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1. Introduction. In their paper [2], J. Cheeger and D. Gromoll
proved the following:

THEOREM (Cheeger-Gromoll). Let M be a conmected, complete and
non-compact Riemannian manifold of non-negative Ricci curvature. If
M contains a line, then M ts isometric to the Riemannian product Nx R,
where N is a totally geodesic hypersurface in M.

Recall that a line is a normal geodesic l: (— o, «)— M, any segment
of which is minimal.

The above theorem says that the existence of suitable geometric
objects in M determines the isometric structure of M. In the present
paper, we shall consider the case where M contains a compact hyper-
surface without focal point. Our results are the following:

THEOREM A. Let M be a connected, complete and non-eompact
Riemannian manifold of non-negative Ricei curvature. If M contains
a compact hypersurface N without focal point, then N is totally geodesic,
and M is isometric to a flat line bundle on N or on N/Z,.

THEOREM B. Let M be a connected, compact Riemannian manifold
of non-negative Ricct curvature. If M comtains a compact hypersurface
N without focal point, then N is totally geodesic, and M is isometric
to a Riemannian manifold 1 g, N/i.

The Riemannian manifold L, . N/¢ is defined as follows: For >0,
let 1 ,N be a flat line bundle on N with fibre [—», r]. Let: L, N— L,N
be a fixed-point free isometric involution on the boundary L ,N of L . N.
Then identifying the boundary points » and i(u), we obtain the Rieman-
nian manifold 1 1 N/7.

2. Preliminaries. Let M be an n-dimensional connected and complete
Riemannian manifold with Riemannian metric {, > and Levi-Civita
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connection V. For peM, let M, be the tangent space to M. Let
R(X, Y)Z =V y11Z —[Vx, Vy]Z be the Riemannian curvature tensor. For
u, v € M,, let K(u, v) be the sectional curvature of the plane spanned by
% and v. If w and v are mutually orthogonal unit vectors, recall that
K(u, v)=<{(R(u, v)u, v). For a unit vector we M, Ric(u)= iz K(u, e;)
is the Riceci curvature of M with respect to u, where ¢, -+, ¢,_,, u is an
orthonormal basis of M,. Let N be a connected and complete hyper-
surface in M. Let v: L N— N and v: L ,N— N Dbe the flat normal bundle
and the unit normal bundle on N respectively. For we L.N, p = v(u),
let S,: N, X N,— R be the second fundamental form of N with respect to
u. SUX,Y)= —(u,V;Y) for tangent vector fields X and ¥ on N. The
mean curvature of N with respect to u is given by m(u) = Sii=i S.(ex, 1),
where e, - -+, ¢,_, is an orthonormal basis of N,. Let exp: TM —M be the
exponential map. Let expy: L N—M and expy: L, N—M be the restric-
tions of exp on 1 N and on L ,N respectively. A geodesic ¢ is called
normal if its tangent vector ¢ is of unit length. For we L,N, the map
¢: [0, co)— M defined by c¢(t)=expy (tw) is a normal geodesic starting from
N and perpendicular to N at ¢ =0. A cut point ¢(z) of N along ¢ is a
point such that the restriction ¢|[0, 7] is a minimal geodesic from N to
¢(t), but ¢|[0, z’'] is not for any 7’ > 7. The cut locus C(N) of N is the
set of cut points of N along all geodesics starting from N and perpen-
dicular to N. C(N) is a closed set in M. A Jacobi field J: [0, «o)— TM
along ¢ is said to be transversal to N at ¢t = 0 if it satisfies

(i) J is perpendicular to ¢,

(ii) &, J0), v> = —8,(J(0), v) for any v e N,,
where w=¢(0). A deformation 77:(—¢,¢€) X [0, o)— M of ¢ is said to
be transversal to N at ¢{=0 if it satisfies

(i) 7700, t) = ¢(t) for te[0, ),

(ii) the curve t+— 77(s, t) is a normal geodesic that is perpendicular
to N at ¢ =0, for each se(—z¢, ¢).
It is well-known that the Jacobi field associated to a transversal deforma-
tion is transversal. Conversely, any transversal Jacobi field is associated
to at least one transversal deformation. Actually, for a transversal
Jacobi field J, let u:(—e¢,€)— L,N be a map such that u(0) = ¢(0), and
the tangent vector to the curve s+ vou(s) at s =0 is J(0). Then the
map 7°: (—¢, €) X [0, o) — M defined by 77°(s, t) = expy (tu(s)) is a trans-
versal deformation, and the Jacobi field associated to 7 coincides with
J. See Hermann [3] or Bishop-Crittenden [1]. A focal point ¢(z) of N
along ¢ is a point such that exp, is singular at zé(0)e LN. ¢(7) is a
focal point of N along ¢ if and only if there exists a Jacobi field J along
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¢ that is transversal to N at t=0, J(0)# 0 and J(z) =0. The focal locus
F(N) of N is the set of focal points of N along all geodesics starting
from N and perpendicular to N. For fixed 7>>0, a map 977: (—¢, €)X
[0, z]— M will be called a proper deformation of ¢|[0, 7] between N and
¢(7) if it satisfies

(i) 2770, t) = c(t) for telo, ],

(ii) 2#7(s,0)e N for se(—¢,e¢),

(iii) Z7(s, 7) = c(r) for se(—¢, &),

(iv) the tangent vector X(¢) to the curve s— Z#7(s, t) at s=0 is
perpendicular to ¢, for each t¢]0, 7].
A vector field X:[0,7]— TM along ¢|[0,7] will be called a proper
infinitesimal deformation of ¢|[0, 7] between N and c¢(r) if it satisfies

(i) X(7)=0,

(ii) X(¢) is perpendicular to ¢ for ¢€|0, 7].
For any such X, there exists a proper deformation 97~ of ¢|[0, ] between
N and ¢(r) such that the associated vector field coincides with X. Let
L(s) denote the length of the curve t+— %%7(s,t). Then L:(—¢,¢)— R
is smooth in a neighbourhood of 0, and

d*L(0)
ds’
where X' denotes the covariant derivative of X along ¢, and u = ¢é(0).
Let I(X) denote the right hand side of the above formula.
Basic LEMMA. If N has no focal point along ¢|[0, z]. Then
I(X)=zo0,

for any proper infinitesimal deformation X of ¢|[0, 7] between N and
¢(t), moreover equality occurs if and only if X = 0.

= | «x, ) - (R, 9X, )t + S(X(0), X(0) ,

For the proof, see Bishop-Crittenden [1].

Let p: Mx M — R denote the distance function on M. The distance
function py: M — R from N is given by py(p)=inf {o(p, ¢)|lge N}. py is
continuous on M, and smooth on M — N — C(N). If ¢([0, z])NC(N) =
for some 7>0, then ¢|(0, 7] is an integral curve of the gradient vector
field grad oy of poy. pu(c(t)) =t for te[0,7]. Since grad p,(c(z)) # 0,
N = p3'({c}))n U is a piece of hypersurface in M, where U is a small
neighbourhood of ¢(z) in M. ¢ is perpendicular to N’ at ¢t = . Moreover,
for any «%'e L ,N which is sufficiently close to ¢(0), the geodesic
¢’ [0, ) — M defined by c'(t) = expy (tu’) is perpendicular to N’ at t=r.

3. The isometric structure of M. From now on, we shall assume
that M is of non-negative Ricei curvature, and N is a connected and
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compact hypersurface in M, which has no focal point, that is, F(N)= @.
LEMMA 1. N s a minimal hypersurface.

Proor. For any ue 1,N, we shall prove that the mean curvature
m(u) of N with respect to u vanishes. Define ¢:[0, ©)— M by
¢(t) = expy (tu). Let e, ---, e,_,, ¢ be parallel orthonormal vector fields
along ¢. Fix any >0, and define proper infinitesimal deformations X,
k=1,---,n—1, of ¢|[0, 7] between N and ¢(z) by X.(t) = ((t — t)/7)en(t).
Since N has no focal point along ¢, we have, by Basic Lemma in §2,

0= KX,

= S:«Xé, Xiy — (R(X,, )X, &)dt + kz_ S.(X.(0), X,(0))

I
-

Il

_n=1_ S’(";t)zmc (E(t)dt + m(w)

T 0
n—1

IA

+ m(w) .

Letting 7— o, we have m(u)=0. Similarly we have 0 < m(—u)=—m(u),
and the lemma follows.

Fix pe M — N — C(N), and choose a small neighbourhood U of p in
M— N—C(N). Then N'=p3'({z})N U is a piece of hypersurface through
», where 7 = poy(p).

LEMMA 2. N’ is a piece of minimal hypersurface.

PrOOF. Let ¢: (— oo, co)— M be a normal geodesic which is perpendi-
cular to N at t=0, and ¢|[0, 7] is a minimal geodesic from N to p = ¢(7).
Then ¢ is perpendicular to N’ at t=7. It is sufficient to prove that the
mean curvature of N’ with respect to é(z) vanishes. Let ¢, = ¢|[0, <),
and c_:[0, «o)— M; c_(t) = ¢(—t). For each ve N,,, v+ 0, let J, and J_
be the Jacobi fields along ¢, and c_ respectively that are transversal to
Natt=0, and J (0)=J_(0)=v. Since N has no focal point along ¢, and
c_, J, and J_ do not vanish everywhere. Define J:(— o, «)— TM by
J(t) = J(t) for t =0, and J(t) = J_(—t) for £ <0. Then J is a smooth
Jacobi field along ¢, which does not vanish everywhere. Recall that the
Jacobi equation is of second order. Since N’ is a “level surface” of o,
the Jacobi fields J.:[0, «o)— TM; J(t) = J({t + 7) and J;: [0, o) — TM;
Jy(t) = J(—t + 7) are transversal to N’ at ¢ =0. It follows easily that N’
has no focal point along ¢. Then, by Lemma 1, the mean curvature of
N’ with respect to ¢é(z) vanishes.



ISOMETRIC STRUCTURE OF RIEMANNIAN MANIFOLDS 5

LEMMA 3. oy s harmonic in M— N—C(N).

ProoF. Let », U and N’ be as above. Let E,---,E,_,,
E,=grad (05| U) be orthonormal vector fields in U. Then the restrictions
E,| N, k=1,---,n—1, are tangent to N’, and E,|N’ is perpendicular to
N’. The integral curves of E, are geodesics, V; F,=0. Hence we have,

405(p) = — 3 F5,Bsy By

= - g (E,, VE,,Ek> l»
= m(E,(p))
= 0 ’

by Lemma 2, where m(E,(p)) is the mean curvature of N’ with respect
to E.(p).
The following lemma is due to Cheeger-Gromoll [2].

LEMMA 4. grad py is parallel in M — N — C(N).

Proor. Let p and U be as above. Let E, ---, E,_,, E, =grad (oy| U)
be orthonormal vector fields in U which are parallel along the integral
curves of E,. Then in U,

Ric (B,) = 3 (R(B., B)E,, B
= kg‘; <V[E”,Ek]E'n - VE,,,VE],E'A + VEI‘VE”E'M Ek>

= = S (Prp 2B B + P57 5,8, B)

Il

= 3 V5 Bu BT 5,Ens By = 3, BV 5,y By

= —<VE,,,,, VE'n> + En(ApN)
= —(VE,,VE,),

by Lemma 3, where V'E, is the covariant differential of E,. Since we
have assumed that the Ricei curvature of M is non-negative, it follows
that FE, = 0.

Let V'’ be a small neighbourhood of » in N’, and V’'X(—¢, €) be the
Riemannian product of V' and (—¢, ¢), for small €>0. Then, by Lemma
4, the map ¢: V' x(—¢,e)— M — N — C(N); ((q,t) = exp(tE,(g)) is an
isometric imbedding. See Kobayashi-Nomizu [4]. For fixed g V', t— ¢
(g, t) is an integral curve of E,. For fixed te(—¢,¢), (V' x{t}) coincides
with o5'({z + )N (V' X (—¢, €)), where 7 = py(p). Similarly, for pe N, let
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V Dbe a small neighbourhood of p in N, and V x(—¢, €) be the Riemannian

product. Let X, be a unit normal vector field on V. Then the map

. Vx(—¢, e)— M—C(N); «q, t) = expy (tX,(q)) is an isometric imbedding.

For fixed ge V, t—¢q, t) and ¢+ ¢(q, —t) are integral curves of E,, for

t>0. For fixed te(—¢, ¢€), ((V x{t}) coincides with po7'({t})) NV X (—z¢, €)).
The following lemma is essentially due to Shiohama [6].

LEMMA 5. If N has a cut point, then the cut locus C(N) is a com-
pact totally geodesic hypersurface without boundary.

Proor. Since N is compact, the distance » = o(N, C(N)) between N
and C(N) is greater than zero. Let p,eC(N) be a point such that
ox(p,)=r. First we shall prove that, for a small neighbourhood U of
p, in M, CG(N)NU is a piece of totally geodesic hypersurface, and
ex|C(N)NU = r. Let ¢:(—oco, co)— M be a normal geodesic such that
¢|[0, r] is a minimal geodesic from N to C(N), ¢(r) = p,. Since N has no
focal point, there are precisely two minimal geodesic from N to p,.
¢, = ¢c|[0, r] and ¢,: [0, ] = M; cit) = ¢(2r — t). See Omori [5] and also
Shiohama [6]. Let V;, j=1, 2, be small neighbourhoods of ¢;(0) in N.
Let X;:V;— LN be unit normal vector fields on V; such that
X(c;(0)) = ¢;(0). Define @;: V; X (— <0, o) — M by 0i(g, t) = expy (tX(a))-
Then @; are immersions, and @;|V; x (—r, r) are isometric imbeddings.
It follows that @,(V; x {r}) are totally geodesic hypersurfaces which are
perpendicular to é(r). Hence H=90,(V,x{r})N@,(V,x{r}) is also a totally
geodesic hypersurface through p,. For any p € H, there are two minimal
geodesics, of length r, from p to N. Hence HCC(N). By taking U
suitably, we have H=C(N)N U. Next, let p’c H, where H denotes the
closure of H in M. Then p'e C(N) and py(p')=7r. Therefore, as above,
C(N)N U is a piece of totally geodesic hypersurface, p,|C(N)NU = r,
where U’ is a small neighbourhood of »’ in M. Let C, denote the
connected component of C(N) which contains p,. Then we have shown
that C, is a compact totally geodesic hypersurface without boundary,
here the compactness of C, follows from that of N. It is easy to see
that C(N) has at most two connected components C, in the direction
of é(0), and C(N) — C,, in the direction of —¢é(0). It is proved by the
same way as above that if C(N) — C, is non-empty, then it is also a
compact totally geodesic hypersurface without boundary.

- REMARK. (i) If there does not exist 'a unit normal vector field
X: N— 1,N defined globally on N, then C(N) is connected.

(ii) If C(N) consists of two connected components, then M is
compact.
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COROLLARY. C(N) 1s locally isometric to N.

3. Non-compact case, Proof of Theorem A. In this section, we shall
consider the case where M is non-compact. If N has no cut point, then
M is isometric to the flat normal bundle | N. The isometry is given by
expy: LN— M. On the other hand, if N has a cut point, then C(N) is
a connected and compact totally geodesic hypersurface without boundary.
There exists a unit normal vector field X: N— 1 ,N defined globally on
N such that there is no cut point in the direction of —X. Define
iy: N— N by i,(q9) = expy (2rX(q)), where r» = o(N, C(N)). Then iy is an
isometric involution on N. Since for each p e C(N), there are precisely
two minimal geodesics from » to N, ¢, has no fix point. Define
j: N—C(N) by j(q9) = expy (rX(q)), then j is an isometric double covering.
3(@)=13(ix(q)) for g € N. C(N)is isometric to the quotient space N/, ,,=N/Z,.
As a hypersurface, C(N) has no cut point. Therefore M is isometric to
the flat normal bundle L C(N) on C(N). LC(N) is a non-trivial line
bundle. Thus we obtain Theorem A.

4. Compact case, Proof of Theorem B. In this section, we shall
consider the case where M is compact. For >0, let L, N=
{fwe LN|{u, uy < r?, luaN={ue LN|{u,uy =7} and 1L.N=
{ue L N|{u, uy=r be Riemannian submanifolds in the flat normal bundle
L N. For a fixed-point free isometry 4: L ,N— L,N, let 1, N/t denote
the Riemannian manifold obtained from 1,N by identifying the
boundary points we L,N with #(u). Now, if C(N) is connected, then
C(N) = p5'({r}) and M — C(N) is isometric to L, N, where r = o(N, C(N)).
Define 4: | ,N— 1 ,N by #(u) = v, where v is such that expy (v) = expy (u),
v#u, which is determined uniquely. Then % is a fixed-point free isometric
involution on 1 ,N. It is easy to see that M is isometric to 1 . N/i.
Next, if C(N) consists of two connected components C, and C,. Then,
for the sake of simplicity, we may assume r = p(N, C,)) = p(N, C)). Then
C(N) = p5'({r}), and M — C(N) is isometric to L, N. Let 4t L ,N— L,N
be as above. Then 7 is a fixed-point free isometric involution on each
of the connected components of 1 ,N. It is easy to see that M is iso-
metric to 1, N/i. Thus we obtain Theorem B.

I wish to express my sincere thanks to Professor K. Shiohama who
kindly has read through the manuscript to point out several errors.
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