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Introduction. Let % be a complete field under a discrete valuation
with a perfect residue field & of characteristic p # 0, and let K/k be a
fully ramified finite Galois extension with Galois group G. Let G, denote
the i-th ramification group of G. Then it is well known that the sequence
G=G,2G,2---2G,2G,,,2--- has the following properties:

G, 18 normal in G for 1 = 0, and there exists i, > 0 such that G, =1
for 1 = 1,; G,/G, is a cyclic group of order prime to p; for 1 =1, G./G,.,
s an elementary abelian p-group contained in the center of G,/G..,; as
o G,/G-module, G,/G,,, is the direct sum of irreducible submodules which
are isomorphic each other, for ¢ = 1.

Maus [3] has proved the ‘inverse’ of the above when %k is a finite
algebraic extension of the field of p-adic numbers @, and when % is of
characteristic p, by using local class field theory and Artin-Schreier
theory, respectively.

The purpose of this paper is to show that Maus’ theorem is also
valid when k is a complete field of characteristic 0 under a discrete valu-
ation with a perfect residue field £ of characteristic p, using Kummer
theory.

For a Galois extension K of k, the sequence of ramification groups
of K/k means the descending sequence of all ramification groups of K/k,
without taking ramification numbers into account.

MAuUS’ THEOREM. Let k be a complete field of characteristic 0 under
a discrete valuation with a perfect residue field k of characteristic p
and with absolute ramaification order e, i.e., e, = ord,(p), where ord,
1s the normalized additive valuation of k. Let G=G"2G"2 .-+ 2
G 2 G =1 be the sequence of finite groups satisfying the following:

(i) G 4s a mormal subgroup of G for 1 =0,1, ---, 7;

(ii) G©/GY is a cyclic group of order prime to ;

>iii) GW/GY* 4s an elementary abelian p-group contained in the
center of GV/GUY for v = 1;

(iv) As a GO/GV-module, GG is the direct sum of irreducible
submodules which are isomorphic each other, for 1 =1,2, -+, r. Then
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there exist a finite algebraic extension k' of k and a fully ramified finite
Galois extension K' of k' with Galois group G whose sequence of rami-
fication groups is G=G"2G@V"R2.--2GF" R G"™ = 1. Moreover, if
e, = O(mod p — 1), then we can take k' such that e, # O(mod p — 1).

In the above theorem, Maus assumed that G = G or » = 1 when { €k,
where { is a primitive p-th root of unity, but this assumption is not
necessary.

The condition ¢, = 0(mod p — 1) is slightly stronger than the condition
that {¢k. Precisely, it is equivalent to that the ramification index of
k(Q)/k is greater than 1 (see [5], Lemma 8).
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NOTATIONS

(1) k: a complete field of characteristic 0 under a discrete valuation
with an arbitrary residue field of characteristic »p # 0. ord,: the
normalized additive valuation of k. ¢%,: the ring of integers of k. U,:
the group of units of k. U = {uec U,ord,(u —1) =1} for i = 1. k:
the residue field of k. ¢, the absolute ramification order of %, i.e.,
e, = ord, (p). @ (for a <€ 7,): the image of a by the canonical homomor-
phism of <7, to k. G, (for a fully ramified finite Galois extension K of
k with Galois group G): the i-th ramification group of G for an integer
1=0,1i.e., G, ={oceG|ord, (/I° — II) = 1 + 1}, where II is a prime element
of K. A ramification number t of K/k: a rational integer such that
G, 2 G.,,. The first ramification number of K/k: the minimum of all
the ramification numbers of K/k. +rg,,: the Hasse function of KJk.

(2) Z: the ring of all rational integers. N ={2cZ|z=1}. F,:
the finite field of p elements. G(K/k): the Galois group of a Galois ex-
tension K/k. K*: the multiplicative group of a field K. Z,: the ring of
p-adic integers. {: a primitive p-th root of unity.

1. A certain filter of subgroups of a complete field. Let p,{, k
and Uy be as in Notations. Put k&' = k), and fix a generator ¢ of
G(K'|k). Regard Uy as a Z,[G(K'/k)]-module in the natural way. Let
neZy be a unique primitive N-th root of unity such that {’ = {7,
where N, = [k':k]. We define subgroups A" of Uj? and an element 2 of
Z ,|G(K'[k)] in the following:
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DEFINITION. For any integer ¢ =1,
AP ={xe UY |z =1}
and
Q=(""+o"n+ o0 + o+ PN
For the properties of the operator 2 we have the following

LEMMA 1 ([7], Lemma 3). Let motations and assumptions be as
above. Then the operator 2 has the properties:

(1) AP = (UP)? for any integer 1 =1,

(2) 2= for any xe€ A".

Any element of A{" can be expressed in the following normal form
of an infinite product.

PrOPOSITION 1. Let notations and assumptions be as above. Put
¢, =ord,({ — 1) and let w, and 7, be prime elements of k and kK,
respectively. Let N be the ramification index of k'/k. For any \e &,
and any jeZ with ep + jN =1, put X;(\) = (L + MC — 1)*zi)°. Then
the following are valid:

(1) X,(\)e At qnd X;(0) =1 + ME — 1)z} (mod zpsrtvit);

(2) For any xc Ai”, there exist N, € U, U{0} such that x= Iz, X.(\),
where 1, € Z s such that e,p + Ni, = 1.

PrROOF. (1) That X;(\)e Ai**¥? follows from (1) of Lemma 1.
The second assertion follows easily from the definition and that
((€—1)")’ = n(€ — 1)*(mod 7p2**).

(2) Let k,,/k be the maximum unramified extension of % in %' and
let ¢ be a generator of G(k'/k,.). Then N=[k:k,]. Put a=
(x — 1)/(¢ — 1)», then by the definition of  we have easily a"'e Uy, so
a”te UY. By Serre [10], Chap. IV, §2, Proposition 7 this implies
ord, (a) = O(mod N), so =1 + M{ — 1)’mje with v e U,. and %,€ Z such
that e,p + ¢,N =1. Then o' ¢ U}’ implies \* = Mmod 7,), so X = \,, with
some A, € U,. Hence by (1), /X, (\;) € Ai**"*", Using this procedure
successively, we see that for any j = 4, there exist \, e U, U {0} such
that «/TTi;, Xi(n) € Af?*¥+0, Taking the limit, we obtain the assertion
(2), since k is complete.

COROLLARY. Notations and assumptions being as in Proposition 1,
the following are valid:

(1) Afrtil Q Afewrtil+h — AleaptiN+N) for § ¢ Z such that e,p + N =1.

(i) Apetim/Alarti¥+h = [ by X,(\) mod AL#+i¥ 0 X with e &,
for jeZ such that e;p + N = 1.
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(iii) AL~y A=V (%) = k by X_;(A) mod AP =iV I(EX)? - X
with N € &, for jeZ such that j Z O(mod p) and 1 < j < ¢, p/(p — 1).

PROOF. The assertions (i) and (ii) follow directly from Proposition
1. The assertion (iii) follows from Proposition 1 and the following
Lemma 2.

For the connection of A" and (k¥'*)?, we have the following

LEMMA 2. Let notations and assumptions be as above. Let xe A"
be such that 1 < ord, (x — 1) < e,p. Then the following are valid:

(1) Ifxe(k)?, then ord,, (x —1)=0(mod p) and x/X; ,(\?) € Afrti’?*D
with some j' € Z and some ne U,.

(2) If =1+ N — 1)Pzi'»(mod w1»*9'?V ) with some e U,, then
xY® € AfPtIPNEN) 4ith some y € AP

Proor. (1) Write ¢ = 2° with zek’. Since 2ze€ Uy, ze¢ Uy, If
ord,. (2 — 1) = e,, then ord, (2 — 1) = e,p. Since ord, (x — 1) < e,p, this
implies that 1<y <e, where v=ord, (z —1). Write z=1+ az,
(mod7;') with @e U,.. Since v <e, 2° =1+ a’x;? (mod 7;7*), so by (2)
of Proposition 1, x = 1 + M({ — 1)*z]'? (mod 7i*+¥i'?*!) with some A e U,
so by (1) of Proposition 1, z = X;,(\*)(mod 7ji**#'*"*1), hence z/X;,(\*)¢€
AI(‘elp+j'PN+1)'

(2) Puty=@0 — ¢ — Dxi)*. Then by (1) of Lemma 1, y € A{¥",
Since (£ — 1)’ = 9(€ — 1)(mod 7pt™*), y =1 — M{ — 1)zi'(mod mgr+¥i'*),
Since ¢, + Nj' < e, y* =1 — N({ — 1)*xi?(mod zji»*7'»¥+1), Hence 2xy®e€
Afeti’?¥0 g0 by (2) of Proposition 1, xy? € Afrtisitm, q.e.d.

2. Proof of Maus’ Lemma 2.7 and Satz 2.8 when £ is perfect. In
this section, we prove Maus’ Lemma 2.7 and Satz 2.8 when £k is perfect,
using §1.

PROOF OF MAUS’ LEMMA 2.7 AND SATZ 2.8 WHEN k IS PERFECT. If
Lemma 2.7 is proved when k is perfect, then Maus’ proof of Satz 2.8 is
still valid when % is perfect; so it is enough to prove Lemma 2.7. Let
Y(c')e Z; be a unique (p — 1)-th root of unity such that {” = (" for
o' € G(E'[k), where E' = E({). Then v Hom(G(E'[k), ZX). Regard A{ as a
G(E/k)-module by z° = 277" for x ¢ AY and t € G(E/k), where ' € G(E'[k)
is such that 7'|E = r. This is well defined. In fact, let " € G(E'/k) be
such that z”|E =, then ¢'t""' =& € G(E'/E), and by the definition of A%,
O =g, g0 7T T = o717 Regard AY(EX)?/(E'*) as a G(E/k)-
module, by (2 mod (E)?)" = 2" mod (E'*)* with ze Ay and 7 e G(E/k).
Put F, = Ap»"¥(E")*/(E'"*)", where N is the ramification index of E'/E
and ¢, = ord; ({ — 1). Since F, is a completely reducible G(E/k)-module
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containing F,_, as a G(E/k)-submodule, there exists a G(E/k)-submodule
D/(E"™)* of F, such that F,= D/(E"*)* X F,_, (direct product). Put
K' = E'(¥V«|xeD). Then by [5], Corollary to Proposition 2, there exists
a unique abelian extension K/E whose Galois group is an elementary
abelian p-group such that K({) = K'. We see that K/k is a Galois ex-
tension. In fact, since D° = D for all z e G(E'/k), we see by Kummer
theory that K'/k is a Galois extension; for any 6 e G(K'/k), EC K°C K’
and K%{) = K’, so by the uniqueness of such K, K? = K, hence K/k is a
Galois extension. Identify G(K'/E') and G(K/E) by the restriction from
K’ to K. By Kummer theory, D/(E’*)” is isomorphic to the character
group X(G(K'/E')) of G(K'/E’) in the canonical way. As usual, regard
G(K/E) as a G(E/k)-module by 7of = #&&~* for v € G(E/k) and ¢e G(K/E),
where 7€ G(K/k) is such that 7|E =7, and regard X(G(K/E)) as a
G(E/k)-module by (zoy)g) = x(z™'og) with 7 e G(E/k), € X(G(K/E)) and
g€ G(K/E). Then it is easily verified that the canonical isomorphism
D/(E™)yY = X(G(K'/E")) is a G(E/k)-isomorphism. Thus X(G(E/k)) =
M_,o(G(E[k), k) as a G(E/k)-module, where M._,,(G(E/k), k) is as in
Maus [3], §1.2. In fact, it is easily verified that the isomorphism from
A= VO(F <) Aer=Nee(F<)2( = F/F,_)) onto k (=FE) defined in (iii) of
Corollary to Proposition 1 is a G(E/k)-isomorphism from F,/F, , onto
M_,+(G(E[k), k), so DNE™)? = M_,,(G(Ek), k), hence X(G(E[k)) =
M_,,(G(E[k), k) as a G(E/k)-module. Hence by the duality theorem of
Pontrjagin, G(K/E) = M, ,(G(E/k), k) as a G(E/k)-module. In general, it
is easily verified that E'(¥ «)/E’ has the ramification number (e,p — v) if
xe Uy, ¢ Uyt with 1=v<ep, v=0(mod p). Since DN Afe ¥+ (E™)P =
(E"™)?, by this remark and [5], Lemma 10, we see that any sub-extension
of K/E of degree p has the ramification number ¢; so by Serre [10],
Chap. IV, §1, Proposition 3, we see easily that K/E has the only one
ramification number ¢.

REMARK. When k is algebraically closed, Maus’ proof of Lemma 2.7
is still valid if we replace local class field theory by local class field
theory of Serre [9]. However, we adopt the elementary method, not
using class field theory.

3. Proof of Maus’ Korollar 5.10 when & is perfect. In this section,
we prove Theorem which corresponds to Maus [3], Korollar 5.10, and for
its proof we use Wyman [11], Corollary 29, Maus [2], (3.3), (3.7), (3.9)
and the following Lemmas 3 and 4.

LeEMMA 3. Let p, k and e, be as in Notations. Assume moreover
that k is algebraically closed. Let te N be such that 1 <t < e,p/(p — 1)
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and t #= 0(mod p). Then for any integer m there exists a fully ramified
cyclic extension k, of k of degree ™ whose first ramification number
s t.

Proor. By MacKenzie-Whaples [12], there exists a cyclic extension
k, of k of degree p whose ramification number is . It is well known
that the Galois group of the maximal p-extension of k is free pro-p-
group. Hence there exists a cyclic extension %k, of & of degree p"
containing k,. By Serre [10], Chap. IV, §1, Proposition 3, the first rami-
fication number of k,/k is t.

REMARK. It is verified by using [5], Corollary to Proposition 3 and
Serre [10], Chap. V that Lemma 8 is also valid when k is perfect.

LEMMA 4. Let p be a prime number. Put M(e) = {t' € N|t' % 0(mod p),
ef(lp—1)=t'<ep/(p — 1)} and M(t,e, m) = {t, t + ¢, -+-, t + (m — 1)e} for
ecN, meN and tc N. Let ne€N be such that n <e(p — 1)/p and let
r<r,<---<r, be a sequence of non-negative rational numbers. Fix e.
Then there exists t € M(e) such that r,¢ M(t, e, m) for 1 =1,2, -+, n and
for all me N. .

PROOF. Put M = M(e) and M, = Ug., M(t, ¢, m). It is easily verified
that M\,N M, = @ with t = ¢/, te M and ¢ € M. Since n <e(p —1)/p <
¥(M), there exists te M such that M, N {r, ---, 7.} = @. q.e.d.

For a Galois extension K/k, we call s an upper ramification number
of K/k when +,(s) is a ramification number of K/k.

THEOREM. Let p, k and e, be as in Notations and let K[k be a
finite fully ramified Galois extension. Moreover suppose that k is perfect.
Then there exists a finite algebraic extension k'/k satisfying the following
properties (1) and (2):

(1) The sequence of the ramification groups of K[k can be identi-
fied with that of K'|E' by the restriction homomorphism of G(K'[k') onto
G(K/k), where K' = K'K.

(2) All the upper ramification numbers of K'|k' are smaller than
ew/(p — 1).

Moreover, if e, # O(mod p — 1), then we can take k' such that e, %0
(mod p — 1).

ProOF. Serre [10], Chap. V, §4, Lemma 7, we may suppose that
k is algebraically closed. Let r, <7, < --+ < r, be the sequence of all
the upper ramification numbers of K/k. By taking a suitable tamely
ramified extension of %k of degree prime to [K: k] and (p — 1), we may
suppose that n <e,(p —1)/p. By Lemma 4, there exists ¢t ¢ Jl?(ek) such that
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r; & M(t, ey, m) for i =1,2, ---, nand forallmeN. Puts,=t+(m—1e,
and fix m € N such that r,<s,. By Lemma 3, there exists a fully ramified
cyclic extension %'/k of degree p™ whose first ramification number is .
By Wyman [11], Corollary 29, the set of all the upper ramification numbers
of ¥'/k is M(t, e,, m). Since r, ¢ M(t, e,, m) for 1 =1,---, m, by Maus [2],
(3.3) (3.7) (3.9), the sequence of the ramification groups of K/k is isomorphic
to that of K'/k', and 7, = +,.,x(r,), where 7, is the maximum of the upper
ramification numbers of K'/k’. Since r,<s,, we have ./, (7n)<AVi/i(Sm) =
t+ (e.p/(p — D)(p™* — 1) < e./(p — 1), hence 7, < e, /(p — 1).

4. Proof of Maus’ theorem quoted in the introduction when % is
perfect. Using §2 and 3, Maus [3], Satz 3.4 and Lemma 4.3, we can
prove Maus’ theorem when % is perfect. Note that Satz 3.4 4s wvalid
when k is algebraically closed without the assumption that E is regular
and that Maus’ Lemma 4.3 is valid when k is perfect. In fact, since
the Galois group of the maximal p-extension of E is free pro-p-group
and since Maus’ Lemma 2.7 is valid when k is perfect by §2 of this
paper, Maus’ proof of Satz 3.4 is also valid; since Maus’ Lemma 2.7 is
valid when k& is perfect by §2, Maus’ proof of Lemma 4.3 is still valid.

PROOF OF MAUS’ THEOREM WHEN k IS PERFECT. By Serre [10], Chap.
V, §4, Lemma 7, we may suppose from the beginning that k is algebrai-
cally closed. We shall prove the theorem by induction on ». If » =1,
then the assertion follows from §2. Suppose r» > 1. We shall prove this
case in the following four steps (I) ~ (IV).

(I) By the induction hypothesis, there exist a finite algebraic ex-
tension k.,/k and a finite fully ramified Galois extension K,/k, whose sequence
of ramification groups is G?/G" 2 GV/G" R -+ L GG R1.

(II) By Maus’ Satz 3.4 (see the above remark), there exists a
finite Galois extension K/k, containing K, such that G(K/k) = G and
G(K/K)) = G

(IITI) By §3, there exists a finite algebraic extension k'/k, satisfying
the following (i) and (ii):

(i) The sequence of the ramification groups of KEK'/k' is isomorphic
to that of K/k, in the natural way.

(ii) All the upper ramification numbers of Kk'/k' are smaller than
ew/(p — 1).

(IV) Let E'/K be the maximum tamely ramified extension of %' in
KJk'. Let te N be such that e./(p —1) <t and te V,(e, e, t), where
V(es, €, T) is as in Maus’ Lemma 4.3 for Kk D K.k D E'DF'. Then by

@ This theorem is generalized in [8], Theorems 7 and 8.
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Maus’ Lemma 4.3, there exists a finite fully ramified Galois extension
K'[l' satisfying the following (iii) and (iv):

(iii) K'> KK, GX'[K') = G® and G(K'/KK') = G,

(iv) K'/Kk' has the only one ramification number . z(%).
The conditions (ii) and (iv) imply that the only one ramification number
o p(t) of K'|[KE' is greater than all ramification numbers of K.k'/k'.
Hence by Maus [3], Lemma 4.2, the sequence of the ramification groups
of K/l is G"2GVXR--- 2G" 2G"" =1, The last assertion is
verified in each step in the above.
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