Y(s) be their orthogonal projections to 7-section:

X(s) = X(s) — n(X(s))¢ ,
¥(s) = Y(s) — 9(¥(s))z .
Then, from Lemmas 4.1 and 4.2, we see that {X(s), Y(s)} span a 2-plane
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F(s) for —m/2 < s < m/2. Let K(s) = K(F(s)), —7/2 < s < 7[2, be the
sectional curvature for Z°(s).

(i) Suppose X, and Y, are orthogonal to ¢7'(0). Then Lemma 4.1
implies X(s) = X(s) and Y(s) = Y(s). Hence we get

(43) 2 K(s) = L g(R(X(s), V) Y6), X(o))
8 ds

= 9((7; R X(s), Y(5))Y(s), X(5)) .
(ii) Suppose X, is orthogonal to 47'(0) and Y, = ¢7'(0). Then Lemma
4.2, (2.6), (2.7) and (2.8) imply

(4.4) —%K(S) = —gs-g(R(X(S), 7'(s))¢7'(s), X(s))

= g((7r o B)X(3), $7'(s))$7'(5), X(3))
+ g(B(X(3), (71w9)7'(8))$7(s), X(s))
+ 9(R(X(s), 67" (8N 708)7'(s), X(s))
= 9((7 1w RN X(s), Y(s)) X(s), X(s))/cos’ s .
Hence, if a Sasakian manifold. is locally ¢-symmetric, then the sectional

curvature K(s) = K(.Z°(s)) is constant along ¥ for —7/2 < s < /2. The
converse also holds. Namely, we get the following theorem:

THEOREM 4.3. A Sasakian manifold is a locally ¢-symmetric space
if and only if the sectional curvature K(s) = K(ZB6)(—n/2 < s < w/2),
defined as above, is comstant for any orthomormal, horizontal wvectors
X, and Y, such that each of them 1is equal to, or orthogonal to ¢7'(0),
and along any ¢-geodesic 7 = ¥(s).

PrROOF. Suppose the sectional curvature K(s) is constant along any
¢-geodesic. Then
(4.5) 9g((FR)XX, Y)Y, X)=10
holds for any horizontal vectors X, Y and Z such that each of X and
Y is equal to, or orthogonal to ¢Z. In particular, we get
(4.6) 9((V.R)e;, er)er, €5) =0, 4,5, k=1,2,---,2n

for an arbitrary orthonormal basis {e, e, ---, €., &} of a tangent space
of the Sasakian manifold in consideration. It is sufficient to show that
(4.5) (or (4.6)) implies that

(4'7) g((VelR)(ei’ ek)eb 6,,,) =0
holds good for j, %k I, m=1,2, ---, 2n.

StEP I. First of all, we assume ¢, = ge¢, and e, = ge;, and show (4.7)
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for j,k, I, m = 1,2, 8,4. For this purpose, it is sufficient to show that
the following hold good for «, 8,7, d = 3, 4:

(@) 9((".,R)e,, ey, €,) = 0

(b) g((7.,R)(e, e,)e,, e,) = 0

(C) g((V elR)(el; 62)62, ea) =0

(@) g((".,R)e, e)ea, €5) = 0

(e) g((VelR)(en 6,,,)61, 6‘9) =0

(f) g((VelR)(elv 60,)62, eﬁ) =0

(g) g((VelR)(ev ea)eﬂ) er) =0

(b)  g((7.,R)e,, e, €5) = 0

(i) g((VelR)(em ea)eﬁy eT) =0

(3)  9((7 . R)es, ees, €,) = 0.
According to (4.6), (a) and (j) are trivial. In the following, the indices
{¢, 5, k, 1} and {e, B, 7, 6} range {1, 2} and {3, 4}, respectively.

(4.6) implies

(4.8) (Vo 2o, B)e: £ €5, €0)eny €, - €5) = 0.
Making use of (4.6), (4.8) reduces to

(4.9) (7., BYess €2)€0 €5) £ g((V o, R)(Es €x)eas €;) = 0,
and hence we get

(4.10) g((V. . R)(ei, €.)ea €;) = 0 .

Applying the 2nd Bianchi identity to g((V.,R)(e. e;)e;, ¢,) = 0, which is
equivalent to (4.10), we get g((V. R)(e;, €.)e;, €.) + g((7.;R)(es, €a)e: €2) = 0.
Since the second term of the left hand side of the last equation vanishes
by (4.6), we get g((V. R)(e;, ¢:)e;, €¢.) = 0. Thus we get

(4.11) 9((7 ., RB)es €s)es, €) = 0 .

(4.6) implies g((7.,R)(e;, e« + es)(es + €5), €;) = 0, which implies
(4.12) (4 eiR)(eb €.)es €;) = 0.

Applying the Bianchi’s second identity to (4.12), we get
(4.13) 97 o;R) o €:)es, €5) + 9((7. E) e, es)es €5) = 0 .

Applying (4.6) to orthonormal vectors 1/v 2 (e, + e5), 1V 2 g(e, + ¢;) =
1V 2(e, + €), 1)V 2(e, — €5), 1)V 2 g(e, — &) = 1)V 2 (e, — ¢,), we get

(4.14) IV eyza;R) (e, — €5 €, — )€, — €,), 6. — ) = 0,
(4.15) g((VelieaR)(el — ey 6+ e)e, +e) e —e)=0,
(4.16) g((Velie3R)(el + e, 6, —e)e, —e), e +e)=0.
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Making use of (4.6), (4.11) and the property of the curvature tensor R
to the effect g(R(X, Y)Z, W) = g(R(Z, W)X, Y), (4.14) reduces to
(4.17) —g((7 e, B)e,, €)e,, €3) — g((VelR)(en €:)€4, €1)
+9((7 ., B)e,, €)e,, €s) + 97 R)e,, e, €s)
—9((7 e B)es, €.)e,, €5) F g((Ve3R)(6u €:)€4, €1)
=l ((4 GgR)(el’ €:)e, €;) g((Ve3R)(3u AN
Fo((” e3R)(el? ees, e) F g((7 eaR)(eS’ €:)e,, 65) = 0.
Hence we get
(4.18) —9((7. R)(e,, e,)es €) — g((7. R)(e,, €5y, €)
+9((7 ., R)(e,, )e,, €) + g((V. R) (e, e)e,, )
—9((7 . R)(es €5)e,, €5) = 0 .
Since (4.15) is nothing but (4.14) by replacing ¢, with —e,, we get

(4.19) —9((7. . R) (e, e,)e, €5) + g((7.,R)e,, €)e,, e,)
—g((7.,R)e., e)es, €s) — g((F ., R)e,, eles, €5)
+9((7. R)(es, e,)e,, €5) = 0 .

(4.18) and (4.19) imply

(4.20) 9((7. R)e,, €)e,, €) = 0,

(4.21) —g((7 . R)e,, e,)e, €,) + g((7. R)e,, €.)e,, )

+g((Ve1R)(61, €,)e,, €;) — 9((7 ., R)(e,, e, e) = 0.
(4.20) implies

(4.22) 9((7.,R)e,, e:)e, €,) = 0 .
Similarly, (4.16) reduces to
(4.23) —g9((7. R)(e, e, €) — g((7. R) e, €.)e, )

—9((7.,R)(e,, ees, &) — g((V.,R)es, es)e,, €) = 0,
where we have used (4.20). Making use of (4.21) and (4.23), we get
(4.24) 9((7 ., R)(e,, e)e,, €,) + g((V.,R)(es, €,)e,, ) =0 .
Applying (4.6) to the orthonormal vectors
1V 8(e, +1 2¢;), 1)V 3 (e, + 1V 2¢) =1/1 3 (e, + V' 2€) ,
1/V8(V 2e, —€), 1)V 3¢(V 2¢, —e) =1V 31V 2¢, — @),

we get

(4.25) g((Poysvie, RY(V 2, — 05,1V 20, — e)(V 26, — ),V 26, — ;) = 0,
(4.26) g((7 vz _o;R)(V 26, — €,V 26, — €)(V 26, — €),V 26, —€) = 0.
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They respectively reduce to

(4.27) -2V 29((F oR)ey, e)e,, €,) + 29((7. R) (e, e,)e,, €;5)
+ 29((7 ., R) e, €)es €5) — V2 g((7 o, R)(es, €:)es, €5)
+ 1V 2{— 2V 2g((7.,R)e., &:)ew &) + 29((7 . .R) ey, €)e., €s)
+ 29((7 . R)(e, e)es ) — V' 2 g((7. R) e e)en, )} =0,
(4.28) V' 2{—2V"2¢((V.,R)(e, e, €) + 29((7 . R)e,, e.)e., ¢s)
+ 29((Ve1R)(eu 64)32’ 33) - 1/—2—g((VelR)(63, 62)64, 33)}
—{=2"2g((".,R)(e., e.)e, €.) + 29((7 . R)(e,, €)e., €5)
+ 29((Ve3R)(eu €,)e,, &) — -l/_2_g((VE3R)(63’ e, 6)} = 0,
where we have used (2.20). If we make (4.27) + (4.28) x V2, we get

(4.29) =212 g((7..R)e, e.)es, €) + 29((7.,.R)(e,, €,)e,, €5)
+2g((V81R)(el’ 64)62, 63) - ﬁg((VelR)(G% 62)64’ 63) = 0 .
Making use of (4.21) and (4.29), we get

(4.30) 29((7. R)(e,, €)e,, ) — V2 g (7., R)es, €:)e,, €5) = 0 .
Hence, making use of (4.24) and (4.30), we get

(4.31) g((7 . R)e, een ¢) = 0,

(4.32) 97, R)(es, €:)es, €) = 0,

and hence we get

(4.33) o((7. R)ew, edew, ) = 0,

(4.34) ‘ g((7 ., R)e,, e)es, e,) = 0 .

Now, (4.11) and (4.34) imply that the second term of the left hand
side of (4.13) vanishes. Hence we get

(4.35) 9((7.;R)e, eses, €;) = 0 .

Now, (b) follows from (4.31) and (4.33). (c) follows from (4.20) and
(4.22). (d) follows from (4.35) with the 1st Bianchi identity. (e) follows
from (4.12) or (4.35). (f) follows from (4.35). (g) follows from (4.11).
(h) follows from (4.12) or (4.35). (i) follows from (4.32) and (4.34).

STEP II. To prove the general case, we use some special technical
terms, which are suggested by Prof. S. Tanno. A ¢-invariant 2-plane
is spaned by a horizontal vector X and ¢X, denoted by “(X). Tangent
vectors which belong to the same g¢-invariant 2-plane are called to be
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relatives. Tangent vectors which belong to mutually orthogonal ¢-
invariant 2-planes are called to be strangers to each other. For example,
a tangent vector which is orthogonol to “(X) is called to be a stranger
to X, and X and ¢X are relatives with X and also with ¢X.

As in Step I, we assume that e, = ¢e,. To prove the general case,
it is sufficient to show the following:

(k) 9(F ,R)(X, Y)Z, W)=0 for any vectors X, Y, Z and W which
are orthogonal to ¢, = ¢e,,

(1) 9(".,RXX, Y)Z,e)=0 for :=1,2,X,Y and Z are strangers
to ¢, and all of them are relatives,

(m) g(("..RXX, Y)Z,e;) =0 for :=1,2,X,Y and Z are strangers
to ¢, and all of them are strangers to each other,

(n) 9("..RXX, Y)Z,e)=0 for 1 =1,2,X,Y and Z are strangers
to ¢, X and Y are relatives and Z is a stranger to X (and hence to Y),

(o) 9(F,R(X, Y)Z,e)=0 for :=1,2, X, Y and Z are strangers to
¢, Y and Z are relatives and X is a stranger to Y (and hence to Z),

(») 9(("..R)X, Y)e, e) =0, where X and Y are relatives and they
are strangers to ¢,

(@ 9((F.RYX, Y)e, e,) =0, where X and Y are strangers to each
other and they are strangers to ¢,

(r) 9((F.,R)X, e)Y,e;) =0for i, j=1,2, where X and Y are relatives
and they are strangers to ¢,

(s) 9((".R)NX, e)Y,e;)=0for i, =1, 2, where X and Y are strangers
to each other and they are strangers to ¢,

(t) g((".R)e, e;)er, X) =0fori, 5,k =1,2and X is a stranger to e,.

First of all, we shall prove (k). Let X, Y, Z and W Dbe orthogonal
to e, = ge,. Then (4.5) implies that ¢((V, B)X, Y + Z)(Y + Z), X) =0
and g((V..R(X + W, Y)Y, X +W) = 0 hold, which respectively imply

(4.36) 9("..R)X, Y)Z, X) =0,
(4.37) o7 RXX, Y)Y, W) =0.

(4.36) implies g((V ,R(X + W, Y)Z, X + W) = 0, which becomes g((7.,R)
X, Y)Z, W)+ g((".,R)W, Y)Z, X) =0. Applying the 1st Bianchi identity
to the 1st term of the left hand side of the last equation, we get

(4.38) 29(7..R)YW, Y)Z, X) + g(("..EXY, Z)W, X) = 0.
(4.37) implies g((V.,RXX, Y + Z)(Y + Z), W) = 0, which becomes

9V RUX, Y)Z, W) + g((.,RXX, Z)Y, W) =0 ;
that is, we get
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(4.39) 9" .BRXY, Z)W, X) = —g((V..R(Y, W)Z, X)
=g(("..BXW, Y)Z, X).

Hence (4.38) and (4.39) imply 3¢((V.,R)(W, Y)Z, X) = 0, which proves (k).
(1), (p), (r) and (t) are contained in Step I. (m) and (q) follow from
(k) by applying the 2nd Bianchi identity. Next, we shall show (s).
Let X and Y be strangers to ¢,. Then (4.5) implies
97 BRYX +7Y,e)e;, X +Y) =0,

which reduces to

(4.40) 9((V..RXX, e5)e;, Y) =0 for i,j=1,2.
On the other hand, we have
(4.41) (7 R)X, e,)Y, e,)

= —g(("xR)(e, €)Y, e) — g((V.,R)(e, X)Y,¢,) .

The first term of the right hand side of (4.41) vanishes by (k) and the
second term vanishes by (4.40). This fact together with (4.40) proves (s).

Finally, we shall prove (o), which with the 1st Bianchi identity
implies (n). Let f, and f, = ¢f, be strangers to ¢, and let X be a stranger
to ¢, and f;.. We want to show g((7.R)X, f.)fi, &) =0 for 4, 5,k =1, 2.
Since we have

97 B)X, f)f;, &) = —9((7 xRS, €) S, €) — 9((7 7, E) e, X)f, €4)

and since the first term of the right hand side of the last equation
vanishes by (k), it is sufficient to show that

(4.42) 9((VsR)e,, X)ew, ;) =0 for 4,j,k=1,2

holds good. If 7 =g, (k) implies (4.42). Thus it is sufficient to show
that

(4.43) 9((7 s, R)e, X)e, f) =0 for i=1,2
holds good. Since ¢, + f, and g(e, + f.) = e, + f, are relatives, (t) implies
(4'44) g((Vel+f1R)(e1 + fn € -+ fz)(ez + fz), X) =0.

Making use of (k), (q), (s) and (t), (4.44) reduces to

(4.45) 9", RISy €5 X) + g((7. RUS,, Sr)es X)
+ g((VflR)(eu ez)fz: X) + g((VflR)(eu fz)ez, X) =0.

Similarly, (s) and (q) respectively imply
(4.46) IV eprrR)e, — [y 62 + [l + 12), X) =0,
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(4.47) IV o1 1, R) e, + 1oy €, + Fi)e, — f2), X) =0,
and they respectively reduce to
(4.48) —9((7 ., R)S €Sy X) — 9((7.,R)( [, fr)er X)
+ g((VflR)(eu ez)fz: X) + g((VflR)(en fz)ezy X) =0,
(4.49) —9((Vo, BN s €S2y X) + 9((F . RIS, Sr)ezy X)

—"g((VflR)(eu ez)fz; X) + g((VflR)(eu f2)62, X) =0.
(4.45) and (4.48), and (4.45) and (4.49) respectively imply

(4.50) 9V, RIS, e)fo X) + g7, R)S freny X) =0,
(4.51) 9V, RS, e)fo X) + g((7 7, R)(es €)f, X) =0 .
Now, (4.50) and (4.51) imply

(4.52) 97 BN, f)es, X) = g(( s, B)e,, e)fy X),
and (4.51),(4.45) and (4.50) imply

(4.53) 97 BT, &)y, X) = 9((7 7, R)e, fr)es, X) .

Applying the 1st Bianchi identity to the both sides of (4.52), we get
(4.54) 9V RS2y €)f1 X) + 9((7 . R) ez, F) 20 X)
= g((7 7, R)(es, fr)er, X) + 9((7 1+, B)([, €)esy X) .
Taking account of (4.53), (4.54) reduces to
(4.55) 9((7. RSy €)1, X) = g((V s, R)e,, fr)ey, X) .
The left hand side of (4.55) becomes

9((7 o, RN S, €)1 X)
= g((V o, R)Ssy X)) = — 9((7 1, RY)X, €)) S, €) — 9((7 xE)(e, 1)) S €2)
= - g((VflR)(eu X)ezr fz) ’
where we have used (k) to see that g((FzR)(e, f.)f €.) vanishes. Thus
(4.55) reduces to

(4.56) 9((7 s, R)(e,, X)es, f2) = 0.

On the other hand,- taking account of (k), we get

(4.57) 9((7 s, R)e,, X)e,, 13)
= - g((VelR)(X; fl)eu fz) - g((VXR)(fu 61)61) fz)
=0.

(4.56) and (4.57) imply (4.43), which completes the proof of (0). q.e.d.
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5. Equivalent conditions for a locally g-symmetric space and miscel-
laneous properties. Let M(¢, &, 7, g) be a Sasakian manifold. The following
Lemmas 5.1 and 5.2 are equivalent forms of Lemmas 2.8 and 2.9,
respectively.

LEmMMA 5.1. For any tangent vectors X, Y and Z of M, we get

(5.1) R(X,Y)Z + R(X, ¢Y)Z
= 9(Y, Z)¢X — 9(¢X, 2)Y — 9(X, Z)¢Y + g(3Y, Z2)X .

LEMMA 5.2. For any tangent vectors X, Z and V of M, we get
(5.2) ("vBXX, §)Z = g(¢V, Z2)X — g(X, Z)pV — R(X, ¢V)Z .

LEMMA 5.3. For any horizontal vectors X, Y and Z of M, we get
(5.3) VRXX,Y)Z=0.

ProOF. Let X*, Y* and Z* Dbe é&-invariant horizontal vector field
extensions of X, Y and Z, respectively. Since X* is &invariant, we get
(5.4) Ve X* =V3é=¢X*.

Now, since ¢ is a Killing vector field, we have 4R = 0. On the other
hand, making use of the invariance of X*, Y* and Z* by &, (2.6), (5.4)
and Lemmas 2.8 and 5.1, we get
(AR)(X™, Y*)Z*

= [§, R(X*, Y*)Z*]

= V{(R(X*, Y*)Z*) = V pixeynzé

= (V.R)(X*, Y*)Z* + R(¢X*, Y*)Z* + R(X*, ¢ Y*)Z*

+ R(X*, Y*)¢Z* — ¢R(X*, Y*)Z*

= (V.R)(X*, Y*)Z* .

Hence we get the conclusion.

THEOREM 5.4. A mecessary and sufficient condition for a Sasakian
manifold to be locally ¢-symmetric is that
(6.5 (FyR)X, Y)Z
={9(X, V)g(¢Y, Z) — 9(Y, V)9($X, Z) + g(¢R(X, Y)V, Z)}§
+ XN -9V, 2)Y + 9(Y, Z)$V + R(Y, ¢V)Z}
+ WY N9V, 2)X — 9(X, Z)sV — R(X, ¢V)Z}
+ NZ)g(Y, V)X — 9(X, V)¢Y — ¢R(X, Y)V}

holds good for any tangent vectors X, Y, Z and V.
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Proor. If X, Y, Z and V are horizontal, then (5.5) reduces to (2.14).
Hence the sufficiency holds good. Conversely, suppose a Sasakian manifold
is locally ¢-symmetric. Let X, Y, Z and V be arbitrary tangent vectors.

We compute (7, R)(¢’X, ¢°Y)4’Z in two ways.
First of all, taking account of (2.2), (2.14) implies
(7 v R)¢°X, 6°Y )¢’ Z
= [{o(X, V) — n(X)(V)}g(¢ Y, Z) — {9(Y, V)
— (Y V)lg(¢X, Z) + 9(¢Z, R(5’X, ¢*Y)g* V)¢ .
On the other hand, making use of (2.7) and (2.8), we get
R(¢’X, ¢9°Y)p'V
= R(—X + n(X)§, =Y + n(Y)E)N=V + 9(V)§)
= —R(X, V)V + p(Y)(V)X — p(X)(V)Y
+ {(9(X)g(Y, V) — n(Y)g(X, V).
Hence we get
(5.6) (FerR)$'X, 6°Y)s°Z
={9(X, V)9(8Y, Z) — 9(Y, V)g(¢X, Z) — 9(¢Z, R(X, Y)V)} .
Secondly, since ¢*X, ¢*°Y and ¢’Z are horizontal, Lemma 5.3 implies
(VovR)¢°X, 6*Y)s°Z
= —(VyR)¢'X, §"Y)$"Z .
Making use of Lemmas 2.9 and 5.2, we get
—("vRX¢'X, §'Y )¢’ Z
= —(PyB(—X + 9(X)&, =Y + Y)e)—Z + 0(Z))
= ("vB)X, Y)Z
— NZ)g(Y, V)X — 9(X, V)¢Y — ¢R(X, Y)V}
— (Y)g(sV, 2)X — 9(X, Z)¢V — R(X, $V)Z}
+ Y MZNV)$X — ¢R(X, §)V}
— XN —9(¢V, 2)Y + g(Y, Z)¢V + R(Y, ¢V)Z}
+ N XMZN—(V)eY + ¢R(Y, §)V}.
Since the 4th and 6th terms of the right hand side of the last equation
vanish, we get
(5.7 Ve R)$*X, $*Y)p°Z
= (VyR)X, Y)Z
— N XN =gV, 2)Y + g(Y, Z)sV + R(Y, ¢V)Z}
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—(YNg(eV, 2)X — 9(X, Z)$V — R(X, ¢V)Z}
—n(ZN09(Y, V)X — 9(X, V)Y — ¢R(X, Y)V} .
Comparing (5.6) and (5.7), we get (5.5). q.e.d.

K. Motomiya [4] studied a special linear connection, which is a special
one introduced by M. Okumura [6], on a non-degenerate normal almost
contact manifold, and Kato-Motomiya [2] proved that this linear connec-
tion on the homogeneous manifold G/G, treated in Example 2.3 is identical
with the canonical linear connection of the second kind and that the
curvature tensor for this linear connection is parallel. Motomiya [4]
also derived a necessary and sufficient condition for the curvature tensor
of this linear connection to be parallel in connection with the curvature
tensor of the Riemannian connection. In the following, we shall prove
that this condition is identical with the condition for a Sasakian manifold
to be locally g-symmetric.

First of all, we give a definition of the M. Okumura’s linear con-
nection (JM-connection, for short) in the case of a Sasakian manifold.
Let M be a Sasakian manifold with structure tensors ¢, &, » and g. Let
V be the Riemannian connection for g. Let r be an arbitrary fixed real
number, and let A be a tensor field of type (1, 2) defined by

(5.8) AX)Y = dn(X, Y)§ + m(X)pY — n(Y)$X .
The M-connection 7 is now defined by
(5.9) V.Y =7, Y + AX)Y .

By direct calculations we see that the tensor ﬁelds~ é,& 1,9 and A are
parallel with resp~ect to the M-connection /. Let R and R be the curva-
ture tensors for // and /7, respectively. Then we get
(5.10) R(X,Y)Z =RX, Y)Z + BX, Y)Z,
where
(5.11) B(X,Y)Z
= A(AX)Y)Z — A(AY)X)Z — A(X)A(Y)Z + A(YAX)Z
= NZNNX)Y — n(Y)X} + 9(¢Y, Z2)X — 9(¢X, Z)¢Y
+ 2rg(¢X, Y)oZ + {9(X, Z(Y) — o(Y, Z)(X)}¢ ,
and hence we get
(5.12) P RY(X, Y)Z = (",R)X, Y)Z
+ A(V)R(X, Y)Z — RIAV)X, Y)Z
— R(X, AV)Y)Z — R(X, Y)A(V)Z .
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Thus a necessary and sufficient condition for /R = 0 is that

(6.13)  (7,R(X, Y)Z = —A(V)R(X, Y)Z + RA(V)X, Y)Z
+R(X, AV)Y)Z + R(X, Y)A(V)Z

holds for any tangent vectors X, Y,Z and V. By a straightforward
calculation, we see that the right hand side of (5.13) is nothing but the
right hand side of (5.5). Hence we get

THEOREM 5.5. A mecessary and sufficient condition for a Sasakian
mantifold to be locally ¢-symmetric is that

(5.14) FR=0

hNolds good, where V is the M-connection defined by (5.8) and (5.9), and
R is the curvature tensor for V.

Let X and Y Dbe linearly independent tangent vectors of a Sasakian
manifold. The M-sectional curvature M(X, Y) of the 2-plane spaned by
X and Y is by definition

(5.15)  M(X, Y) = g(B(X, Y)Y, X)/g9(X, X)g(Y, ¥) — g(X, Y)*.

THEOREM 5.6. If r =1, then the M-sectional curvature of the
compact (resp. moncompact) type Sasakion ¢-symmetric space G/G, in
Example 2.5 is positive (resp. negative) semidefinite.

ProoF. Since the M-connection / for r =1 is the canonical linear
connection of the second kind (Kato-Motomiya [2]), we have

(5.16) R(X, Y)Z = —[IX, Y], Z] forall X,Y,ZeM.

Let X and Y be orthonormal horizontal vectors. If G/G, is of the com-
pact type, we get

(5.17), M(X,Y) = g(R(X, Y)Y, X)

_ ngM(—[[X, Y, Y1, X)
n
1

—B(X, Y], [¥, X))
n

= L B(X, Y], [X, Y],) 2 0,
8n

and if G/G, is of the noncompact type, we get
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(5.17),; M(X, Y) = g(R(X, Y)Y, X)
= L By(—[IX, VI, Y], X)
8n
= L B(X, Y] [X, YI) =0,
8n
because the Killing form B is negative definite on &, and B(®,, ®,) = {0}.

On the other hand, since we have /£ = 0, we get R(X, Y)c =0 for
any tangent vectors X and Y, and hence we get

(5.18) MX, &) =0

for any tangent vector X. Moreover, since we have ﬁ(X, &) = 0 (Kato-

Motomiya [2]), we get the conclusion. q.e.d.
THEOREM 5.7. If r = —1, then the ¢-holomorphic M-sectional curva-

ture of a Sasakian manifold of constant g-holomorphic sectional curva-
ture k is =0 according to k= —3.

PrROOF. The curvature tensor of the Sasakian manifold of constant
¢é-holomorphic sectional curvature k is given by

RX, V)7 = L34y, 2)X - o(X, D))

k - Linzynx)y — p()x)
+ 9@Y, Z)6X — 96X, Z)sY — 29(6X, Y)oZ
+{9(X, Z)0(Y) — o(Y, Zy(X))e] .

Hence, for any horizontal unit vector X, the ¢-holomorphic M-sectional
curvature is given by

M(X, $X) = g(R(X, $X)$X, X)

_ k13 +3<k21+1>

=k+3. q.e.d.

Now, we shall prove the necessity of Theorem 3.2.
Let M be a Sasakian manifold. We consider the M-connection /7 on
M. The torsion tensor T of 7 is by definition

(5.19) T(X, V)= AX)Y — A(Y)X
= 2d9(X, Y)§ + (r + D{N(X)¢Y — n(Y)p X},
and it is parallel with respect to /. Now, suppose M is a locally ¢-

+
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symmetl;ic space. Then, from Theorem 5.5, we see that the curvature
tensor B of / is parallel. Let x be an arbitrary point of M. Let
{e, €, +++, €5, &) be an orthonormal basis of T,(M). We define a linear
isomorphism o,: T,(M)— T,(M) by

ofe)= —e,, 115 2n,

UO(Ez) = Ex .

Then, from (5.19), we see that (g, 0,¢;) = 0,T(e,, ¢;) and T(o.e,, 0,£,) =
0,1(e;, &,) hold good for 1 <4, 5 < 2n. Hence we get

(5.21) oT.=T,.

On the other hand, (2.7) implies that R(e, ¢;)e, is horizontal, where R is
the Riemannian curvature tensor, and (5.11) implies that B(e, e;)e, is
horizontal. Hence (5.10) implies that R(e, e;)e, is horizontal, and hence
we get R(awe,, 0,¢,)0., = 0,R(e, e;)e, for 1 <4, 5,k < 2n. Since we have
R(X, Y)e = 0 and B(X, £) = 0 as mentioned in the proof of Theorem 5.6,
we get R(owe, 06,)0.8, = 0,R(e, ¢;)&,, B(oe, 0,8.)0e, = 0,B(e, &)e, and
R(owe,, 0,£.)0,¢. = 0.R(e,, &.)2.. Hence we get

(5.22) o R, =R,.

Hence, according to Lemma 1.2 of Chapter IV in Helgason [1], for ex-
ample, we see that the local diffeomorphism o, defined by

(523) D'a:(xu Loy =ty Lony Z) = Ux(Esz (xlel + X8y + v X500 T zEx))
= Exp, (xl(_el) + xz(“ez) + oo+ Bp(—e,) + z&,)
= (=@ — @y 0y — Dy 7)

on a normal coordinate neighborhood U with a normal coordinate system
(,, yy -, Ty, 2) determined by {e, €, + -, €., &}, is a local affine trans-
formation with respect to 7. Since (0,.), = 0,, We get (0.:),°¢, = ¢,°(T ),
and (0,.),5, = &. Hence, since o, is a locall affine transformation and
since ¢ and & are parallel, we see that 0,.0¢ = ¢°0,. and o¢,.& = £ hold
good (cf. Lemma 3.4 in Kato-Motomiya [2]). Thus the following Lemma,
which is due to S. Tanno, implies that ¢, is a local automorphism, and
hence it is a ¢-geodesic symmetry at 2. Hence the necessity of Theorem
3.2 is proved.

LEMMA 5.8 (Tanno [8]). Let M(g, & 1, g) be a contact Riemamnian

manifold. If a diffeomorphism f of M leaves the structure temsor ¢
mvariant, then there exists a positive constant & such that

fe&=ag, f*n=an,
(X, Y) = ag(X, Y) + a(a — Dp(X)(Y) .

(5.20)
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6. Sasakian globally ¢-symmetric space. In this section, every
manifold is assumed to be connected.

Let M be a Sasakian manifold with structure tensors ¢, &, » and g.
If any ¢-geodesic symmetry of M is extendable as a global automorphism
of M, and if the Killing vector field £ generates the l-parameter group
of global transformations, which are automatically automorphisms of M,
we call the Sasakian manifold M to be a globally g-symmetric space.

Let M be a Sasakian globally ¢-symmetric space. Then the group
A(M) of all automorphisms of M is a transitive Lie transformation group
of M. Since a homogeneous Sasakian manifold is regular, M is a principal
G*-bundle over a Kahlerian manifold B, where G! is a 1-dimensional Lie
group which is isomorphic to the l-parameter group of global transfor-
mations generated by &. Since each g-geodesic symmetry of M is ex-
tendable as a global automorphism, each geodesic symmetry of B is
extendable as a global automorphism. Hence B is a Hermitian globally
symmetric space.

THEOREM 6.1. A Sasakian globally ¢-symmetric space is a principal
G*-bundle over a Hermitian globally symmetric space.

Suppose a Sasakian locally ¢-symmetric space M is complete and
simply connected. Let / be the M-connection for » =1 on M. Then,
since the Riemannian connection of M is complete, the M-connection /7 is
complete. The torsion tensor field 7' and the curvature tensor field R
are parallel (Theorem 5.4). Hence, according to Corollary 7.9 of Chapter
VI in Kobayashi-Nomizu [3], vol. I, we see that any local affine trans-
formation (with respect to /) of M is extendable as a global one. In
particular, any ¢-geodesic symmetry, which is a local automorphism by
the assumption, is extendable as a global automorphism. This proves
that M is a globally ¢-symmetric space.

THEOREM 6.2. A complete and simply connected Sasakian locally
o-symmetric space is a globally ¢-symmetric space.

Let M be a Sasakian locally g¢-symmetric space and let 2 be an arbi-
trary point of M. According to Theorem 4 in Kato-Motomiya [2], there
exist a homogeneous Sasakian manifold G/G, and a local isomorphism from
a neighborhood of 2 onto a neighborhood of the origin 0 = {G,} of G/G,.
According to Theorem 6.2, since the homogeneous Sasakian manifold G/G,
is a complete locally ¢-symmetric space, the universal covering manifold
of G/G, is a globally ¢-symmetric space. Hence we get

THEOREM 6.3. A Sasakian locally ¢-symmetric space is locally tso-
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morphic to a Sasakian globally ¢-symmetric space.

Let M be a Sasakian globally ¢-symmetric space. According to
Theorem 6.1, M is a principal G'-bundle over a Hermitian globally sym-
metric space B. M is said to be of the compact type, noncompact type,
or Euclidean type according to the type of the Hermitian globally sym-
metric space B.

THEOREM 6.4. Let M be a Sasakian globally ¢-symmetric space.
We consider the M-connection V for r = —1 on M.

(i) If M s of the compact type, then M has the M-sectional curva-
ture everywhere = 0.

(ii) If M is of the momcompact type, then M has the M-sectional

curvature everywhere < 0.
(iii) If M s of the Ewuclidean type, then M has the M-sectional
curvature everywhere = 0.

PrROOF. Let 7: M — B = M/& be the fibering and let R be the Riema-
nnian curvature tensor for the induced Riemannian structure of B. Then,
if X, Y and Z are horizontal vectors of M, (2.5), (56.10) and (5.11) imply
that

(6.1) R(X, Y)Z = (R(zX, 7, Y7 Z)*

holds good. On the other hand, as mentioned in the proof of Theorem
5.8, we have R(X, Y)¢ = 0 and B(X, &)Y = 0 for any tangent vectors X
and Y. Hence, according to Theorem 8.1 of Chapter V in Helgason [1],
for example, we get the conclusion.
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